Data Repository included at end of document

Detrital-zircon ®ssion-track ages for the ``Hoh Formation'': Implications for late Cenozoic evolution of the Cascadia subduction wedge

Richard J. Stewart² Department of Earth and Space Sciences, University of , Seattle, Washington 98195-1310, USA Mark T. Brandon³ Department of Geology and Geophysics, Kline Geology Laboratory, Yale University, P.O. Box 208109, New Haven, Connecticut 06520-8109, USA

ABSTRACT stones commonly can be used as a proxy for , Coastal OSC, Hoh depositional age. Formation, zircon ®ssion-track dating. We report new ®ssion-track (FT) ages for Our zircon FT minimum ages indicate detrital zircons for 34 sandstone samples that the Coastal OSC is made up mainly of INTRODUCTION and 2 volcanic ash beds from the ``Hoh lower Miocene (ca. 24 to 16 Ma) sedimen- Formation,'' exposed along the western side tary rocks. We use these age data, together The Olympic Mountains of northwest of the Olympic Mountains of western with other geologic constraints, to recon- Washington State (Fig. 1) mark the ®rst part Washington State. The ``Hoh Formation'' struct a tectonic history. Sedimentary rocks of the Cascadia forearc to emerge above sea is now formally known as the coastal unit of the Coastal OSC were derived from a level, starting at ca. 15 Ma (Brandon and of the Olympic Structural Complex, or mixed-source region that included an active Vance, 1992; Brandon et al., 1998). Uplift and Coastal OSC for short. About 35 zircons volcanic arc and also older units, including erosion of the forearc high in this area provide were dated per sample. The ®ssion-track Cretaceous metamorphic rocks, probably a deep window into the subduction wedge. Ta- grain-age (FTGA) distributions are all located in the Omineca crystalline belt in bor and Cady (1978a, 1978b) used the infor- strongly discordant; grain ages range from the Canadian Rockies. The upper part of mal name Olympic core for these rocks. Bran- 10 to older than 100 Ma. Low vitrinite- the Clallam Formation, located on the don and Vance (1992) suggested Olympic re¯ectance values, short etch times for the northern side of the , ap- subduction complex. To be consistent with zircons, and a broad range of grain ages pears to be a remnant of the sedimentary Stratigraphic Code (Salvador, 1994), we des- indicate that the zircon FT ages are unreset system that fed the Coastal OSC. The sed- ignate here the formal name Olympic Struc- and thus preserve information about cool- iments that formed the Coastal OSC were tural Complex (OSC). This name is a direct ing events in the source region for these initially deposited seaward of the Cascadia replacement for the previous informal names. sedimentary rocks. Five areas were sampled trench, at water depths of Ͼ2000 m. This Following Tabor and Cady (1978a, 1978b), repeatedly and yield similar FTGA distri- debris was deposited seaward of the Cas- the OSC refers to the imbricated assemblage butions, demonstrating that sampling er- cadia trench, at water depths of Ͼ2000 m, of turbidite sandstone, siltstone, and lesser ig- rors are not a problem. We show that almost and subsequently accreted beneath the neous rocks that structurally underlie the Cres- all of the samples contain a well-de®ned frontal 50 to 100 km of the wedge. Owing cent terrane and the Calawah and Hurricane young component that was probably de- to continued accretion at the front of the Ridge faults, and their lateral equivalents rived from a contemporaneous active vol- wedge, and erosion of the forearc high in (Figs. 1 and 2). These rocks are mainly Eo- canic source, presumably the adjacent Cas- back of the wedge, these lower Miocene cene to middle Miocene in age, but note there cadia arc. Binomial peak-®tting was used to sediments were moved rearward within the is a small enigmatic slice of Mesozoic rocks estimate the FT minimum age, which is the Cascadia subduction wedge. A simple re- exposed in the northwest corner of the Olym- age of the youngest concordant fraction of lationship based on the cross-sectional area pic Peninsula. The OSC could be extended to zircon FT grain ages in a FTGA distribu- of the wedge and a steady accretion ¯ux in- include all equivalent rocks within the Cas- tion. In most cases, minimum ages are sim- dicates that it would have taken ϳ22 m.y. cadia subduction wedge, but this is generally ilar to fossil ages where available. This re- for the Coastal OSC to reach its present not done given that the Olympic Mountains sult supports our contention that zircon FT position 140 km landward of the toe of the represent the only exposure of the Cascadia minimum ages from volcaniclastic sand- wedge. This estimate is in good agreement wedge north of the California border. with the unit's early Miocene age. Tabor and Cady (1978a, 1978b) mapped ²E-mail: [email protected]. ®ve informal lithic assemblages within the ³E-mail: [email protected]. Keywords: Cascadia subduction wedge, OSC. Brandon and Vance (1992) reorganized

GSA Bulletin; January/February 2004; v. 116; no. 1/2; p. 60±75; DOI 10.1130/B22101.1; 13 ®gures; 3 tables; Data Repository item 2004023.

For permission to copy, contact [email protected] 60 ᭧ 2004 Geological Society of America ``HOH FORMATION'' AND LATE CENOZOIC EVOLUTION OF CASCADIA SUBDUCTION WEDGE

the youngest on-land exposures of accreted rocks in the Cascadia subduction wedge. In this paper, we present new ®ssion-track (FT) ages for detrital zircons from sandstones of the Coastal OSC. This approach was ®rst applied in the Olympics by Brandon and Vance (1992) in their study of the age and origin of the Upper OSC and Lower OSC. Age control is commonly sparse in subduc- tion-complex rocks. The FT method provides a useful approach in that one can date indi- vidual zircon grains. If a sandstone has re- mained relatively cool after deposition (Ͻϳ200 ЊC), then the grain ages represent the age of cooling for rocks in the source region from which the zircons were derived. Brandon and Vance (1992) presented preliminary evi- dence indicating that the youngest zircon FT grain ages were derived from contemporane- ous volcanic sources in the active Cascade arc. They proposed that the pooled age of that young group of grain ages, called the FT min- imum age, was a useful proxy for the depo- sitional age of the sandstone. We have three objectives here. The Coastal OSC has many localities well dated by benthic foraminifera. Thus, an important ®rst objec- Figure 1. Index map, showing accreted rocks of the Cascadia subduction wedge, which tive is to compare zircon FT minimum ages includes on-land exposures in the Olympic Mountains (Olympic Structural Complex) and with fossil ages to see if the minimum ages in northern California (False Cape and King Range terranes of the Coastal belt of the are a good proxy for depositional age. The Franciscan Complex). The accreted rocks are structurally overlain by the Coast Range second objective is to use the overall distri- terrane. Solid, northeast-pointing arrow indicates convergence velocity of the Juan de bution of zircon FT grain ages to identify the Fuca plate relative to North America at the latitude of the Olympic Mountains (DeMets source of sediments for the Coastal OSC. We et al., 1990; DeMets and Dixon, 1999). use this information to assess previous sug- gestions that rocks now within the coastal unit are offset, by oblique convergence, from an these units into three larger units. The Upper accretion, and may be a more westerly contin- original accretionary setting in the southern unit is equivalent to the Needles-Graywolf and uation of the Lower unit. This possibility was part of the Cascadia margin (e.g., Davis and Elwha assemblages of Tabor and Cady ®rst suggested by Brandon and Vance (1992) Hyndman, 1989; Aalto et al., 1995, 1998). (1978a). It contains mainly Eocene turbidites and is supported by the new ages presented in The third objective is to use depositional ages and minor pillow basalt, and looks as if it this paper. Following past practice (Brandon to interpret the displacement history of the were derived by structural repetition from the and Vance, 1992; Brandon et al., 1998), we Coastal OSC within the Cascadia wedge, from overlying Crescent terrane, which represents a use the following abbreviated names in our an initial site of accretion at the front of the large thrust-bounded structural lid above the discussion below: Upper OSC, Lower OSC, wedge at a water depth Ͼ2000 m to its present OSC. The Lower unit is equivalent to the and Coastal OSC. exposures along the Washington coast. Western Olympic and Grand Valley assem- The Coastal OSC has attracted considerable blages of Tabor and Cady (1978a). It appears TECTONIC OVERVIEW attention over the years, in part because of its to be composed mainly of Oligocene and Mio- spectacular exposure in wave-cut outcrops cene turbidites, derived by accretion from the The Cascadia subduction wedge (Fig. 1) is along the Paci®c Coast of the Olympic Pen- subducting Juan de Fuca plate and its sedi- a doubly vergent wedge (Willett et al., 1993) mentary cover. Basalts are very rare in this insula (Fig. 1). Chaotic mudstone-rich meÂ- formed by 35 m.y. of subduction of the Juan unit. langes, locally present in these exposures, de Fuca plate beneath the Cascadia margin We focus here on the Coastal unit, formerly have been the subject of debate since ®rst de- (Brandon et al., 1998; Willett, 1999; Beau- called the Hoh Formation (Weaver, 1916, scribed by Arnold (1905) and Lupton (1914). mont et al., 1999; Pazzaglia and Brandon, 1937), the Hoh rock assemblage (Rau, 1975, The mechanisms and timing of meÂlange for- 2001). The active wedge is ϳ200 to 250 km 1979), and the Hoh lithic assemblage (Tabor mation in the Hoh remain controversial and wide, bounded to the west by the Cascadia and Cady, 1978a). It consists mainly of Mio- poorly resolved (Rau and Grocock, 1974; Rau, trench and to the east by a forearc low, marked cene turbidites and meÂlange, with subordinate 1975, 1979; Snavely et al., 1993; Orange, by the Willamette Valley, Puget Sound, and exotic blocks of pillow basalt. The Coastal 1990; Orange et al., 1993). This issue is sig- Georgia Straits. The forearc high, which cor- unit was also probably derived by subduction ni®cant because the Hoh represents some of responds to the Oregon-Washington Coast

Geological Society of America Bulletin, January/February 2004 61 STEWART and BRANDON

but locally chaotic, with rare interspersed lens- es and blocks of volcanic rock. Clastic rocks are mostly turbidites, and volcanic rocks are geochemically similar to the thick basaltic basement in the overlying Coast Range terrane (Applegate and Brandon, 1989). Microfossils in the Coastal OSC are overwhelmingly early Miocene in age and record deposition in lower-bathyal water depths, between ϳ2000 and 4000 m (Rau, 1975, 1979; Ingle, 1980). There is a small number of younger localities that indicates middle or late Miocene ages (seven reported in Rau, 1975) and a few others that indicate Eocene ages (four reported in Rau, 1979). De®nitive Oligocene localities have not been recognized. The more eastern parts of the Olympic sub- duction complex commonly show prehnite- pumpellyite facies metamorphism and a spaced pressure-solution cleavage (Tabor and Cady, 1978a, 1978b; Brandon and Calder- wood, 1990). In contrast, clastic rocks of the Coastal OSC are typically unmetamorphosed, although zeolites are locally present (Stewart, 1974). Basaltic blocks do show static greenschist assemblages, probably related to Figure 2. Tectonic map of the Olympic Structural Complex, showing locations of geologic sea¯oor metamorphism, which would have features mentioned in text. Figure adapted from Tabor and Cady (1978a, 1978b), Brandon occurred prior to incorporation of the blocks and Vance (1992), and Snavely and Wells (1996). OSCÐOlympic Structural Complex; FT into the meÂlange units. Cleavage fabrics are PRZÐzircon ®ssion-track partial retention zone. Cross section A±A؅ is shown in Figure also notably absent, expect for scaly fabrics 12. locally developed in meÂlange units. The Coastal OSC shows clear evidence of northeast-southwest shortening, in the direc- tion of convergence. Bedding generally strikes Ranges and the Insular Ranges of Vancouver 1989; Davis et al., 1990; Pazzaglia and Bran- to the northwest-southeast and is commonly Island, marks the transition between the pro- don, 2001; Batt et al., 2001). steep and locally overturned. Where recog- side and retroside of this doubly vergent Along most of its length, the Cascadia sub- nized, folds are typically overturned to the system. duction wedge includes a relatively coherent southwest. The section shows widespread ev- Accretion over the past 35 m.y. has allowed tectonic sequence, called by some the ``Coast idence of repetition by thrust faults (Rau, the wedge to grow to its present large size Range terrane'' (or ``Siletz terrane'' by oth- 1975, 1979; Orange, 1990). (e.g., Rau, 1973, 1975; Tabor and Cady, ers), made up of early Eocene oceanic crust MeÂlange and broken formation (sensu HsuÈ, 1978a, 1978b; Dickinson and Seely, 1979; and overlying marine sedimentary rocks. The 1968) are expected, given the subduction-zone Brandon and Vance, 1992; Brandon et al., base of the Coast Range terrane is exposed in setting, but these deformational styles are ob- 1998). The seaward deformation front of the the Olympics and is de®ned by a major thrust served in less than ϳ20% of the Coastal OSC. wedge is currently ϳ140 km west of the pres- fault, locally called the Hurricane Ridge fault In fact, meÂlange is even less common (Ͻ10%) ent coastline of the Olympic Peninsula, and or Calawah fault (Fig. 2). The Coast Range in the other parts of the subduction complex seismic data indicate that the 2±3 km thick- terrane can be viewed as a structural lid that (Tabor et al., 1970; Tabor and Cady, 1978a). ness of sediment carried into the subduction overlies the accretionary part of the wedge These observations contrast with the large zone on the Juan de Fuca plate gets thickened (Clowes et al., 1987; Brandon et al., 1998). fraction of meÂlange found in Miocene parts of to 20 km beneath the Washington coast and We consider the lid to be part of the active the Cascadia wedge exposed in the Franciscan ϳ35 km beneath the central part of the Olym- wedge, because it shows clear evidence of up- Complex in northern California (see Fig. 1; pic Mountains (Clowes et al., 1987; Brandon lift and broad folding associated with the King Range and False Cape terranes of et al., 1998; Parsons et al., 1998; Pazzaglia maintenance of critical taper on the two sides McLaughlin et al. [1982, 1994]; Aalto et al. and Brandon, 2001). The modern convergence of the doubly vergent wedge (see discussion [1995]). rate along this part of the Cascadia subduction in Pazzaglia and Brandon, 2001). Local bodies of meÂlange in the Coastal zone is 36 mm/yr (DeMets et al., 1990; The focus here is on the Coastal OSC, OSC have a matrix of intensely ``scaly'' silt- DeMets and Dixon, 1999), and virtually all which is the youngest and westernmost unit stone with blocks of sandstone, conglomerate, sediment on the Juan de Fuca plate appears to exposed in the Olympic Mountains (Fig. 2). It and volcanic rock (Weissenborn and Snavely, be incorporated by accretion into the Cascadia consists mainly of a monotonous sequence of 1968; Rau, 1970, 1975, 1979; Rau and Gro- subduction wedge (Davis and Hyndman, sandstones and shales, typically well bedded cock, 1974; Orange, 1990; Orange et al.,

62 Geological Society of America Bulletin, January/February 2004 ``HOH FORMATION'' AND LATE CENOZOIC EVOLUTION OF CASCADIA SUBDUCTION WEDGE

1993). Published maps generally lump rare tively shallow depth is due to the young age the Data Repository.1 Probability density plots exposures of broken formation together with of the Juan de Fuca plate, which is ca. 8 Ma for selected examples are shown on Figure 5. the more widespread coherent stratigraphic at the trench. The age of the plate at the trench Peak-®tting results (Tables 1, 2, and 3) are units. Rau (1979) and Snavely and Kvenvol- has remained relatively constant at ϳ8 m.y. shown compared to the IUGS time scale of den (1989) recognized local areas where the over the past ϳ35 m.y. (Wilson, 1988), so the Remane (2000) on Figures 6 and 7. more coherent parts of the Coastal OSC ap- paleodepth of the trench basin would not have Zircon separates were prepared by standard pear to be resting depositionally on broken been much different than the modern. Thus, techniques using the external-detector method formation. Modern subduction wedges are we conclude that most of the Coastal OSC (Wagner and van den Haute, 1992). Both ends commonly mantled by small ``trench-slope was probably deposited in the trench basin, of the irradiation package contained ¯uence basins'' (Moore and Karig, 1976) that accu- seaward of the Cascadia wedge. We recognize, monitors, using the SRM 612 U-enriched mulate in local depressions in the surface of however, that some of the subduction complex glass standard, and a mount of Fish Canyon the wedge. The coherent sequences in the may represent slope basins, deposited after ac- Tuff zircons. Samples were irradiated with Coastal OSC may represent trench-slope ba- cretion. Any slope-basin sequences must have thermal neutrons in the TRIGA reactor at sins, deposited after the underlying section been deposited soon after accretion in order to Oregon State University (a well-thermalized was accreted. account for the foraminiferal evidence for ini- reactor) using a nominal ¯uence of 1.0 ϫ 1015 The other alternative is that the chaotic tial deposition at depths of Ͼ2000 m. Thus, neutrons/cm2. Following irradiation, the mica units record mass wasting. Mass wasting is one can consider the age of the Coastal OSC detectors were etched in 40 percent hydro- now widely recognized at sediment-rich sub- as de®ning when sedimentary materials ®rst ¯uoric acid for 18 minutes. The effective duction zones, like Cascadia (e.g., Gold®nger were added to the front of the wedge. This monitor track density was determined for each et al., 2000). Mass-wasting deposits common- evidence is used in the Discussion to constrain sample by using the sample position in the ly reach the trench (e.g., Davis and Hyndman, transport times through the wedge. irradiation package to interpolate the densities 1989), where they become depositionally in- We have already noted the similarities be- measured in the two ¯uence monitors. Fission ter®ngered with trench-basin strata. Thus, tween the Coastal OSC and correlative accre- tracks were counted using oil immersion and stratigraphic relationships are currently not tionary complexes of the False Cape and King a Zeiss microscope at 1250ϫ. Based on 8 suf®cient to judge whether the coherent units Range terranes, exposed on the Paci®c Coast analyses, the Zeta value (Hurford and Green, in the Coastal OSC were deposited seaward or in northern California (Fig. 1). These units 1983) for R. Stewart is 331.03 Ϯ 6.66 (Ϯ 1 landward of the toe of the wedge. represent the only other part of the Cascadia standard error). Four samples were dated by J. The paleobathymetric evidence provided by subduction wedge where upper Cenozoic ac- Garver (1990, personal commun.) using meth- benthic foraminifera provide a key constraint creted rocks are subaerially exposed. The ods similar to ours (Garver et al., 1999). His in that they record deposition in water deeper False Cape terrane is composed mainly of Zeta is 320.67 Ϯ 7.79. than ϳ2000 m. Rau (1975, 1979) recognized scaly argillite and sandstone, and was de- The analyses are organized into three that deep-water benthic foraminifera were formed in early Miocene time (Aalto et al., groups. Table 1 consists of 25 samples from very common in the Coastal OSC, but he pre- 1995). The King Range terrane, which con- the coherent well-strati®ed turbidite sequences ferred a conservative estimate of Ͼ200 m for tains the youngest rocks of the Coastal belt of in the Coastal OSC. Five areas, shown as water depth. One of the reasons is that the the Franciscan Complex, was accreted at the Groups A±E on Table 1 and Figures 3 and 4, foraminiferal assemblages were a mixture of front of the wedge in the middle Miocene, at were densely sampled, with samples Ͻ1km both deep- and shallow-water taxa. Down- ca. 15 Ma (McLaughlin et al., 1982, 1994). apart, to check reproducibility of our results. slope transport is now recognized as the rea- The King Range terrane is similar to the Table 2 includes ten samples collected from son for mixed depth provenance of benthic fo- Coastal OSC in that both include broken for- sandstone blocks in Coastal OSC meÂlange. Ta- raminifera in turbidite sequences. Thus, mations and meÂlanges, a general absence of ble 3 is included for comparative purposes, paleodepth is now de®ned by using the deep- metamorphism, and middle Miocene turbi- and consists of samples from adjacent parts of est-water taxa in the assemblage (Ingle, 1980). dites that may be accreted sediments initially both the Upper and Lower OSC. Five of these We have applied the paleobathymetry bio- deposited in the trench (McLaughlin et al., samples are from Brandon and Vance (1992), facies of Ingle (1980) to de®ne paleodepth by 1982). An important difference is that the recalculated using BINOMFIT. using the benthic foraminifera reports by Rau King Range terrane, and perhaps the False EVIDENCE AGAINST THERMAL (1975, 1979) for the Coastal OSC. The con- Cape terrane as well, appear to have been clusion is that the unit was deposited in the RESETTING strongly affected by northward migration of lower-bathyal biofacies, indicating water the Mendocino triple junction, which may be depths of 2000 to 4000 m. The diagnostic taxa Our interpretation of these zircon FT ages largely responsible for driving the present-day are Cibicides pseudoungerianus evolutus depends on whether the ages have been ther- uplift and rapid erosion of the wedge in the (Cushman and Hobson) and Gyroidina sol- mally reset. We are particularly concerned be- northern California area (Dumitru, 1991). danii (d'Orbigny), which are very common in cause the sediments that formed the Coastal all of Rau's samples. Less common diagnostic OSC were probably ®rst deposited outboard taxa are Melonis pompilioides (Fichtel and SAMPLING AND DATING METHODS of the subduction zone, on a young, hot Juan Moll) (referred to by Rau, 1979, by an older de Fuca plate. name: Nonion pompilioides), and Plectofron- Zircon FT analyses for 1264 zircons from dicularia californica (Cushman and Stewart). 36 samples, all medium- to coarse-grained 1GSA Data Repository item 2004023, list de- scribing the location and geologic setting for new At present, the surface of the Cascadia sandstones, are shown on Tables 1, 2, and 3. samples dated, is available on the Web at http:// trench basin seaward of the wedge is at a wa- Maps showing the distribution of sample lo- www.geosociety.org/pubs/ft2004.htm. Requests ter depth between 2000 to 2500 m. The rela- calities and zircon FT data are available from may also be sent to [email protected].

Geological Society of America Bulletin, January/February 2004 63 STEWART and BRANDON

TABLE 1. DETRITAL-ZIRCON FT AGES FROM COHERENTLY BEDDED SANDSTONES, COASTAL OSC

Lab number Nt Minimum-age peak Old peaks Age 95% Conf. Int. % Age 95% Conf. Int. % Age 95% Conf. Int. % Single samples 168² 36 11.0 Ϫ2.9 ϩ3.9 10.6 21.6 Ϫ2.4 ϩ2.7 45.3 53.6 Ϫ5.9 ϩ6.6 44.1 108²³ 50 13.9 Ϫ2.5 ϩ3.0 11.9 29.3 Ϫ3.8 ϩ4.4 24.8 50.9 Ϫ6.0 ϩ6.8 28.3 41² 43 16.0 Ϫ1.4 ϩ1.5 84.2 54.4 Ϫ10.9 ϩ13.6 15.8 ± ± ± ± 183² 42 16.2 Ϫ1.4 ϩ1.5 70.1 50.8 Ϫ7.4 ϩ8.7 29.9 ± ± ± ± 162² 13 18.3 Ϫ2.8 ϩ3.3 83.4 33.1 Ϫ12.8 ϩ20.9 16.6 ± ± ± ± 154 51 18.6 Ϫ2.0 ϩ2.2 40.1 33.8 Ϫ6.0 ϩ7.3 19.5 66.5 Ϫ5.9 ϩ6.4 40.4 151² 50 19.9 Ϫ3.0 ϩ3.6 24.1 44.7 Ϫ8.2 ϩ10.1 45.0 ± ± ± ± 143² 27 21.2 Ϫ1.6 ϩ1.8 85.0 55.6 Ϫ10.5 ϩ13.0 15.0 ± ± ± ± 170² 37 24.4 Ϫ2.4 ϩ2.7 69.2 56.1 Ϫ8.1 ϩ9.5 30.8 ± ± ± ± 195 18 25.9 Ϫ5.0 ϩ6.2 55.7 52.1 Ϫ13.3 ϩ17.9 44.3 ± ± ± ± Group A 42a²³ 41 14.2 Ϫ2.1 ϩ2.5 19.1 45.6 Ϫ4.3 ϩ4.4 75.8 174.4 Ϫ54.1 ϩ77.9 5.2 42b² 27 25.4 Ϫ5.1 ϩ6.3 45.5 46.9 Ϫ9.9 ϩ12.5 54.5 ± ± ± ± COMBINED 68 14.3 Ϫ2.0 ϩ2.3 12.2 29.9 Ϫ4.0 ϩ4.6 32.3 51.1 Ϫ5.4 ϩ6.0 52.5 (continued for fourth peak) 176.2 Ϫ54.5 ϩ78.5 3.1 Group B 155² 49 21.7 Ϫ1.8 ϩ1.9 46.3 65.1 Ϫ4.6 ϩ4.9 53.7 ± ± ± ± 148² 28 21.9 Ϫ2.4 ϩ2.7 47.3 62.6 Ϫ6.7 ϩ7.4 52.7 ± ± ± ± COMBINED 77 21.8 Ϫ1.6 ϩ1.7 46.6 64.4 Ϫ4.3 ϩ4.6 53.4 ± ± ± ± Group C 171 28 21.6 Ϫ2.8 ϩ3.2 70.5 52.2 Ϫ10.6 ϩ13.3 29.5 ± ± ± ± 157 10 23.9 Ϫ3.7 ϩ4.4 80.1 58.6 Ϫ18.7 ϩ27.5 19.9 ± ± ± ± COMBINED 38 22.4 Ϫ2.3 ϩ2.5 74.6 54.1 Ϫ9.4 ϩ11.4 25.4 ± ± ± ± Group D 150² 23 18.5 Ϫ1.8 ϩ2.0 70.0 41.6 Ϫ5.8 ϩ6.8 30.0 ± ± ± ± 142² 48 19.1 Ϫ1.5 ϩ1.6 76.7 49.3 Ϫ6.7 ϩ7.7 23.3 ± ± ± ± 156² 50 19.4 Ϫ1.5 ϩ1.6 67.5 43.8 Ϫ6.4 ϩ7.5 23.7 82.5 Ϫ18.4 ϩ23.6 8.8 149² 51 20.8 Ϫ1.6 ϩ1.8 64.5 54.3 Ϫ5.7 ϩ6.4 35.5 ± ± ± ± COMBINED 172 15.1 Ϫ3.5 ϩ4.6 12.4 20.7 Ϫ2.2 ϩ2.5 57.9 48.3 Ϫ3.8 ϩ4.1 27.6 Group E 182 35 18.4 Ϫ3.7 ϩ4.6 27.1 41.1 Ϫ5.8 ϩ6.8 63.1 86.2 Ϫ28.2 ϩ41.7 3.4 163 46 20.5 Ϫ2.3 ϩ2.5 48.1 48.5 Ϫ5.1 ϩ5.7 51.9 ± ± ± ± 185 50 20.7 Ϫ2.6 ϩ3.0 49.3 52.2 Ϫ5.3 ϩ5.9 50.7 ± ± ± ± 186 18 23.6 Ϫ3.5 ϩ4.1 65.8 57.5 Ϫ13.3 ϩ17.4 34.2 ± ± ± ± 184 14 32.3 Ϫ4.3 ϩ4.9 78.9 90.9 Ϫ25.8 ϩ35.9 21.1 ± ± ± ± COMBINED 163 20.9 Ϫ1.7 ϩ1.8 43.4 44.5 Ϫ4.6 ϩ5.1 45.8 72.6 Ϫ17.0 ϩ22.1 10.8

Notes: Peak ages and 95% con®dence interval were estimated by using the binomial-®t method (Galbraith and Green, 1990). NtÐtotal number of dated grains; % ϭ percent of total number of dated grains in an individual peak. COMBINEDÐdata for all samples in group. Bold laboratory numbers correspond to samples illustrated in Figure 5. ²Samples used for comparison of minimum FT ages with fossil ages. ³Dated by J.I. Garver, otherwise dated by R.J. Stewart.

TABLE 2. DETRITAL-ZIRCON FT AGES FROM SANDSTONE BLOCKS IN MEÂ LANGE, COASTAL OLC

Lab Nt Minimum-age peak Old peaks number Age 95% Conf. Int. % Age 95% Conf. Int. % Age 95% Conf. Int. % Single samples 117² 45 14.6 Ϫ3.2 ϩ4.1 6.4 33.9 Ϫ8.6 ϩ11.5 23.4 50.0 Ϫ6.2 ϩ7.1 70.2 37 46 17.7 Ϫ3.9 ϩ5.0 21.6 37.7 Ϫ4.0 ϩ4.5 78.4 ± ± ± ± 176 15 19.9 Ϫ5.1 ϩ6.9 66.2 45.4 Ϫ15.4 ϩ23.3 33.8 118² 50 20.4 Ϫ3.9 ϩ4.9 11.3 38.9 Ϫ7.6 ϩ9.4 30.8 55.3 Ϫ6.6 ϩ7.5 57.9 140 50 22.0 Ϫ2.4 ϩ2.7 41.2 57.5 Ϫ4.7 ϩ5.1 58.8 ± ± ± ± 175 41 25.9 Ϫ4.0 ϩ4.8 46.1 52.9 Ϫ7.8 ϩ9.1 53.9 ± ± ± ± 178 17 32.3 Ϫ7.0 ϩ9.0 40.3 68.7 Ϫ12.2 ϩ14.8 59.7 ± ± ± ± 173 18 35.4 Ϫ6.2 ϩ7.5 76.6 73.3 Ϫ24.3 ϩ36.3 23.4 ± ± ± ± 191 37 36.2 Ϫ11.6 ϩ17.1 25.8 54.8 Ϫ9.9 ϩ12.1 74.2 ± ± ± ± 152 23 37.5 Ϫ12.3 ϩ18.3 44.0 52.8 Ϫ14.0 ϩ19.0 56.0 ± ± ± ± Notes: See Table 1.

Two observations indicate that resetting did may have been juxtaposed. Arne and Zentilli sociated with vitrinite re¯ectance values of not occur. The ®rst comes from vitrinite re- (1994) showed that re¯ectance values of 0.7% Ͼϳ6% (Green et al., 1996; http:// ¯ectance data, which range from 0.48% to to 0.9% are diagnostic of thermal histories www.geotrack.com.au/zfta.htm; Kamp, 2001). 2.08% (Snavely and Kvenvolden, 1989; needed to totally reset apatite FT ages. This Thus, we would not expect any resetting of Orange and Underwood, 1995); most values prediction is consistent with common partial the zircon FT ages in the Coastal OSC. are between 0.5% and 1.29%. Values Ͼ1.0% resetting of apatite FT ages in the Coastal The second observation is based on expe- are commonly associated with fault zones OSC (Brandon et al., 1998). In comparison, rience with partial resetting of zircon FT ages where rocks of differing thermal maturation resetting of zircon FT ages appears to be as- in the deeply exhumed core of the Olympic

64 Geological Society of America Bulletin, January/February 2004 ``HOH FORMATION'' AND LATE CENOZOIC EVOLUTION OF CASCADIA SUBDUCTION WEDGE

TABLE 3. DETRITAL ZIRCON FT AGES FROM ADJACENT PARTS OF THE OLYMPIC SUBDUCTION COMPLEX

Lab Nt Minimum-age peak Old peaks number Age 95% Conf. Int. % Age 95% Conf. Int. % Age 95% Conf. Int. % Lower OSC ZD6 50 18.5 Ϫ1.9 ϩ2.1 27.3 43.8 Ϫ3.9 ϩ4.2 37.1 67.4 Ϫ6.1 ϩ6.7 31.6 ZD50 25 26.5 Ϫ3.8 ϩ4.4 15.1 46.4 Ϫ4.4 ϩ4.9 42.5 76.8 Ϫ6.8 ϩ7.4 42.4 53 51 19.2 Ϫ2.1 ϩ2.3 65.8 50.9 Ϫ5.2 ϩ5.8 34.2 ± ± ± ± Upper OSC ZD22 50 30.9 Ϫ2.0 ϩ2.2 49.7 44.9 Ϫ3.9 ϩ4.2 37.3 69.5 Ϫ8.2 ϩ9.3 13.0 ZD38 61 43.1 Ϫ3.9 ϩ4.3 27.1 71.0 Ϫ6.2 ϩ6.8 56.9 108.3 Ϫ22.8 ϩ28.8 12.7 ZD44 25 47.8 Ϫ3.8 ϩ4.1 60.5 71.1 Ϫ9.5 ϩ11.0 31.5 146.6 Ϫ29.2 ϩ36.3 8.0 Notes: Samples with ``ZD'' pre®x are from Brandon and Vance (1992) and are recalculated here by using binomial peak-®tting method. See Table 1 for other details.

decay produces much smaller tracks, but oc- curs at a much higher rate relative to ®ssion decay. Experimental work shows that the time needed to etch and reveal ®ssion tracks in- creases as the amount of alpha damage de- creases and that alpha damage and ®ssion tracks in zircon start to anneal at similar tem- peratures (Tagami et al., 1990). Furthermore, the annealing temperature for ®ssion tracks is known to increase with decreasing alpha dam- age (Kasuya and Naeser, 1988). From these observations, Brandon and Vance (1992) suggested the following guide- lines for detecting regions in a study area where partial resetting may have occurred: (1) The sample shows a marked increase in etch time compared to other samples in the study area. The actual change in etch time depends on the procedures used and also on the time since thermal resetting. (2) The sample shows a systematic younging of old grain ages. Zir- cons with old detrital FT ages will tend to have the greatest amount of alpha damage and thus should show the largest reduction in FT ages. In turn, the youngest fraction of detrital- zircon FT grain ages should be the most re- sistant to partial resetting, especially if the de- trital FT ages are close in age to the heating Figure 3. Simpli®ed geologic map of the Coastal OSC after Rau (1975, 1979), showing event. sample locations by laboratory number (Tables 1 to 3). The Coastal OSC is divided into All of our samples show a large range in coherent turbidite sequences (light gray) and meÂlange sequences (dark gray). White circlesÐ grain ages and normal etch times (4±6 h). As sandstone samples from coherent sequences of the Coastal OSC; gray circlesÐsandstone a result, we are con®dent that the measured samples from blocks in meÂlange. Italic labels mark groups A to E, which represent areas FT ages have not changed since deposition where a coherent sequence was sampled more than once. The Upper OSC and Lower and thus provide an accurate record of pre- OSC (Fig. 2) are undifferentiated on this map but lie to the east of the thrust fault bound- depositional cooling events in the source ing the east side of the Coastal OSC. Comparative samples from those units are reported region. in Table 3 and marked on the map with white squares. ZD6 and ZD50 are from the Lower OSC, and ZD38, ZD44, and ZD22 are from the Upper OSC. PEAK FITTING AND MINIMUM AGES

Mountains, in the vicinity of Mount Olympus the ␹2 test), indicating that zircons had hetero- The FTGA distributions for our samples (Fig. 2). In that area, resetting is marked by a geneous annealing properties during resetting. typically show a large span in grain ages, from reduction in the range of grain ages and by an Grain-to-grain variations in radiation dam- ca. 10 Ma to older than 100 Ma. The proba- increase in the amount of time needed to etch age are the most likely cause for this hetero- bility for the ␹2 test (Galbraith, 1981) is ef- ®ssion tracks. However, temperatures in that geneous annealing. Most of the radiation dam- fectively zero for 34 of the samples and 9% area failed to bring the zircons to a common age in zircon is produced not by ®ssion decay and 15% for samples 152 and 191, respec- reset age (i.e., the ``reset'' samples all failed of U, but by alpha decay of U and Th. Alpha tively. This result indicates that the variance

Geological Society of America Bulletin, January/February 2004 65 STEWART and BRANDON

method will provide unbiased estimates of peak ages for track counts of any size. Binomial peak ®tting is based on the maximum-likelihood method, which means that the best-®t solution is determined directly by comparing the distribution of the grain data to a predicted mixed binomial distribution. This approach is a signi®cant improvement over the more common least-squares method, which requires more restrictive assumptions about the distribution of the residuals. A problem with all of the peak-®tting meth- ods is that they require an initial guess of the number and ages of the peaks in the distri- bution. The number of peaks could be as large as the number of grains in the FTGA distri- bution. So we are left to ask, how many peaks are signi®cant? It is also important to start with an initial guess that is not too far away from the best-®t solution; otherwise the cal- culation may fail to ®nd the best-®t solution. We have used a Windows program BI- NOMFIT, written by M. Brandon, to ®nd best- ®t components for the FT data presented here. The current version of BINOMFIT does an iterative search of peak ages and number of peaks to ®nd the best-®t set of signi®cant components in the mixed distribution. The Figure 4. Map, showing zircon FT minimum ages from Tables 1 to 3. See Figure 3 for program has an automated version of the F- details. test approach outlined in Brandon (1992). The program considers a large set of trial solu- tions. The trick is to organize the search and to apply appropriate tests to ®nd the best in grain ages is much larger than expected, mum number of signi®cant components in the solution. given analytical error alone. distribution, as discussed subsequently. The quality of ®t for each of the trial so- Each FTGA distribution was treated as a It is useful to ask why the binomial distri- lutions is scored by using the ␹2 statistic, in a mixture of components or peaks (Brandon, bution is important for this problem. The mea- manner similar to the conventional ␹2 test. 1992, 1996). In formal terms, a mixed distri- sured data are the counts of spontaneous and The strategy for the search is to iterate the bution is considered to be a mixture of a ®nite induced tracks for each grain, designated as r i search to include a successively larger number set of component distributions, or compo- and s with the index indicating the ith grain i of peaks and to try a large number of initial nents. Such components will commonly ap- in a sample of i ϭ 1toNt dated grains (where guesses during each iteration to ensure that an pear as bumps or peaks in a histogram or Nt ϭ total number of dated grains). The var- optimal solution is found at each step. The probability density plot, but this need not be iables ri and si are Poisson distributed, but initial guesses for peak ages are generated by the case given that overlapping component they can be converted into a single binomial- using the probability density plot for the distributions might appear as a single broad distributed variable by the transformation ri/(ri FTGA distribution. The density plot is esti- bump in the density plot. Even so, the term ϩ si) (Galbraith and Green, 1990). This vari- mated by using the method in Brandon ``peak'' is often used informally to describe able can be approximated by a Gaussian dis- (1996), and the ®rst and second derivatives of the components in a distribution. tribution when values of ri and si are large, the plot are used to ®nd bumps and humps in Galbraith and Laslett (1993) introduced the which is commonly the case for zircons, given the plot. The probability density at each can- term ``minimum age,'' which can be loosely their relatively high U content, which implies didate age is used to guess the potential size viewed as the pooled age of the largest frac- a high track density. However, as the cooling of the peak. We have tried an alternative ap- tion of young concordant grain ages in the age and U content decrease, ri and si become proach, using evenly spaced ages, but the FTGA distribution. They proposed a two- small. Thus, the Gaussian approximation computation takes longer and does not provide component mixture model for estimating the tends to break down for young cooling ages, any obvious advantages. minimum age. Binomial peak ®tting can also especially for apatites, which commonly have The next step is to iterate through an in- be used to estimate the minimum age, while low U contents. In these cases, decomposition creasing number of peaks. The ®rst iteration at the same time providing information about methods based on the Gaussian distribution produces a single component age, with an age older components in the distribution. The (e.g., GAUSSFIT by Brandon, 1992; MIX by identical to the pooled age and a ␹2 value main requirement, however, is that peak ®tting Sambridge and Compston, 1994) will perform identical to that produced by the conventional must be coupled with a test to ®nd the maxi- poorly. In contrast, the binomial peak-®tting ␹2 test. The next iteration ®nds a best-®t two-

66 Geological Society of America Bulletin, January/February 2004 ``HOH FORMATION'' AND LATE CENOZOIC EVOLUTION OF CASCADIA SUBDUCTION WEDGE

provement in ®t is large compared with the expected random variability associated with measurements. In other words, we want to be assured that the additional peak is ®tting sig- nal and not noise. This question is nicely addressed by the F test. To explain, consider two solutions for m and m ϩ 1 peaks and the quality of those ®ts 22 as indicated by␹␹mm andϩ1 . The F statistic is 222 given by F ϭ (m ϩ 1)(␹␹␹mmϪ ϩ1)/m . When F is large, then the improvement in ®t asso- ciated with the additional peak is considered signi®cant. The F distribution is used to as- sign a probability P(F), which is the proba- bility that random variation alone could pro- duce the observed F statistic. We consider P(F) Ͻϳ5% to indicate that the improvement in ®t is signi®cant. Thus, we can ®nd the op- timal number of signi®cant peaks by adding peaks until we get a value of P(F) Ͼϳ5%. All of the minimum ages and older peak ages reported here have been estimated by us- ing this method (Tables 1±3). Uncertainties are cited at the 95% con®dence level. Note that the uncertainties are asymmetric: the old- er interval is larger than the younger interval. Those interested in testing our analysis can download the BINOMFIT program and all of our FT grain data at http://www.geology. yale.edu/ϳbrandon.

RESULTS

Well-strati®ed Turbidite Sequences

For most samples in this group (Table 1), BINOMFIT found just two signi®cant peaks. Probability density plots and histograms for selected samples from the coherent sequences are shown on Figure 5. Particularly interesting are analyses 143 and 150 (Table 1, Fig. 5), tuff samples that preserve abundant delicate glass shards and display clear evidence of con- Figure 5. Probability density plots (with histograms) for representative FTGA distribu- tamination by older zircons. FTGA distribu- tions from the Coastal OSC. Thick lines show the probability density distribution, and tions for these samples are so similar to those thin lines show the best-®t peaks, as reported in Table 1. The FT minimum age corre- from sandstones in the Coastal OSC that we sponds to the age of the youngest peak. Plots were constructed according to Brandon conclude the provenance for these sediments (1996). Age is plotted on a logarithmic axis. The probability density scale is the same for must have included active volcanic sources. The distribution of FT minimum ages for ,0.1 ؍ both the density plots and the histograms. Density units are given relative to ⌬z which corresponds to an interval on the age scale approximately equal to 10% of the age. samples from the coherent well-strati®ed tur- bidite sequences (Table 1) are tightly clustered between 26 and 11 Ma (Fig. 6), essentially component solution by using all combinations tional component has produced a signi®cant identical to the early and middle(?) Miocene of initial peaks as initial guesses. The best so- improvement in the ␹2 statistic (Brandon, age assignments of fossils from the Coastal lution is the one with the lowest ␹2 value. The 1992). In general, one will ®nd that the ␹2 OSC (Rau, 1975, 1979). In fact, at Ϯ2 SE, program then considers a three-component so- statistic gets smaller with the introduction of only one sample has a minimum age signi®- lution, then a four-component solution, and so a new component. In part, this effect is due to cantly different from early Miocene, an ex- on. the fact that the additional component pro- cursion that could have happened by chance With each iteration, the F-test is used to de- vides the model with greater ¯exibility to ®t alone in this group of 25 dates. Combined dis- termine whether the introduction of an addi- the data. We need to know whether the im- tributions for grouped samples from the co-

Geological Society of America Bulletin, January/February 2004 67 STEWART and BRANDON

Figure 6. Plot of minimum ages and older peak ages for coherent sandstone sequences in the Coastal OSC (Table 1). Samples 168 to 195 are from individual localities. Black triangles and gray circlesÐminimum ages and older peak ages, respectively. Samples in groups A to E are from localities where continuous sequences were repeatedly dated. Open triangles and circlesÐminimum ages and older peak ages, respectively, for single samples in each group. Black triangles and gray circlesÐminimum ages and older peak ages, respec- tively, for the combined grain-age distributions, each of which contains all of the grain ages dated for samples in that group. Error bars show the 95% con®dence intervals. Abbreviations for stratigraphic units are after Remane (2000): LMÐlate Miocene, MMÐmiddle Miocene, EMÐearly Miocene, LOÐlate Oligocene, EOÐearly Oligocene, LEÐlate Eocene, MEÐmiddle Eocene, EEÐearly Eocene, LPÐlate Paleocene, EPÐearly Paleocene, LKÐlate Cretaceous.

herent sequences (Table 1, Fig. 6) demonstrate with Nt ranging from 17 to 37 (Table 2), ad- (samples 140 and 175, Table 2) are as young as that peak ages are reproducible from sample ditional dating might resolve younger com- early Miocene. The discrepancy between the to sample. The peak ages for the combined ponents. However, meÂlange rocks in the 40Ar/39Ar ages and zircon FT dates probably re- distributions are generally similar to those for Coastal OSC indeed contain Eocene fossil lo- sults from the different thermal histories for the the individual sample distributions. calities (Rau, 1975, 1979), and basalt blocks detrital muscovite derived from deeply exhumed in meÂlange were probably derived from the granitic and metamorphic rocks and for the MeÂlange Blocks in the Coastal OSC Eocene Crescent Formation of the adjacent young zircons derived from contemporaneous Coast Range terrane (Applegate and Brandon, volcanic sources. In addition, the effective clo- Minimum ages from meÂlange blocks in the 1989). These data indicate we should not be sure temperature for 40Ar/39Ar muscovite is about Coastal OSC range from 39 to 15 Ma (Fig. 7, surprised to ®nd pre-Miocene sandstone 150Њ C higher than that for zircon FT. Table 2). Although most of these minimum blocks in meÂlange in the Coastal OSC. ages overlap with early Miocene dates from Aalto et al. (1998) reported Cretaceous to Pa- Detection of Small Peaks the coherent sequences, four dates are clearly leocene 40Ar/39Ar ages for detrital muscovite Eocene or Oligocene. Because the total num- from sandstone blocks in meÂlange in the Coastal The combined distributions from the coher- ber of dated grains in these samples is small, OSC. Zircon FT ages from the same location ent sequences illustrate possible problems as-

68 Geological Society of America Bulletin, January/February 2004 ``HOH FORMATION'' AND LATE CENOZOIC EVOLUTION OF CASCADIA SUBDUCTION WEDGE

occasionally (i.e., 1 time out of 20, given the 95 percent probability level used for our test- ing). Group E contains a similar example, where the BINOMFIT solution for sample 184 does not resolve a 21 Ma peak, which is pres- ent in the other 4 samples in this group. Be-

cause Nt is small for sample 184 (14 grain ages total), the 21 Ma peak may have been missed. Peak-®tting results for individual samples in Group D indicate a single well-de®ned young peak at ϳ19 Ma, but the combined dis- tribution shows two poorly de®ned peaks (15 and 21 Ma). This result suggests that the greater number of grain ages in the combined distribution provided the ability to resolve two peaks, whereas the smaller individual samples can only resolve one peak in the same age interval. However, the uncertainties for the ages of the two young peaks are larger be- cause there are fewer grains de®ning each of the peaks. In fact, based on the uncertainties, there is no signi®cant difference between the minimum ages for the individual samples and that for the combined result. This result shows how the estimated uncertainties can be used to guide judgments about peak resolution.

MINIMUM AGES: VALID PROXIES Figure 7. Plot of FT zircon results for sandstone blocks in meÂlanges of the Coastal OSC FOR DEPOSITIONAL AGE? (Table 2) and for nearby dated localities in adjacent units of the Lower OSC and Upper OSC (Table 3). Black triangles and gray circlesÐminimum ages and older peak ages, Key to our study is the question: Is the FT respectively. Error bars show the 95% con®dence intervals. minimum age for a detrital-zircon FTGA dis- tribution from an Olympic Structural Complex sandstone a useful proxy for the depositional sociated with resolution and detection of the the minimum age of sample 42a in Group A age of the sandstone? We can test this inter- minimum-age component. The binomial dis- (Table 1) is 14 Ma, but sample 42b does not pretation by comparing FT minimum ages tribution (Press et al., 1986) was used to cal- have a comparable peak. The combined dis- with fossil ages from Rau (1975, 1979). Of culate the probability that a peak in an FTGA tribution indicates the 14 Ma component the samples from the coherent sequences (Ta- distribution would contain a speci®c number makes up only ϳ12 percent of the total dis- ble 1), 16 are in demonstrable stratigraphic of grain ages. The result is illustrated in Fig- tribution, suggesting the absence of a 14 Ma continuity with localities that have age- ure 8, from which we can extract the proba- peak in sample 42b might be due to random diagnostic fossils; these samples were selected bility of achieving a speci®c result. These variation associated with sampling. More spe- with caution, taking into account the complex probabilities are functions of the true size of ci®cally, did we date enough grains in sample stratigraphy and structure of the Coastal OSC. a component and the total number of dated 42b to conclude with con®dence that the 14 For this test, we focus on the lag time (Fig. grains in the sample, each of which in¯uences Ma component is absent? 9), de®ned as the FT minimum age minus the the probability for detecting the minimum Reference to the binomial distribution (Fig. fossil age. The null hypothesis is that the lag number of grains related to that component. 8) indicates if the 14 Ma component makes up time is equal to zero, and we seek examples Using this relationship as a guide, we have only ϳ12 percent of the parent population, the where this hypothesis fails. A Monte Carlo

tried to date 50 or more grains in each of our total number of dated grains (Nt) must be Ն25 numerical routine was used to determine the samples to ensure that major peaks are de- to ensure, at the 95% probability level, that uncertainty for the lag-time estimate, given the tected. We de®ne a major peak as having a we would ®nd at least one grain age from this speci®ed uncertainties for the FT minimum true size Ͼ15% of the distribution. If we dated component. To ensure ®nding 5 or more grains age and the fossil age. The estimated distri-

a large number of samples, each with Nt Ͼ50, for this component requires that Nt Ն80. For bution for the FT minimum age is calculated then Figure 8 predicts that 95 percent of the sample 42b, Nt ϭ 27, so we conclude that we by converting the age and its uncertainty (Ta- dated samples should have 5 or more grain should have found at least one ``14 Ma'' zir- ble 1) to a new variable z, which is known to ages for each major peak. con if the 14 Ma component was present in be Gaussian distributed (Galbraith, 1990; This approach allows us to evaluate with this sample. However, we must use caution in Brandon, 1996). Gaussian deviates of z were con®dence the problems associated with dat- this interpretation; because of the probabilistic generated using the GASDEV program (Press ing a small number of grains. For example, nature of the sample, our prediction will fail et al., 1986, p. 203) and then converted back

Geological Society of America Bulletin, January/February 2004 69 STEWART and BRANDON

cadia margin. An important issue is whether there is any independent evidence for coast- parallel transport of the Coastal OSC. We use provenance information here to evaluate this possibility. Aalto et al. (1995) proposed that the upper Oligocene±lower Miocene Weaverville For- mation in the Klamath Mountains might be a nonmarine remnant of the sedimentary system that fed the Coastal OSC. Aalto et al. (1998) evaluated this interpretation by using 40Ar/39Ar ages for detrital muscovites. The Weaverville Formation was shown to have been derived from local bedrock sources in the Klamath Mountains, whereas sandstone in some of the meÂlange blocks of the Coastal OSC was attri- buted to sources in the Idaho batholith. Heller et al. (1992) argued for a similar Idaho bath- olith source for detrital muscovite that occurs in older units of the Olympic subduction com- plex. A link to the Idaho batholith might be taken as evidence for a depositional site for the Coastal OSC farther to the south. How- ever, Brandon and Vance (1992) showed that the distinctive muscovite-bearing source iden- Figure 8. Graph showing probabilities that a sample grain-age distribution will contain ti®ed by Heller et al. (1992) and Aalto et al. at least one grain (gray contours) or at least ®ve grains (black contours) from a component (1998) was part of a long belt of schists and of that distribution. The probabilities are a function of the true size (i.e. expected size) of two-mica granites, extending from the Idaho the component and the total number of grains dated. The calculated probabilities are batholith northward into southern Canada as based on the binomial distribution. See text for further discussion. part of the Omineca Crystalline belt. As a re- sult, this provenance link is not very useful for judging coast-parallel transport. to an age distribution. The result is a simulat- SOURCE FOR SANDSTONES OF So we turn our attention here to sedimen- ed distribution of replicate measurements of COASTAL OSC tary units within the Cascadia forearc region. the FT minimum age for the population of zir- In particular, we consider whether any of the cons represented by our sample. A number of authors have suggested the more inboard sedimentary units that underlie The estimated distribution of depositional possibility of signi®cant coast-parallel trans- the Cascadia forearc might be upstream equiv- age was generated by random selection from port within the Cascadia margin (e.g., Enge- alents of the sedimentary rocks currently a uniform distribution de®ned by the age bretson et al., 1985; Wells and Heller, 1988; found in the Coastal OSC. Such equivalents range indicated by the fossil assemblage (Rau, England and Wells, 1991). A corollary to this have never been clearly identi®ed. Candidate 1975, 1979; Remane, 2000). The replicated idea is that the sediments that formed the units of the right age (early Miocene) include minimum ages and fossil ages were used to Olympic subduction complex may have been the Astoria Formation of western Oregon and create a distribution of lag time made up of deposited much farther south, perhaps off- southwestern Washington and the Blakley 10,000 replicate values. The distribution was shore of western Oregon or northern Califor- Harbor and Clallam Formations, exposed sorted and used to ®nd the median and 95% nia, and then transported northward to the along the eastern and northern sides of the con®dence interval for the estimated lag time Olympic Mountains (e.g., Palmer and Lingley, Olympic Peninsula (Armentrout et al., 1988; (50%, 2.5%, and 97.5%, respectively), which 1989; Davis and Hyndman, 1989; Aalto et al., Brandon et al., 1998). The Clallam Formation are shown in Figure 9. 1995). Much of the motivation for this idea is equivalent to the Sooke Formation, exposed The overall conclusion is that zircon FT comes from plate reconstructions that predict- on the southwest side of Vancouver Island. minimum ages seem to do a good job as a ed oblique convergence across the southern Collectively, these two units outline the proxy for the depositional ages of sandstones end of the Cascadia subduction zone (Enge- To®no-Makah basin (Fig. 2), which underlies in the Coastal OSC. Three samples (108, 42a, bretson et al., 1985; DeMets et al., 1990). the western side of the Straits of Juan de Fuca 168) are unusual in that they have large neg- These ideas have recently been thrown into and the continental shelf west of Vancouver ative lag times, which means that the FT min- question by new geodetic data from Mc- Island (Snavely et al., 1980; Garver and Bran- imum age is signi®cantly younger than the de- Caffrey et al. (2000) that show that the Cas- don, 1994). positional age. We have no way to judge the cadia arc and forearc are moving as a separate So, what do we look for to assess a con- cause of these anomalies. They might be due plate, independent from the North American nection with these more inboard units? Sand- to incorrect assignment of fossil ages to these plate. Their results indicate that convergence stone compositions in the Coastal OSC are samples, to problems with the FT dating, or at the modern subduction zone is nearly or- quite variable, but most rocks are lithic arkos- to random variations in the results. thogonal along the entire length of the Cas- es or lithic wackes, with the lithic fragments

70 Geological Society of America Bulletin, January/February 2004 ``HOH FORMATION'' AND LATE CENOZOIC EVOLUTION OF CASCADIA SUBDUCTION WEDGE composed mainly of volcanic material (Fig. 10). Our zircon FT results also indicate that the Coastal OSC received much sediment from an active volcanic source, probably the Cascade volcanic arc. In contrast, the Astoria and Blakley Harbor Formation are dominated by arkosic sediment, with little volcanic debris (Rau, 1967; Neim et al., 1992). Most of the Clallam Formation is also dominated by ar- kosic sediment (Anderson, 1985) and lacks young zircon FT ages (Garver and Brandon, 1994). However, the stratigraphically youn- gest part of the Clallam is volcaniclastic rather than arkosic (facies 5 of Anderson, 1985). We propose that this upper part of the Clal- lam Formation (Fig. 2) is the upstream equiv- alent to the Coastal OSC. This unit is the type locality of the Pillarian molluscan stage of the Paci®c Northwest biostratigraphic standard, which has an age of 24±20 Ma (Armentrout, 1987), virtually identical to the depositional age of the Coastal OSC. Petrographic data from Stewart (1970) and Anderson (1985) in- dicate similar sedimentary compositions for Figure 9. Lag times for samples where the depositional age is constrained by fossils. Lag these two units (Fig. 10). Sandstones in the time is de®ned as the FT minimum age minus the depositional age. Point and error bars upper Clallam contain abundant andesitic and show the expected value (median) and the 95% con®dence interval for that estimate. For dacitic rock fragmentsÐundoubtedly derived most samples, the lag time does not appear to be signi®cantly different from zero, which from the Cascade arcÐas well as minor chert is consistent with the interpretation that the FT minimum age is a good proxy for depo- detritus and rare metasedimentary and meta- sitional age. See text for details. basalt detritus. These constituents are typical of the Coastal OSC sandstones. Neither the upper Clallam nor the Coastal OSC contain high-grade metamorphic detritus. The Clallam Formation and associated To®no-Makah basin are tied stratigraphically to Vancouver Island and can be considered a stable reference within the interior of the Cas- cadia forearc. Thus, our proposed correlation suggests that the Coastal OSC formed in place relative to this part of the Cascadia forearc. In fact, it is useful to note that during the early Miocene, basinal sequences within the Cas- cadia forearc were overwhelmed by arkosic sediment, mainly derived from east of the arc (Neim et al., 1992). We were unable to ®nd any basinal sequence, other than the upper Clallam, that has the volcaniclastic sandstone composition characteristic of the Coastal OSC.

DEFORMATION AND ACCRETION OF THE COASTAL OLYMPIC STRUCTUAL COMPLEX Figure 10. Triangular diagrams, showing modal compositions of sandstones from the Coastal OSC. Also shown are data for sandstones from facies 5 of the Clallam Formation, Most of the Coastal OSC consists of steeply which are considered to be an upstream remnant of the sedimentary system that fed the east-dipping strata, with sedimentary struc- Structural Complex. Data for the coherent sandstones are from Stewart (1970), and data tures indicating younging to the east (Rau, for sandstone blocks in the meÂlanges are from Aalto et al. (1998). The data for the Clallam 1975, 1979; Tabor and Cady, 1978a). The stra- Formation are from Anderson (1985). QFL diagram: QÐtotal quartzose fragments, FÐ ta are undoubtedly repeated by thrust faults; total feldspars, and LÐtotal rock fragments. Qp-Lv-Ls diagram: QpÐtotal polycrystalline otherwise the Coastal OSC would have a quartz, LvÐtotal volcanic rock fragments, and LsÐtotal sedimentary rock fragments.

Geological Society of America Bulletin, January/February 2004 71 STEWART and BRANDON

shown here in Table 3 and Figures 3, 4, and 7. Our new results for the Coastal OSC dem- onstrate that a 50-km-wide area, extending from the Paci®c Coast to Mount Olympus, is underlain by accreted lower Miocene sedi- mentary rocks (Fig. 4). There is subtle evi- dence of younging across this region from ca. 19 Ma at Mount Olympus to ca. 14 Ma at the coast (Fig. 4). We can make a rough prediction for the ex- pected amount of younging in accreted sedi- mentary rocks if the structure were steeply dipping as suggested in Figure 11A. It should be approximately equal to the distance across the region divided by the horizontal material velocity relative to the wedge front. Pazzaglia and Brandon (2001) estimated that at the coast, this velocity has been steady at 3 km/ m.y. Thus, a steep imbricate structure should show ϳ17 m.y. of younging across the 50 km distance from the Paci®c Coast to Mount Olympus. An alternative interpretation (Fig. 11B) is Figure 11. Schematic cross sections of the Cascadia wedge. (A) Steep imbricate structure that the Olympics have a more domal struc- as proposed by Rau (1975, 1979) and Tabor and Cady (1978a, 1978b), and (B) domal ture (Brandon and Vance, 1992; Brandon et imbricate structure as proposed by Brandon and Calderwood (1990) and Brandon and al., 1998). The structural lid is thought to have Vance (1992). Abbreviations refer to tectonic units exposed in the Olympic Mountains: originally extended to the west coast and per- UÐUpper OSC, LÐLower OSC, and CÐCoastal OSC. haps farther offshore, as is the case for south- ern Vancouver Island and also for western Oregon and southwestern Washington (Bran- stratigraphic thickness of Ͼ20 km. On the ba- (Lower and Coastal OSC), and Quaternary at don and Calderwood, 1990). Early emergence sis of these kinds of arguments, Rau (1973, the modern toe of the wedge. of the Olympics at ca. 15 Ma, relative to the 1980) and Tabor and Cady (1978a, 1978b) Our dating here was motivated, in part, to rest of the Cascadia forearc high, allowed for proposed a steeply imbricated structure for the see whether this pattern of younging was pres- uplift and deep erosion of the Olympics, re- entire Olympics, as schematically shown in ent at the local scale in the western side of the moving the lid and exposing the underlying Figure 11A. This interpretation predicts that Olympic Peninsula. Brandon and Vance subduction complex (Brandon and Calder- depositional ages should get systematically (1992) proposed that the Lower OSC was a wood, 1990; Brandon et al., 1998). younger from east to west. This relationship more deeply exhumed equivalent of the Coast- The more domal structure accounts for the does hold at the scale of the entire Olympic al OSC. This interpretation was based on three broad expanse of accreted lower Miocene sed- subduction complex. Accreted rocks are latest unreset zircon FTGA samples from the Lower imentary rocks. Figure 12 shows schematical- Eocene in age in the eastern Olympics (Upper OSC with minimum ages ranging from 26 to ly how material might have moved through OSC), early Miocene in the western Olympics 18 Ma. Two of these FT minimum ages are the wedge. This interpretation builds on the

Figure 12. Inferred displacement path for lower Miocene sedimentary rocks accreted into the Cascadia subduction wedge. Rectangular gray boxes mark successive locations of the Coastal OSC as it progressed from deposition at the deformation front to its current position .where it is exposed in the western Olympic Mountains. The location of cross-section A±A؅ is in Figure 2

72 Geological Society of America Bulletin, January/February 2004 ``HOH FORMATION'' AND LATE CENOZOIC EVOLUTION OF CASCADIA SUBDUCTION WEDGE conclusion that in the Olympics sector of the Cascadia margin, the wedge probably reached its present size early in its evolution, at ca. 15 Ma, and that accretion occurred primarily at the front of the wedge (Brandon et al., 1998; Pazzaglia and Brandon, 2001; Batt et al., 2001). Thus, we envision that the Coastal OSC was ®rst accreted beneath the front 50 to 100 km of the wedge, but then moved rear- ward within the wedge because of further ac- cretion at the front of the wedge and erosion at the back of the wedge. As previously noted, the most western exposures of the Coastal OSC have never been deeply buried and ex- humed. Thus, those rocks are shown in Figure 12 as moving along a path near the surface of the wedge. Conversely, the more eastern lower Miocene rocks of the Lower OSC followed a deeper path through the wedge (Fig. 11), Figure 13. Transport time needed to move from the site of initial accretion at the front reaching maximum depths of as much as 13 of the wedge to a location rearward in the wedge, according to equation 2 in the text. km, but ultimately rising to the surface near Mount Olympus (Batt et al., 2001). We can test this idea by comparing the age where A(x) is the cross-sectional area of the al OSC. We have found only one coeval unit, of the Coastal OSC to the amount of time wedge between x and the front of the wedge. within the upper part of the Clallam Forma- needed to reach the coast within a wedge that Thermal-kinematic modeling by Batt et al. tion on the north side of the Olympic Penin- maintained a steady taper. This calculation is (2001) indicates a long-term average accre- sula, that has a similar sedimentary composi- relatively easy because the frontal part of the tionary ¯ux of 58 km2/m.y. into the Olympics tion. This provenance correlation argues wedge is not eroding and has probably main- sector of the Cascadia wedge. The pro®le in against large-scale coast-parallel transport of tained the same critical taper throughout much Figure 11 was used to calculate A(x). Equation the Coastal OSC after accretion. Instead, of its evolution. In this case, the average hor- 2 was then used to estimate the transport time transport appears to have mainly occurred to izontal velocity uÅ(x) at a distance x from the through the wedge (Fig. 13). The prediction is the northeast, in association with margin- front of the wedge is related to the accretion- that material accreted at the deformation front normal shortening of the Cascadia wedge, in of the trench would reach the West Coast in the direction of plate convergence. ary ¯ux Fa by 22 m.y., which is in excellent agreement with We present a simple model that predicts the our estimate of 24 to 16 Ma for deposition of average transport time for frontally accreted F uÅ (x) ϭ a (1) the Coastal OSC in the trench. materials moving through a wedge with a h(x) steady taper. The model predicts that frontally CONCLUSIONS accreted sedimentary rocks should take ϳ22 where h(x) is the thickness of the wedge at x m.y. to reach the present position of the Coast- (see Dahlen and Barr [1989] and Pazzaglia FT grain ages from detrital zircons in sand- al OSC, located ϳ140 km landward of the and Brandon [2001] for details about this cal- stones of the Coastal OSC indicate a mixed front of the wedge. This estimate assumes a culation). The only assumptions are that the source of detrital zircons, derived from the steady taper like the modern taper of the wedge seaward of the coast has maintained a Cascade volcanic arc and from older basement wedge and a steady accretionary ¯ux like the constant taper and that the accretionary ¯ux rocks lying to the east of the arc. The youngest modern. The predicted transport time is in has been steady over the time frame of inter- components make up, on average, ϳ40% to close agreement with the early Miocene age est. In other words, the full wedge does not 50% of a typical zircon FTGA distribution. of the Coastal OSC and thus is consistent with have to be at steady state for equation 1 to Comparison with fossil ages indicates that the other evidence for a ¯ux steady state in the hold. The accretionary ¯ux is speci®ed in FT minimum age, which is the pooled age of Olympics sector of the Cascadia wedge (Bran- terms of solid rock mass, which is consistent the youngest component, is a good proxy for don et al., 1998; Pazzaglia and Brandon, 2001; with the fact that most of the porosity is lost the depositional age of sandstones from the Batt et al., 2001). within the frontal 10 km of the wedge (Davis Coastal OSC. This result is consistent with ACKNOWLEDGMENTS and Hyndman, 1989). other evidence indicating that the volcanic sediment was derived from contemporaneous We have to integrate the velocity along the This work would not have been possible without particle path to get ␶(x), the transit time from active volcanoes in the arc. The zircon FT the mapping, often under dif®cult conditions, by the trench to a position x in the wedge. The minimum ages indicate that the Coastal OSC Weldon Rau, Rowland Tabor, Parke D. Snavely, Jr., and Wally Cady. John Garver generously supplied integration gives is mainly early Miocene in age, which is in close agreement with fossil ages. data from samples he collected on the Paci®c Coast. The assistance of J.A. Vance in ®ssion-track anal- Basinal units in the Cascadia forearc are A(x) ysis was invaluable. This study was supported in ␶(x) ϭ (2) mainly arkosic, which is in contrast to the part by grants from the Washington State Depart- Fa more volcaniclastic composition of the Coast- ment of Natural Resources (to Stewart) and from

Geological Society of America Bulletin, January/February 2004 73 STEWART and BRANDON

the American Chemical Society Petroleum Research seismic re¯ections: Canadian Journal of Earth Scienc- positional history of selected sequences within the Fund (35160-AC2) and the National Science Foun- es, v. 24, p. 31±51. southern California Continental Borderland: Cushman dation (208371) (to Brandon). Dahlen, F.A., and Barr, T.D., 1989, Brittle frictional moun- Foundation for Foraminiferal Research Special Pub- tain building: 1. Deformation and mechanical energy lication 19, p. 163±195. budget: Journal of Geophysical Research, v. 94, Kamp, P.J.J., 2001, Possible Jurassic age for part of Rakaia p. 3906±3922. terrane: Implications for the tectonic development of REFERENCES CITED Davis, E.E., and Hyndman, R.D., 1989, Accretion and re- the Torlesse accretionary prism: New Zealand Journal cent deformation of sediment along the northern Cas- of Geology and Geophysics, v. 44, p. 185±203. cadia subduction zone: Geological Society of America Kasuya, M., and Naeser, C.W., 1988, The effect of ␣- Aalto, K.R., McLaughlin, R.J., Carver, G.A., Barron, J.A., Bulletin, v. 101, p. 1465±1480. damage on ®ssion-track annealing in zircon: Nu- Sliter, W.V., and McDougall, K., 1995, Uplifted Neo- Davis, E.E., Hyndman, R.D., and Villinger, H., 1990, Rates clear Tracks and Radiation Measurements, v. 14, gene margin, southernmost Cascadia±Mendocino tri- of ¯uid expulsion across the northern Cascadia accre- p. 477±480. ple junction region, California: Tectonics, v. 14, tionary prism: Constraints from new heat ¯ow and Lupton, C.T., 1914, Oil and gas in the western part of the p. 1104±1116. multichannel seismic re¯ection data: Journal of Geo- Olympic Peninsula, Washington: U.S. Geological Sur- Aalto, K.R., Sharp, W.D., and Renne, P.R., 1998, 40Ar/39Ar physical Research, v. 95, p. 8869±8889. vey Bulletin 581-B, p. 23±81. dating of detrital micas from Oligocene±Pleistocene DeMets, C., and Dixon, T., 1999, New kinematic models McCaffrey, R., Long, M.D., Gold®nger, C., Zwick, P., Na- sandstones of the Olympic Peninsula, Klamath Moun- for Paci®c±North America motion from 3 Ma to pres- belek, J., and Smith, C., 2000, Rotation and plate lock- tains, and northern California Coast Ranges: Prove- ent: I. Evidence for steady motion and biases in the ing at the southern Cascadia subduction zone: Geo- nance and paleodrainage patterns: Canadian Journal of NUVEL-1A model: Geophysical Research Letters, physical Research Letters, v. 27, p. 3117±3120. Earth Sciences, v. 35, p. 735±745. v. 26, no. 13, p. 1921±1924. McLaughlin, R.J., Kling, S.A., Poore, R.Z., McDougall, K., Anderson, K.S., 1985, Sedimentology, sedimentary petrol- DeMets, C., Gordon, R.G., Argus, D.F., and Stein, S., 1990, and Buetner, E.C., 1982, Post±middle Miocene accre- ogy, and tectonic setting of the lower Miocene Clal- Current plate motions: Geophysical Journal Interna- tion of Franciscan rocks, northwestern California: lam Formation, northern Olympic Peninsula, Wash- tional, v. 101, p. 425±478. Geological Society of America Bulletin, v. 93, ington [M.S. thesis]: Bellingham, Washington, Dickinson, W.R., and Seely, D.R., 1979, Structure and stra- p. 595±605. Western Washington University, 135 p. tigraphy of forearc regions: American Association of McLaughlin, R.J., Sliter, W.V., Frederiksen, N.O., Harbert, Applegate, J.D.R., and Brandon, M.T., 1989, An upper Petroleum Geologists Bulletin, v. 63, p. 2±31. W.P., and McCulloch, D.S., 1994, Plate motions re- plate origin for basalt blocks in the Cenozoic subduc- Dumitru, T.A., 1991, Major Quaternary uplift along the corded in tectonostratigraphic terranes of the Francis- tion complex of the Olympic Mountains, northwest northernmost San Andreas fault, King Range, north- can Complex and evolution of the Mendocino triple Washington State: Geological Society of America Ab- west California: Geology, v. 19, p. 526±529. junction, northwestern California: U.S. Geological stracts with Programs, v. 21, no. 5, p. 51. Engebretson, D.C., Gordon, R.G., and Cox, A., 1985, Rel- Survey Bulletin 1997, 60 p. Armentrout, J.M., 1987, Cenozoic stratigraphy, ative motions between oceanic and continental plates Moore, G.F., and Karig, D.E., 1976, Development of sedi- unconformity-bounded sequences, and tectonic histo- in the Paci®c Basin: Geological Society of America mentary basins on the lower trench slope: Geology, ry of southwestern Washington: Washington Divi- Special Paper 206, 59 p. v. 4, p. 693±697. sion of Geology and Earth Resources Bulletin 77, England, P., and Wells, R.E., 1991, Neogene rotations and Neim, A.R., MacLeod, N.S., Snavely, P.D., Jr., Huggins, p. 291±320. quasicontinuous deformation of the Paci®c Northwest D., Fortier, J.D., Meyer, J., Seeling, A., and Neim, Armentrout, J.M., Heintz, L.F., Hull, D.A., Beaulieu, J.D., continental margin: Geology, v. 19, p. 978±981. W.A., 1992, Onshore-offshore geologic cross section, and Rau, W.W., 1988, Northwest region correlation Galbraith, R.F., 1981, On statistical models for ®ssion-track northern Oregon coast range to continental slope: chart: Correlation of stratigraphic units of North counts: Journal of Mathematical Geology, v. 13, Portland, Oregon Department of Geology and Mineral America (COSUNA): Tulsa, Oklahoma, American As- p. 471±478. Industries Special Paper 26, 10 p. sociation of Petroleum Geologists. Galbraith, R.F., 1990, The radial plot: Graphical assessment Orange, D.L., 1990, Criteria helpful in recognizing shear- Arne, D., and Zentilli, M., 1994, Apatite ®ssion track ther- of spread in ages: Nuclear Tracks and Radiation Mea- zone and diapiric meÂlanges: Examples from the Hoh mochronology integrated with vitrinite re¯ectanceÐA surements, v. 17, p. 207±214. accretionary complex, Olympic Peninsula, Washing- review, in Mukhopadhyay, P.K., and Dow, W.G., eds., Galbraith, R.F., and Green, P.F., 1990, Estimating the com- ton: Geological Society of America Bulletin, v. 102, Vitrinite re¯ectance as a maturity parameterÐ ponent ages in a ®nite mixture: Nuclear Tracks and p. 935±951. Applications and limitations: American Chemical So- Radiation Measurements, v. 17, p. 197±206. Orange, D.L., and Underwood, M.B., 1995, Patterns of ciety Symposium Series 570, p. 249±268. Galbraith, R.F., and Laslett, G., 1993, Statistical models for thermal maturity as diagnostic criteria for interpreta- Arnold, R., 1905, Geological reconnaissance of the coast of the Olympic Peninsula, Washington: Geological mixed ®ssion track ages: Nuclear Tracks and Radia- tion of meÂlanges: Geology, v. 23, p. 1144±1148. Society of America Bulletin, v. 17, p. 451±468. tion Measurements, v. 21, p. 459±470. Orange, D.L., Geddes, D.S., and Moore, J.C., 1993, Struc- Batt, G.E., Brandon, M.T., Farley, K.A., and Roden-Tice, Garver, J.I., and Brandon, M.T., 1994, Erosional denudation tural and ¯uid evolution of a young accretionary com- M., 2001, Tectonic synthesis of the Olympic Moun- of the British Columbia Coast Ranges as determined plex: The Hoh rock assemblage of the western Olym- tains segment of the Cascadia wedge, using two- from ®ssion-track ages of detrital zircon from the To- pic Peninsula, Washington: Geological Society of dimensional thermal and kinematic modeling of ther- ®no basin, Olympic Peninsula, Washington: Geo- America Bulletin, v. 105, p. 1053±1075. mochronological ages: Journal of Geophysical logical Society of America Bulletin, v. 106, Palmer, S.P., and Lingley, W.S., Jr., 1989, An assessment Research, v. 106, p. 26,731±26,746. p. 1398±1412. of the oil and gas potential of the Washington outer Beaumont, C., Ellis, S., and P®ffner, A., 1999, Dynamics Garver, J.I., Brandon, M.T., Roden-Tice, M., and Kamp, continental shelf: Seattle, Washington, University of of sediment subduction-accretion at convergent mar- P.J.J., 1999, Exhumation history of orogenic highlands Washington Sea Grant Program, 83 p. gins: Short-term modes, long-term deformation, and determined by detrital ®ssion-track thermochronology, Parsons, T., Trehu, A.M., Luetgert, J.H., Miller, K., Kil- tectonic implications: Journal of Geophysical Re- in Ring, U., Brandon, M.T., Lister, G.S., and Willett, bride, F., Wells, R.E., Fisher, M.A., Flueh, E., ten search, v. 104, p. 17,573±17,602. S.D., eds., Exhumation processes: Normal faulting, Brink, U.S., and Christensen, N.I., 1998, A new view Brandon, M.T., 1992, Decomposition of ®ssion-track grain- ductile ¯ow, and erosion: Geological Society [Lon- into the Cascadia subduction zone and volcanic arc: age distributions: American Journal of Science, don] Special Publication 154, p. 283±304. Implications for earthquake hazards along the Wash- v. 292, p. 535±564. Gold®nger, C., Kulm, L.D., McNeill, L.C., and Watts, P., ington margin: Geology, v. 26, p. 199±202. Brandon, M.T., 1996, Probability density plots for ®ssion- 2000, Super-scale failure of the southern Oregon Cas- Pazzaglia, F.J., and Brandon, M.T., 2001, A ¯uvial record track age distributions: Radiation Measurements, cadia margin: Pure and Applied Geophysics, v. 157, of long-term steady-state uplift and erosion across the v. 26, p. 663±676. p. 1189±1226. Cascadia forearc high, western Washington State: Brandon, M.T., and Calderwood, A.R., 1990, High-pressure Green, P.F., Hegarty, K.A., Duddy, I.R., Foland, S.S., and American Journal of Science, v. 301, p. 385±431. metamorphism and uplift of the Olympic subduction Gorbachev, V., 1996, Geological constraints on ®ssion Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, complex: Geology, v. 18, p. 1252±1255. track annealing in zircon [abs.]: Ghent, Belgium, Pro- W.T., 1986, Numerical recipes: Cambridge, England, Brandon, M.T., and Vance, J.A., 1992, Tectonic evolution ceedings of International Workshop on Fission Track Cambridge University Press, 818 p. of the Cenozoic Olympic subduction complex, Wash- Dating, August 1996. Rau, W.W., 1967, Geology of the Wynoochee Valley Quad- ington State, as deduced from ®ssion track ages for Heller, P.L., Tabor, R.W., O'Neil, J.R., Pevear, D.R., Shaf- rangle, Grays Harbor County, Washington: Washing- detrital zircons: American Journal of Science, v. 292, iqullah, M., and Winslow, N.S., 1992, Isotopic prov- ton Division of Mines and Geology Bulletin 56, 51 p. p. 565±636. enance of Paleogene sandstones from the accretionary Rau, W.W., 1970, Foraminifera, stratigraphy, and paleo- Brandon, M.T., Roden-Tice, M.K., and Garver, J.I., 1998, core of the Olympic Mountains, Washington: Geolog- ecology of the Quinault Formation, Point Grenville± Late Cenozoic exhumation of the Cascadia accretion- ical Society of America Bulletin, v. 104, p. 140±153. Raft River coastal area, Washington: Washington Di- ary wedge in the Olympic Mountains, northwest HsuÈ, K.J., 1968, Principles of meÂlanges and their bearing vision of Mines and Geology Bulletin 62, 41 p. Washington State: Geological Society of America Bul- on the Franciscan-Knoxville paradox: Geological So- Rau, W.W., 1973, Geology of the Washington coast be- letin, v. 110, p. 985±1009. ciety of America Bulletin, v. 79, p. 1063±1074. tween Point Grenville and the : Washington Clowes, R.M., Brandon, M.T., Green, A.G., Yorath, C.J., Hurford, A.J., and Green, P.F., 1983, The zeta age calibra- Division of Geology and Earth Resources Bulletin 66, Sutherland Brown, A., Kanasewich, E.R., and Spen- tion of ®ssion-track dating: Chemical Geology (Iso- 58 p. cer, C., 1987, LITHOPROBEÐSouthern Vancouver tope Geoscience Section), v. 1, p. 285±317. Rau, W.W., 1975, Geologic map of the Destruction Island Island: Cenozoic subduction complex imaged by deep Ingle, J.C., Jr., 1980, Cenozoic paleobathymetry and de- and Taholah Quadrangles, Washington: Washington

74 Geological Society of America Bulletin, January/February 2004 ``HOH FORMATION'' AND LATE CENOZOIC EVOLUTION OF CASCADIA SUBDUCTION WEDGE

Division of Geology and Earth Resources, Map GM- eds., Assessing earthquake hazards and reducing risk Tagami, T., Ito, H., and Nishimura, S., 1990, Thermal an- 13, scale 1:62,500, 1 plate. in the Paci®c Northwest: U.S. Geological Survey Pro- nealing characteristics of spontaneous ®ssion tracks in Rau, W.W., 1979, Geologic map in the vicinity of the lower fessional Paper 1560, p. 161±181. zircon: Chemical Geology (Isotope Geoscience Sec- Bogachiel and Hoh River valleys, and the Washington Snavely, P.D., Jr., Neim, A.R., MacLeod, N.S., Pearl, J.E., tion), v. 80, p. 159±169. coast: Washington Division of Geology and Earth Re- and Rau, W.W., 1980, Makah FormationÐA deep- Wagner, G.S., and Van den Haute, P., 1992, Fission-track sources, Map GM-24, scale 1:62,500, 1 plate. marginal-basin sequence of late Eocene and Oligocene dating: London, Kluwer Academic Publishers, 285 p. Rau, W.W., 1980, Washington coastal geology between the age in the northwestern Olympic Peninsula, Washing- Weaver, C.E., 1916, The Tertiary formations of western Hoh and the Quillayute Rivers: Washington Division ton: U.S. Geological Survey Professional Paper 1162- Washington: Washington Geological Survey Bulletin of Geology and Earth Resources Bulletin 72, 57 p. B, 28 p. 13, 327 p. Rau, W.W., and Grocock, G.R., 1974, Piercement structure Snavely, P.D., Jr., MacLeod, N.S., and Neim, A.R., 1993, Weaver, C.E., 1937, Tertiary stratigraphy of western Wash- outcrops along the Washington coast: Washington Di- Geologic map of the Cape Flattery, Clallam Bay, Oz- ington and northeastern Oregon: Washington Univer- vision of Geology and Earth Resources Information ette Lake, and Lake Pleasant quadrangles, northwest- sity Publications in Geology, v. 4, 266 p. Circular 51, 7 p. ern Olympic Peninsula, Washington: U.S. Geological Weissenborn, A.E., and Snavely, P.D., 1968, Summary re- Remane, J., 2000, International stratigraphic chart: Geneva, Survey Miscellaneous Investigations Map I-1946, port on the geology and mineral resources of Flattery Switzerland, UNESCO and International Union of scale 1:48,000, 1 plate. Rocks, Quillayute Needles, and Copalis National Geological Sciences. Stewart, R.J., 1970, Petrology, metamorphism and structur- Wildlife Refuges, Washington: U.S. Geological Sur- Salvador, A., editor, 1994, International Stratigraphic GuideÐ al relations of graywackes in the western Olympic vey Bulletin 1260-F, p. F1±F16. A guide to stratigraphic classi®cation, terminology, Peninsula, Washington [Ph.D. thesis]: Stanford, Cali- Wells, R.E., and Heller, P.L., 1988, The relative contribution and procedure, International Subcommission on Strati- fornia, Stanford University, 107 p. of accretion, shear, and extension to Cenozoic tectonic graphic Classi®cation, 2nd Edition: The International Stewart, R.J., 1974, Zeolite facies metamorphism of sand- rotation in the Paci®c Northwest: Geological Society Union of Geological Sciences and Geological Society stone in the western Olympic Peninsula, Washington: of America Bulletin, v. 100, p. 325±338. of America, 214 p. Geological Society of America Bulletin, v. 85, Willett, S., 1999, Orogeny and orography: The effects of Sambridge, M.S., and Compston, W., 1994, Mixture mod- p. 1139±1142. erosion on the structure of mountain belts: Journal of eling of multi-component data sets with application to Tabor, R.W., and Cady, W.M., 1978a, Geologic map of the Geophysical Research, v. 104, p. 28,957±28,981. ion-probe zircon ages: Earth and Planetary Science Olympic Peninsula, Washington: U.S. Geological Sur- Willett, S., Beaumont, C., and Fullsack, P., 1993, Mechan- Letters, v. 128, p. 373±390. vey Miscellaneous Investigations Map I-994, scale 1: ical models for the tectonics of doubly vergent com- Snavely, P.D. Jr., and Kvenvolden, K.A., 1989, Preliminary 125,000, 2 sheets. pressional orogens: Geology, v. 21, p. 371±374. evaluation of the petroleum potential of the Tertiary Tabor, R.W., and Cady, W.M., 1978b, Structure of the Wilson, D.S., 1988, Tectonic history of the Juan de Fuca accretionary terrane, west side of the Olympic Pen- Olympic Mountains, WashingtonÐAnalysis of a sub- Ridge over the last 40 million years: Journal of Geo- insula Washington: A. Geology and hydrocarbon duction zone: U.S. Geological Survey Professional physical Research, v. 93, p. 11,863±11,876. potential: U.S. Geological Survey Bulletin 1892, Paper 1033, 38 p. MANUSCRIPT RECEIVED BY THE SOCIETY 23 JULY 2001 p. 1±17. Tabor, R.W., Cady, W.M., and Yeats, R.S., 1970, Broken REVISED MANUSCRIPT RECEIVED 20 MARCH 2003 Snavely, P.D., Jr., and Wells, R.E., 1996, Cenozoic evolu- formations and thrust faulting in the northeastern MANUSCRIPT ACCEPTED 31 MARCH 2003 tion of the continental margin of Oregon and Wash- Olympic Mountains, Washington: Geological Society ington, in Rogers, A., Walsh, T., and Kockelman, W., of America Abstracts with Programs, v. 2, p. 152. Printed in the USA

Geological Society of America Bulletin, January/February 2004 75 Data Repository item 2004023

APPENDIX A

List describing the location and geologic setting for new samples dated reported in paper.

FORMAT: Lab# Field# (Latitude, Longitude) Locality description. Elevation.

37 ARC88-15 (47° 53.57', -124° 37.79') Massive sandstone of the Hoh assemblage. Collected at Second Beach, south of La Push. Outcrop is located at the north end of the beach in unit Ths of Rau (1979). Vitrinite = ~0.7%. Elev = 0 ft {0 m}.

41 ARC88-19; Poorly indurated lithic sandstone from the Hoh Assemblage on Mount Octopus, collected on road H1100. Mapped as a conglomeratic interval, but no conglomerate was seen there. Vitrinite = ~1.3%. Elev = 1680 ft {512 m}.

42a 92JG62 (47° 38.38', -124° 23.12') Sandstone from coherent turbidites of the Hoh assemblage (unit Thts of Rau, 1975). Collected along the coast north of Kalaloch at Browns Point. Vitrinite = ~0.7%. Elev = 0 ft {0 m}.

42b ARC88-20 (47° 38.38', -124° 23.12') Sandstone from coherent turbidites of the Hoh assemblage (unit Ths of Rau, 1975). Collected along the coast north of Kalaloch at Browns Point. Vitrinite = ~0.7%. Elev = 0 ft {0 m}.

53 88108 (47° 47.21', -123° 49.49') Sandstone of the Western Olympic assemblage. (Two of Tabor and Cady, 1978a). Collected from false summit of Hoh Peak. Elev = 5250 ft {1585 m}.

108 92JG-08 (47°18.28', -124° 15.25') Thin-bedded sandstone from Hoh Assemblage at beach south of Point Grenville (Thsr of Tabor and Cady, 1978a). Elev = 0 ft {0 m}.

117 92JG-68 (47° 47.46', -124° 28.86') Undifferentiated sandstone of the Hoh Assemblage collected 2.5 km north of Hoh Head (Thsu of Tabor and Cady, 1978a; shown as a sheared mélange on their map). Note that Hoh Head itself is mapped as Western Olympic Assemblage (Two of Tabor and Cady, 1978a). Vitrinite = ~0.8%. Elev = 0 ft {0 m}.

118 92JG-70 (47° 45.54', -124° 26.99') Undifferentiated sandstone of the Hoh Assemblage collected about 2 km south of Hoh Head (Thsu of Tabor and Cady, 1978a; shown as a sheared mélange on their map). Vitrinite = 0.6%. Elev = 0 ft {0 m}.

140 RS91-64 (47° 00.80', -123° 56.13') Crystal tuff from Prairie Creek quarry, Lake Quinault. Collected from “Broken Formation of Higley Peak” (mapped as basalt, Tb, within undifferentiated Tertiary, Tur, by Tabor and Cady, 1978a, but may belong to the Western Olympic Assemblage). Elev = 2040 ft {622 m}.

142 RS91-66 (47° 44.63', -123° 57.13') Sandstone from Road 2070 in the upper Clearwater River area. Collected from “Sedimentary Rocks of Huelsdonk Ridge” of Western Olympic Assemblage (unit Twot of Tabor and Cady, 1978a). Elev = 2820 ft {860 m}.

1 Data Repository item 2004023

143 RS91-72 (47° 40.40', -124° 01.33') Yahoo Lake tuff from Higley Peak area, north of Lake Quinault. Collected from “Broken Formation of Higley Peak” (mapped as undifferentiated Tertiary, Tur, by Tabor and Cady, 1978a, but this unit may be part of the Western Olympic Assemblage). Sample is equivalent to Vance sample number: V542. Elev = 2400 ft {732 m}.

148 RS91-98 (47° 48.13', -123° 59.30') Sandstone from Huelsdonk Ridge. Collected from “Sedimentary Rocks of Huelsdonk Ridge” of Western Olympic Assemblage (unit Two of Tabor and Cady, 1978a). Elev = 2860 ft {872 m}.

149 RS91-99 (47° 44.92', -123° 56.63') Sandstone from northeast end of Road 2070 in the upper Clearwater River area. Collected from “Sedimentary Rocks of Huelsdonk Ridge” (mapped as undifferentiated Tertiary, Tur, by Tabor and Cady, 1978a, but may be part of the Western Olympic Assemblage). Elev = 2910 ft {887 m}.

150 RS92-7 (47° 44.10', -124° 01.60') Airfall? tuff from Road 2040 off Clearwater River Road. Collected from Sedimentary Rocks of Huelsdonk Ridge” of the Hoh Assemblage (unit Thts of Tabor and Cady, 1978a). Elev = 1390 ft {424 m}.

151 RS93-3 (47° 47.80', -124° 08.62') Sandstone from Red Creek quarry on south side of the Hoh River and east of log-sorting yards for Allen Logging Company. Collected from uncertain unit, either the “Sedimentary Rocks of Mount Octopus” or the “Broken Formation of Spruce Mountain”. Mapped as Western Olympic Assemblage (unit Twot of Tabor and Cady, 1978a). Elev = 510 ft {155 m}.

152 RS93-4 (47° 42.87', -123° 59.83') Sandstone from Clearwater Summit, between the Clearwater and Solleks Rivers. Collected from “Sedimentary Rocks of Mount Octopus” (mapped as undifferentiated Tertiary, Tur, by Tabor and Cady, 1978a, but may be part of the Western Olympic Assemblage). Elev = 2700 ft {823 m}.

154 RS93-22 (47° 49.25', -124° 05.53') Sandstone from Fletchers quarry (Fletcher is a relative of J. Huelsdonk; everyone in the western Olympics is related to J. Huelsdonk). North side of Hoh River near Lewis Ranch (also Hoh Pioneers). Collected from uncertain unit, but probably correlative to the “Broken Formation of Spruce Mountain”. Mapped as Western Olympic Assemblage (unit Two of Tabor and Cady, 1978a). Elev = 840 ft {256 m}.

155 RS93-24 (47° 45.92', -123° 58.13') Sandstone from Owl Mountain. Collected from “Sedimentary Rocks of Huelsdonk Ridge” of the Western Olympic Assemblage (unit Two of Tabor and Cady, 1978a). Elev = 2960 ft {902 m}.

156 RS93-50 (47° 44.30', -123° 56.40') Sandstone from new log road east of the northeast end of 2070 Road, in the upper Clearwater River area. Collected from “Sedimentary Rocks of Huelsdonk Ridge” (mapped as undifferentiated Tertiary, Tur, by Tabor and Cady, 1978a, but may be part of the Western Olympic Assemblage). Elev = 2760 ft {841 m}.

2 Data Repository item 2004023

157 RS93-56 (47° 48.17', -123° 58.50') Sandstone from east of South Fork Hoh Campground. Collected from uncertain unit. Mapped as Western Olympic Assemblage (unit Two of Tabor and Cady, 1978a). Elev = 1440 ft {439 m}.

162 RS94-15 (47° 40.60', -124° 10.07') Sandstone from Snahapish River. Collected from “Sedimentary Rocks of Mount Octopus” of the Hoh Assemblage (unit Thsr of Tabor and Cady, 1978a). Elev = 460 ft {140 m}.

163 RS94-18 (47° 42.87', -123° 54.55') Sandstone from northeast of Sollecks River Ridge. First appearance of pencil cleavage in rocks on west side of massif. Mapped as undifferentiated Tertiary, Tur, by Tabor and Cady, (1978a), but may be part of the Western Olympic Assemblage. Elev = 2880 ft {878 m}.

168 RS95-5 (47° 39.90', -124° 17.73') Sandstone from Kalaloch Creek Loop, east of Kalaloch, on ridge between Kalaloch Creek and the east fork of Kalaloch Creek. Collected from “Sedimentary Rocks of Kalaloch Creek” of the Hoh Assemblage (unit Thts of Tabor and Cady, 1978a). Provides age control for Relesian-age sediments of W. Rau. Elev = 1020 ft {311 m}. Vitrinite = ~0.8%.

170 RS95-13 (47° 44.83', -124° 06.00') Sandstone from Dry Creek, east of prison. Collected from “Sedimentary Rocks of Huelsdonk Ridge” of the Western Olympic Assemblage (unit Twos of Tabor and Cady, 1978a). Elev = 1560 ft {475 m}.

171 RS95-15 (47° 48.13', -123° 59.30') Sandstone from quarry about 1 km east of the South Fork Hoh Campground. Collected from Western Olympic Assemblage (unit Two of Tabor and Cady, 1978a). Elev = 540 ft {165 m}.

173 RS95-18A (47° 42.87', -124° 24.63') Sample from conglomerate on mainland coast opposite Abbey Island. Mapped as “Breccia and Conglomerate of Cape Flattery” (unit Tlb of Tabor and Cady, 1978a). Elev = 0 ft {0 m}.

175 RS96-627 (47° 53.83', -124° 37.63') Sandstone from first outcrop on First Beach, south of La Push. Collected from mélange. Mapped as undifferentiated Tertiary, Tur, by Tabor and Cady (1978a), but may be part of the Western Olympic Assemblage. Elev = 0 ft {0 m}.

176 RS96-630 (47° 51.87', -124° 33.50') Sandstone from near trailhead to Scotts Bluff Shelter. Collected from mélange. Mapped as undifferentiated Tertiary, Tur, by Tabor and Cady (1978a), but may be part of the Western Olympic Assemblage. Elev = 0 ft {0 m}.

178 RS93-49 (470 43.39’, -1230 59.42’) Excellent sample of “greensand” from near end of C3600 on south side of upper Clearwater River. This is a prominent “greensand” ridge, which may extend northward to “conglomerate” in Clearwater River at C3700 access road, and be part of unit with quartz veins and slaty cleavage at the slate quarry immediately north of the name “Clearwater” on Kloochman Rock 7.5’ quad. This is Snavely’s unit Tes north of the Clearwater River fault. Mapped as undifferentiated Tertiary (unit Tur) by Tabor and Cady (1978a). Elev = 2240 ft {683 m}.

3 Data Repository item 2004023

182 RS94-17 (470 42.21’, -1230 56.54’) Sandstone from ridge above East Fork of Solleks River, Kloochman Rock 7.5’ quad. Mapped as undifferentiated Tertiary (unit Tur) by Tabor and Cady (1978a). Elev = 3070 ft {935 m}.

183 RS97-13 (470 41.29’, -1240 05.21’) Sandstone from south abutment of the Solleks River bridge, Stequaleho Creek 7.5’ quad. Locality is apparently to the south and to the west of vitrinite sample B2 (Ro = 2.08) of Snavely and Kvenvolden (1989). Mapped as Hoh Lithic Assemblage (unit Thsr) by Tabor and Cady (1978a). Elev = 600 ft {183 m}.

184 RS94-19 (470 42.74’, -1230 54.97’) Sandstone from ridge above East Fork of Solleks River, Kloochman Rock 7.5’ quad. Slope to east toward RS94-18 is argillite with well developed pencil cleavage. Mapped as undifferentiated Tertiary (unit Tur) by Tabor and Cady (1978a). Elev = 3030 ft {925 m}.

185 RS94-21 (470 43.62’, - 1230 54.60’) Sandstone from argillite slope on ridge at headwaters of South Fork of Clearwater River, Kloochman rock 7.5’ quad. Mapped as undifferentiated Tertiary (unit Tur) by Tabor and Cady (1978a). Elev = 2670 ft {815 m}.

186 RS94-22 (470 43.70’, -1230 54.43’) Sandstone from argillite slope on ridge at headwaters of South Fork of Clearwater River, Kloochman rock 7.5’ quad. Pencils. Mapped as undifferentiated Tertiary (unit Tur) by Tabor and Cady (1978a). Elev = 2670 ft {815 m}.

191 RS97-20 (470 38.45’, -1240 15.00’) Sandstone from outcrop in Shale Creek at the east end of the fish weir, at the Shale Creek bridge on the Clearwater River road, Kalaloch Ridge 7.5’ quad. Located in the Clearwater River shear zone of Stewart (1970), but now thoroughly cemented. Mapped as Hoh Lithic Assemblage (unit Thsr) by Tabor and Cady (1978a). “Possibly Zemorrian” fossil locality 7804 of Rau in Stewart (1970). Elev = 150 ft {46 m}.

195 WL798-5 (470 30.93’, 1240 04.70’) Sandstone collected by Bill Lingley from spur road off Forest Service Road 24, West Boundary Road, under Raft 1409T, Salmon River East quad. Mapped as undifferentiated Tertiary (unit Tur) by Tabor and Cady (1978a). Elev = 960 ft {292 m}.

4 Data Repository item 2004023

APPENDIX B

New fission-track grain-age data for samples presented in Tables 1 to 3 in the paper. Arranged in order of increasing lab sample number.

Lab # Z37 Field # ARC88-15.FTZ Hoh assemblage Stewart RR-5-21-97B-6

>>NEW PARAMETERS--ZETA METHOD<< EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2): 1.704E+05 RELATIVE ERROR (%): 1.53 EFFECTIVE URANIUM CONTENT OF MONITOR (ppm): 12.30 ZETA FACTOR AND STANDARD ERROR (yr cm^2): 331.03 6.66 SIZE OF COUNTER SQUARE (cm^2): 9.545E-07 ------GRAIN AGES IN ORIGINAL ORDER ------Grain RhoS (Ns) RhoI (Ni) Squares U+/-2s Grain Age (Ma) no. (cm^-2) (cm^-2) Age --95% CI-- 1 8.51E+05 ( 13) 2.55E+06 ( 39) 16 184 59 9.5 4.6 18.0 2 5.89E+05 ( 9) 1.44E+06 ( 22) 16 104 44 11.7 4.7 26.0 3 8.38E+05 ( 20) 1.47E+06 ( 35) 25 106 36 16.2 8.8 28.7 4 1.38E+06 ( 21) 2.23E+06 ( 34) 16 161 55 17.5 9.6 30.9 5 8.38E+05 ( 16) 1.31E+06 ( 25) 20 95 38 18.1 9.0 35.1 6 8.73E+05 ( 15) 1.34E+06 ( 23) 18 97 40 18.4 8.9 36.7 7 1.57E+06 ( 27) 2.33E+06 ( 40) 18 168 53 19.1 11.2 31.8 8 6.40E+05 ( 11) 9.31E+05 ( 16) 18 67 33 19.5 8.1 44.4 9 1.83E+06 ( 28) 2.62E+06 ( 40) 16 189 60 19.8 11.7 32.8 10 8.80E+05 ( 21) 1.09E+06 ( 26) 25 79 31 22.8 12.2 42.0 11 7.96E+05 ( 19) 9.64E+05 ( 23) 25 70 29 23.3 12.0 44.6 12 9.48E+05 ( 19) 1.15E+06 ( 23) 21 83 34 23.3 12.0 44.6 13 5.24E+05 ( 8) 5.89E+05 ( 9) 16 43 28 25.1 8.4 72.8 14 3.14E+06 ( 45) 3.14E+06 ( 45) 15 227 68 28.1 18.2 43.5 15 1.77E+06 ( 27) 1.70E+06 ( 26) 16 123 48 29.2 16.4 52.1 16 1.44E+06 ( 22) 1.38E+06 ( 21) 16 99 43 29.5 15.5 56.3 17 1.15E+06 ( 22) 1.10E+06 ( 21) 20 79 34 29.5 15.5 56.3 18 2.75E+06 ( 42) 2.62E+06 ( 40) 16 189 60 29.5 18.7 46.7 19 1.38E+06 ( 21) 1.24E+06 ( 19) 16 90 41 31.1 15.9 61.1 20 2.85E+06 ( 49) 2.50E+06 ( 43) 18 181 55 32.0 20.8 49.5 21 4.19E+05 ( 8) 3.67E+05 ( 7) 20 26 19 32.1 10.2 103.6 22 1.70E+06 ( 26) 1.44E+06 ( 22) 16 104 44 33.2 18.1 61.5 23 2.55E+06 ( 39) 2.10E+06 ( 32) 16 151 53 34.3 20.9 56.5 24 2.44E+06 ( 42) 1.98E+06 ( 34) 18 143 49 34.7 21.6 56.3 25 1.80E+06 ( 36) 1.45E+06 ( 29) 21 104 39 34.9 20.8 59.0 26 1.96E+06 ( 30) 1.57E+06 ( 24) 16 113 46 35.1 19.9 62.8 27 2.55E+06 ( 39) 2.03E+06 ( 31) 16 147 52 35.4 21.5 58.6 28 1.22E+06 ( 29) 9.64E+05 ( 23) 25 70 29 35.4 19.8 64.1 29 3.08E+06 ( 47) 2.36E+06 ( 36) 16 170 57 36.7 23.3 58.3 30 2.82E+06 ( 43) 2.03E+06 ( 31) 16 147 52 39.0 24.0 64.0 31 2.42E+06 ( 37) 1.70E+06 ( 26) 16 123 48 39.9 23.6 68.7 32 2.04E+06 ( 35) 1.40E+06 ( 24) 18 101 41 40.9 23.7 71.9 33 2.88E+06 ( 44) 1.96E+06 ( 30) 16 142 52 41.2 25.4 67.9 34 2.62E+06 ( 40) 1.77E+06 ( 27) 16 128 49 41.6 24.9 70.5 35 2.82E+06 ( 43) 1.90E+06 ( 29) 16 137 51 41.6 25.4 69.2 36 3.93E+06 ( 45) 2.53E+06 ( 29) 12 183 68 43.5 26.8 72.1 37 2.30E+06 ( 22) 1.47E+06 ( 14) 10 106 56 44.0 21.6 93.1 38 1.44E+06 ( 22) 8.51E+05 ( 13) 16 61 33 47.3 22.9 102.4 39 1.18E+06 ( 18) 6.55E+05 ( 10) 16 47 29 50.2 22.2 122.0 40 3.80E+06 ( 58) 2.10E+06 ( 32) 16 151 53 50.8 32.5 80.9 41 8.12E+06 ( 31) 4.45E+06 ( 17) 4 321 154 51.0 27.5 98.4 42 1.38E+06 ( 21) 7.20E+05 ( 11) 16 52 31 53.3 24.8 122.6 43 1.90E+06 ( 29) 9.17E+05 ( 14) 16 66 35 57.8 29.8 118.6

5 Data Repository item 2004023

44 2.49E+06 ( 38) 1.18E+06 ( 18) 16 85 40 59.0 33.0 110.0 45 2.42E+06 ( 37) 1.05E+06 ( 16) 16 76 37 64.5 35.3 124.5 46 2.75E+06 ( 42) 1.18E+06 ( 18) 16 85 40 65.1 36.9 120.4

Lab# Z41 Field # ARC88-19.FTZ Hoh assemblage Stewart RR-5-21-97B-8

>>NEW PARAMETERS--ZETA METHOD<< EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2): 1.692E+05 RELATIVE ERROR (%): 1.47 EFFECTIVE URANIUM CONTENT OF MONITOR (ppm): 12.30 ZETA FACTOR AND STANDARD ERROR (yr cm^2): 331.03 6.66 SIZE OF COUNTER SQUARE (cm^2): 9.545E-07 ------GRAIN AGES IN ORIGINAL ORDER ------Grain RhoS (Ns) RhoI (Ni) Squares U+/-2s Grain Age (Ma) no. (cm^-2) (cm^-2) Age --95% CI-- 1 1.99E+06 ( 38) 4.03E+06 ( 77) 20 293 67 13.8 9.1 20.6 2 6.11E+05 ( 14) 1.62E+06 ( 37) 24 117 39 10.7 5.3 20.1 3 1.52E+06 ( 29) 4.03E+06 ( 77) 20 293 67 10.6 6.6 16.4 4 1.41E+06 ( 27) 4.03E+06 ( 77) 20 293 67 9.9 6.1 15.4 5 8.73E+05 ( 25) 2.44E+06 ( 70) 30 178 43 10.0 6.1 16.0 6 1.20E+06 ( 23) 3.35E+06 ( 64) 20 244 61 10.1 6.0 16.4 7 7.33E+05 ( 21) 1.99E+06 ( 57) 30 145 38 10.4 5.9 17.3 8 9.48E+05 ( 19) 2.15E+06 ( 43) 21 156 48 12.4 6.8 21.7 9 1.20E+06 ( 23) 2.72E+06 ( 52) 20 198 55 12.4 7.2 20.6 10 1.13E+06 ( 26) 2.53E+06 ( 58) 24 184 48 12.6 7.6 20.3 11 9.48E+05 ( 19) 2.10E+06 ( 42) 21 152 47 12.7 7.0 22.3 12 8.44E+05 ( 29) 1.86E+06 ( 64) 36 135 34 12.7 7.9 20.0 13 1.79E+06 ( 29) 3.39E+06 ( 55) 17 246 67 14.8 9.1 23.5 14 6.29E+05 ( 18) 1.19E+06 ( 34) 30 86 29 14.9 7.9 27.0 15 1.01E+06 ( 31) 1.90E+06 ( 58) 32 138 36 15.0 9.3 23.5 16 1.41E+06 ( 35) 2.54E+06 ( 63) 26 185 47 15.6 10.0 23.9 17 2.01E+06 ( 48) 3.60E+06 ( 86) 25 262 57 15.6 10.7 22.5 18 7.72E+05 ( 14) 1.38E+06 ( 25) 19 100 40 15.7 7.5 31.3 19 1.12E+06 ( 32) 1.92E+06 ( 55) 30 140 38 16.3 10.2 25.6 20 2.42E+06 ( 37) 4.13E+06 ( 63) 16 300 76 16.5 10.6 25.1 21 1.16E+06 ( 30) 1.98E+06 ( 51) 27 144 40 16.5 10.1 26.3 22 1.27E+06 ( 45) 2.12E+06 ( 75) 37 154 36 16.8 11.3 24.6

23 1.17E+06 ( 28) 1.84E+06 ( 44) 25 134 40 17.8 10.7 29.2 24 1.50E+06 ( 20) 2.32E+06 ( 31) 14 169 60 18.1 9.7 32.7 25 2.05E+06 ( 41) 3.09E+06 ( 62) 21 225 57 18.5 12.1 27.9 26 2.17E+06 ( 31) 2.93E+06 ( 42) 15 213 66 20.7 12.5 33.6 27 1.63E+06 ( 39) 2.18E+06 ( 52) 25 158 44 21.0 13.5 32.4 28 1.80E+06 ( 31) 2.39E+06 ( 41) 18 173 54 21.2 12.8 34.5 29 1.30E+06 ( 31) 1.72E+06 ( 41) 25 125 39 21.2 12.8 34.5 30 8.01E+05 ( 13) 1.05E+06 ( 17) 17 76 36 21.4 9.6 46.7 31 2.65E+06 ( 38) 3.42E+06 ( 49) 15 249 71 21.7 13.8 33.8 32 1.99E+06 ( 38) 2.57E+06 ( 49) 20 187 53 21.7 13.8 33.8 33 1.31E+06 ( 25) 1.62E+06 ( 31) 20 118 42 22.6 12.8 39.4 34 1.78E+06 ( 39) 2.05E+06 ( 45) 23 149 44 24.2 15.4 38.1 35 2.74E+06 ( 47) 2.85E+06 ( 49) 18 207 59 26.8 17.6 40.8 36 1.57E+06 ( 24) 1.51E+06 ( 23) 16 109 45 29.2 15.8 54.0 37 1.36E+06 ( 26) 1.10E+06 ( 21) 20 80 35 34.5 18.7 64.5 38 1.90E+06 ( 29) 1.24E+06 ( 19) 16 90 41 42.5 23.1 80.2 39 1.80E+06 ( 31) 1.11E+06 ( 19) 18 80 36 45.4 24.9 85.1 40 3.56E+06 ( 68) 1.94E+06 ( 37) 20 141 46 51.2 33.9 78.6 41 2.42E+06 ( 37) 1.11E+06 ( 17) 16 81 39 60.4 33.4 114.5 42 4.26E+06 ( 65) 1.83E+06 ( 28) 16 133 50 64.5 41.0 104.5

6 Data Repository item 2004023

43 2.27E+06 ( 39) 6.40E+05 ( 11) 18 47 27 97.5 49.6 211.6

Lab# Z42a # 92JG62 Browns Point Garver RP130-27 (first dataset); RP130-28 (second dataset)

>>NEW PARAMETERS--ZETA METHOD<< EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2): 2.467E+05 RELATIVE ERROR (%): 2.91 EFFECTIVE URANIUM CONTENT OF MONITOR (ppm): 12.50 ZETA FACTOR AND STANDARD ERROR (yr cm^2): 320.67 7.79 SIZE OF COUNTER SQUARE (cm^2): 9.643E-07 ------GRAIN AGES IN ORIGINAL ORDER ------Grain RhoS (Ns) RhoI (Ni) Squares U+/-2s Grain Age (Ma) no. (cm^-2) (cm^-2) Age --95% CI-- 1 5.19E+06 ( 80) 1.69E+06 ( 26) 16 85 34 120.1 76.6 195.3 2 7.81E+06 ( 113) 1.11E+06 ( 16) 15 56 28 271.2 162.1 488.1 3 5.31E+06 ( 82) 4.34E+06 ( 67) 16 220 55 48.2 34.4 67.9 4 1.89E+06 ( 31) 1.40E+06 ( 23) 17 71 30 53.0 29.9 95.4 5 5.51E+06 ( 85) 5.83E+06 ( 90) 16 296 64 37.3 27.2 50.9 6 3.58E+06 ( 38) 5.66E+06 ( 60) 11 287 76 25.1 16.2 38.3 7 3.88E+06 ( 71) 3.22E+06 ( 59) 19 163 43 47.4 33.0 68.4 8 7.16E+06 ( 69) 5.70E+06 ( 55) 10 289 79 49.4 34.1 72.0 9 4.61E+06 ( 40) 4.72E+06 ( 41) 9 239 76 38.5 24.2 61.2 10 5.77E+06 ( 89) 5.44E+06 ( 84) 16 276 62 41.8 30.5 57.3 11 1.48E+06 ( 30) 5.38E+06 ( 109) 21 273 54 10.9 7.0 16.5 12 6.29E+06 ( 97) 5.77E+06 ( 89) 16 292 64 43.0 31.7 58.3 13 5.98E+06 ( 121) 5.28E+06 ( 107) 21 268 54 44.6 34.0 58.3 14 3.89E+06 ( 60) 1.03E+07 ( 159) 16 522 88 14.9 10.8 20.3 15 2.28E+06 ( 55) 1.99E+06 ( 48) 25 101 30 45.2 30.0 68.2 16 1.22E+07 ( 141) 1.52E+07 ( 176) 12 771 124 31.6 25.1 39.9 17 2.18E+06 ( 21) 6.43E+06 ( 62) 10 326 85 13.5 7.7 22.3 18 8.99E+06 ( 156) 6.05E+06 ( 105) 18 307 62 58.4 45.2 75.5

>>NEW PARAMETERS--ZETA METHOD<< EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2): 2.470E+05 RELATIVE ERROR (%): 2.97 EFFECTIVE URANIUM CONTENT OF MONITOR (ppm): 12.50 ZETA FACTOR AND STANDARD ERROR (yr cm^2): 320.97 7.79 SIZE OF COUNTER SQUARE (cm^2): 9.643E-07 ------GRAIN AGES IN ORIGINAL ORDER ------Grain RhoS (Ns) RhoI (Ni) Squares U+/-2s Grain Age (Ma) no. (cm^-2) (cm^-2) Age --95% CI-- 19 2.96E+06 ( 57) 2.80E+06 ( 54) 20 142 39 41.7 28.1 61.9 20 4.03E+06 ( 70) 2.82E+06 ( 49) 18 143 41 56.4 38.5 83.2 21 4.54E+06 ( 70) 5.57E+06 ( 86) 16 282 63 32.2 23.0 44.9 22 1.88E+06 ( 29) 1.81E+06 ( 28) 16 92 35 40.9 23.5 71.5 23 1.35E+06 ( 39) 1.07E+06 ( 31) 30 54 20 49.7 30.2 82.5 24 3.32E+06 ( 128) 2.31E+06 ( 89) 40 117 26 56.7 42.9 74.9 25 2.33E+06 ( 45) 2.33E+06 ( 45) 20 118 36 39.5 25.5 61.3 26 3.20E+06 ( 74) 1.77E+06 ( 41) 24 90 28 71.1 47.8 107.2 27 8.56E+05 ( 33) 1.37E+06 ( 53) 40 70 19 24.7 15.4 38.9 28 4.67E+06 ( 108) 2.59E+06 ( 60) 24 131 35 70.9 51.1 99.4 29 1.40E+06 ( 81) 3.42E+06 ( 198) 60 173 27 16.3 12.4 21.3 30 2.28E+06 ( 33) 1.94E+06 ( 28) 15 98 37 46.5 27.2 80.1 31 1.94E+06 ( 45) 2.46E+06 ( 57) 24 125 34 31.3 20.6 47.2 32 1.66E+06 ( 48) 4.49E+06 ( 130) 30 227 42 14.7 10.2 20.6 33 3.77E+06 ( 109) 2.25E+06 ( 65) 30 114 29 66.1 48.0 91.7 34 2.95E+06 ( 91) 2.04E+06 ( 63) 32 103 27 57.0 40.7 80.2 35 3.31E+06 ( 51) 2.79E+06 ( 43) 16 141 44 46.8 30.5 72.2

7 Data Repository item 2004023

36 5.53E+05 ( 32) 1.88E+06 ( 109) 60 95 19 11.7 7.6 17.5 37 1.22E+06 ( 59) 3.84E+06 ( 185) 50 194 31 12.7 9.2 17.1 38 4.36E+06 ( 63) 3.39E+06 ( 49) 15 171 50 50.8 34.3 75.6 39 1.24E+06 ( 48) 5.44E+05 ( 21) 40 28 12 89.6 52.8 158.0 40 2.18E+06 ( 61) 1.97E+06 ( 55) 29 100 27 43.8 29.8 64.5 41 2.49E+06 ( 72) 3.01E+06 ( 87) 30 152 34 32.8 23.5 45.5

Lab# Z42b Field # ARC88-20.FTZ Hoh assemblage Browns Point Stewart RR-5-21- 97B-9

>>NEW PARAMETERS--ZETA METHOD<< EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2): 1.685E+05 RELATIVE ERROR (%): 1.44 EFFECTIVE URANIUM CONTENT OF MONITOR (ppm): 12.30 ZETA FACTOR AND STANDARD ERROR (yr cm^2): 331.03 6.66 SIZE OF COUNTER SQUARE (cm^2): 9.545E-07 ------GRAIN AGES IN ORIGINAL ORDER ------Grain RhoS (Ns) RhoI (Ni) Squares U+/-2s Grain Age (Ma) no. (cm^-2) (cm^-2) Age --95% CI-- 1 2.59E+06 ( 42) 3.94E+06 ( 64) 17 288 72 18.3 12.1 27.4 2 2.10E+06 ( 52) 2.70E+06 ( 67) 26 197 48 21.6 14.7 31.5 3 2.29E+06 ( 35) 2.88E+06 ( 44) 16 210 63 22.2 13.8 35.3 4 3.67E+06 ( 70) 4.45E+06 ( 85) 20 325 71 22.9 16.5 31.9 5 2.44E+06 ( 56) 2.79E+06 ( 64) 24 204 51 24.4 16.7 35.4 6 1.83E+06 ( 28) 2.10E+06 ( 32) 16 153 54 24.4 14.1 41.7 7 1.47E+06 ( 28) 1.52E+06 ( 29) 20 111 41 26.9 15.4 46.8 8 1.28E+06 ( 22) 1.28E+06 ( 22) 18 93 40 27.8 14.7 52.6 9 1.99E+06 ( 38) 1.99E+06 ( 38) 20 145 47 27.8 17.3 44.8 10 1.64E+06 ( 25) 1.57E+06 ( 24) 16 115 46 29.0 15.9 53.0 11 1.50E+06 ( 30) 1.30E+06 ( 26) 21 95 37 32.1 18.4 56.5 12 3.19E+06 ( 64) 2.59E+06 ( 52) 21 189 53 34.2 23.4 50.4 13 3.52E+06 ( 37) 2.76E+06 ( 29) 11 202 74 35.4 21.2 59.8 14 2.49E+06 ( 38) 1.90E+06 ( 29) 16 139 51 36.4 21.9 61.2 15 3.33E+06 ( 54) 2.47E+06 ( 40) 17 180 57 37.5 24.5 58.0 16 1.73E+06 ( 38) 1.28E+06 ( 28) 23 93 35 37.7 22.6 63.8 17 1.79E+06 ( 41) 1.31E+06 ( 30) 24 96 35 38.0 23.2 63.0 18 6.98E+05 ( 14) 4.49E+05 ( 9) 21 33 21 43.0 17.5 112.7 19 2.65E+06 ( 43) 1.48E+06 ( 24) 17 108 44 49.6 29.6 85.6 20 2.93E+06 ( 42) 1.61E+06 ( 23) 15 117 48 50.6 29.8 88.2 21 3.54E+06 ( 54) 1.90E+06 ( 29) 16 139 51 51.6 32.4 84.1 22 4.13E+06 ( 67) 2.10E+06 ( 34) 17 153 52 54.6 35.7 85.2 23 3.22E+06 ( 40) 1.61E+06 ( 20) 13 118 52 55.3 31.7 100.0 24 2.71E+06 ( 31) 1.31E+06 ( 15) 12 96 49 57.1 30.1 114.0 25 3.80E+06 ( 58) 1.70E+06 ( 26) 16 124 48 61.7 38.4 102.3 26 7.48E+05 ( 15) 2.99E+05 ( 6) 21 22 17 68.3 25.5 215.8 27 2.82E+06 ( 43) 8.51E+05 ( 13) 16 62 34 90.8 48.5 184.5

Lab# Z53, Field# 88108 False summit of Hoh Peak, Western Olympic Assemblage, Stewart RR7-6-90A-15

>>NEW PARAMETERS--ZETA METHOD<< EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2): 1.867E+05 RELATIVE ERROR (%): 1.48 EFFECTIVE URANIUM CONTENT OF MONITOR (ppm): 12.30 ZETA FACTOR AND STANDARD ERROR (yr cm^2): 331.03 6.66 SIZE OF COUNTER SQUARE (cm^2): 9.545E-07 ------GRAIN AGES IN ORIGINAL ORDER ------Grain RhoS (Ns) RhoI (Ni) Squares U+/-2s Grain Age (Ma)

8 Data Repository item 2004023

no. (cm^-2) (cm^-2) Age --95% CI-- 1 5.42E+05 ( 15) 1.48E+06 ( 41) 29 98 30 11.4 5.8 20.8 2 1.16E+06 ( 31) 2.96E+06 ( 79) 28 195 44 12.2 7.7 18.6 3 5.24E+05 ( 12) 1.31E+06 ( 30) 24 86 31 12.5 5.8 24.8 4 1.55E+06 ( 34) 3.60E+06 ( 79) 23 237 54 13.3 8.6 20.1 5 7.33E+05 ( 21) 1.57E+06 ( 45) 30 104 31 14.5 8.1 24.7 6 5.87E+05 ( 14) 1.26E+06 ( 30) 25 83 30 14.5 7.1 28.0 7 9.64E+05 ( 23) 2.05E+06 ( 49) 25 135 39 14.5 8.4 24.2 8 1.18E+06 ( 27) 2.44E+06 ( 56) 24 161 43 14.9 9.0 24.0 9 1.48E+06 ( 34) 2.88E+06 ( 66) 24 190 47 15.9 10.2 24.4 10 1.46E+06 ( 39) 2.73E+06 ( 73) 28 180 42 16.5 10.9 24.7 11 4.89E+05 ( 14) 9.08E+05 ( 26) 30 60 23 16.7 8.0 33.0 12 9.39E+05 ( 26) 1.70E+06 ( 47) 29 112 33 17.1 10.1 28.1 13 8.03E+05 ( 23) 1.40E+06 ( 40) 30 92 29 17.8 10.1 30.4 14 9.64E+05 ( 23) 1.63E+06 ( 39) 25 108 34 18.3 10.4 31.2 15 1.01E+06 ( 24) 1.68E+06 ( 40) 25 110 35 18.6 10.7 31.5 16 8.73E+05 ( 20) 1.44E+06 ( 33) 24 95 33 18.8 10.2 33.6 17 5.87E+05 ( 14) 9.64E+05 ( 23) 25 63 26 18.9 8.9 38.1 18 6.64E+05 ( 19) 1.08E+06 ( 31) 30 71 26 19.0 10.1 34.5 19 1.01E+06 ( 24) 1.63E+06 ( 39) 25 108 34 19.0 10.9 32.4 20 1.44E+06 ( 37) 2.10E+06 ( 54) 27 138 38 21.2 13.5 32.7 21 6.98E+05 ( 18) 1.01E+06 ( 26) 27 66 26 21.4 11.0 40.5 22 1.59E+06 ( 38) 2.26E+06 ( 54) 25 149 41 21.7 13.9 33.5 23 5.45E+05 ( 13) 7.54E+05 ( 18) 25 50 23 22.4 10.0 48.0 24 9.22E+05 ( 22) 1.22E+06 ( 29) 25 80 30 23.4 12.8 42.1 25 1.01E+06 ( 24) 1.30E+06 ( 31) 25 86 31 23.9 13.4 42.0 26 1.38E+06 ( 33) 1.72E+06 ( 41) 25 113 35 24.8 15.2 40.2 27 6.14E+05 ( 17) 7.59E+05 ( 21) 29 50 22 25.0 12.4 49.6 28 6.29E+05 ( 18) 7.68E+05 ( 22) 30 51 21 25.3 12.8 49.2 29 1.72E+06 ( 46) 2.06E+06 ( 55) 28 136 37 25.8 17.0 38.9 30 2.10E+06 ( 60) 2.37E+06 ( 68) 30 156 38 27.2 18.9 39.1 31 8.03E+05 ( 23) 9.08E+05 ( 26) 30 60 23 27.3 14.9 49.7 32 7.12E+05 ( 17) 7.12E+05 ( 17) 25 47 22 30.8 14.8 64.1 33 8.03E+05 ( 23) 8.03E+05 ( 23) 30 53 22 30.8 16.5 57.4 34 6.98E+05 ( 16) 6.55E+05 ( 15) 24 43 22 32.9 15.2 71.2 35 2.64E+06 ( 63) 2.43E+06 ( 58) 25 160 42 33.5 23.1 48.7 36 1.05E+06 ( 25) 9.64E+05 ( 23) 25 63 26 33.5 18.3 61.7 37 3.60E+06 ( 86) 3.27E+06 ( 78) 25 215 49 34.0 24.7 46.8 38 1.33E+06 ( 38) 1.19E+06 ( 34) 30 78 27 34.4 21.1 56.4 39 2.56E+06 ( 61) 1.89E+06 ( 45) 25 124 37 41.7 27.9 62.8 40 5.36E+06 ( 128) 3.86E+06 ( 92) 25 254 53 42.8 32.6 56.1 41 4.90E+06 ( 117) 3.27E+06 ( 78) 25 215 49 46.1 34.5 61.5 42 2.88E+06 ( 66) 1.79E+06 ( 41) 24 118 37 49.5 33.1 75.0 43 2.64E+06 ( 63) 1.72E+06 ( 41) 25 113 35 47.2 31.4 71.9 44 2.83E+06 ( 81) 1.75E+06 ( 50) 30 115 33 49.8 34.6 72.4 45 3.73E+06 ( 89) 2.18E+06 ( 52) 25 144 40 52.6 37.0 75.6 46 3.14E+06 ( 75) 1.80E+06 ( 43) 25 119 36 53.6 36.4 79.9 47 3.84E+06 ( 88) 2.10E+06 ( 48) 24 138 40 56.3 39.2 81.9 48 3.11E+06 ( 83) 1.57E+06 ( 42) 28 104 32 60.7 41.5 90.2 49 2.41E+06 ( 69) 9.78E+05 ( 28) 30 64 24 75.4 48.2 121.7 50 6.24E+06 ( 143) 2.49E+06 ( 57) 24 164 44 76.9 56.3 106.6 51 6.58E+06 ( 157) 2.35E+06 ( 56) 25 155 41 85.9 63.1 118.8

Lab# Z108 Field # 92JG08 thin-bedded sandstone Hoh assemblage beach south of Pt. Grenville, unit Tshr of Tabor and Cady Garver RP130-23 (first dataset); RP130-24 (second dataset)

>>NEW PARAMETERS--ZETA METHOD<< EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2): 2.453E+05

9 Data Repository item 2004023

RELATIVE ERROR (%): 2.72 EFFECTIVE URANIUM CONTENT OF MONITOR (ppm): 12.50 ZETA FACTOR AND STANDARD ERROR (yr cm^2): 320.97 7.79 SIZE OF COUNTER SQUARE (cm^2): 9.643E-07 ------GRAIN AGES IN ORIGINAL ORDER ------Grain RhoS (Ns) RhoI (Ni) Squares U+/-2s Grain Age (Ma) no. (cm^-2) (cm^-2) Age --95% CI-- 1 5.19E+06 ( 80) 1.69E+06 ( 26) 16 86 34 119.6 76.3 194.3 2 2.31E+06 ( 89) 3.66E+06 ( 141) 40 186 33 24.9 18.9 32.7 3 6.22E+06 ( 96) 4.60E+06 ( 71) 16 234 57 53.0 38.5 73.4 4 1.66E+06 ( 32) 2.18E+06 ( 42) 20 111 35 30.0 18.3 48.7 5 2.85E+06 ( 55) 1.56E+06 ( 30) 20 79 29 71.6 45.2 116.1 6 6.22E+06 ( 72) 5.19E+06 ( 60) 12 264 69 47.1 32.9 67.7 7 2.25E+06 ( 65) 1.80E+06 ( 52) 30 92 26 49.0 33.4 72.2 8 9.79E+06 ( 85) 7.03E+06 ( 61) 9 358 93 54.6 38.7 77.4 9 2.85E+06 ( 55) 3.53E+06 ( 68) 20 180 45 31.8 21.8 46.2 10 5.86E+06 ( 113) 5.34E+06 ( 103) 20 272 56 43.0 32.7 56.6 11 4.36E+06 ( 84) 1.87E+06 ( 36) 20 95 32 91.0 61.0 138.9 12 4.97E+06 ( 115) 3.50E+06 ( 81) 24 178 41 55.5 41.5 74.3 13 9.96E+05 ( 24) 9.13E+05 ( 22) 25 47 20 42.8 23.0 80.1 14 6.17E+06 ( 119) 7.31E+06 ( 141) 20 373 66 33.2 25.7 42.7 15 1.70E+06 ( 41) 4.23E+06 ( 102) 25 216 44 15.9 10.7 23.0 16 2.90E+06 ( 56) 3.27E+06 ( 63) 20 166 43 34.9 23.8 51.0 17 1.30E+06 ( 25) 2.33E+06 ( 45) 20 119 36 21.9 12.8 36.5 18 2.28E+06 ( 44) 1.40E+06 ( 27) 20 71 27 63.7 38.6 107.2 19 3.94E+06 ( 76) 1.97E+06 ( 38) 20 100 33 78.1 52.3 118.9 20 1.92E+06 ( 37) 2.39E+06 ( 46) 20 122 36 31.6 19.9 49.9 21 2.90E+06 ( 84) 2.42E+06 ( 70) 30 123 30 47.1 33.8 65.8 22 2.53E+06 ( 39) 3.05E+06 ( 47) 16 155 46 32.6 20.7 51.0 23 4.56E+06 ( 44) 4.36E+06 ( 42) 10 222 69 41.1 26.3 64.5 24 3.58E+06 ( 69) 3.21E+06 ( 62) 20 164 42 43.7 30.4 62.8 25 1.14E+06 ( 33) 1.00E+06 ( 29) 30 51 19 44.6 26.3 76.3

>>NEW PARAMETERS--ZETA METHOD<< EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2): 2.457E+05 RELATIVE ERROR (%): 2.76 EFFECTIVE URANIUM CONTENT OF MONITOR (ppm): 12.50 ZETA FACTOR AND STANDARD ERROR (yr cm^2): 320.97 7.79 SIZE OF COUNTER SQUARE (cm^2): 9.643E-07 ------GRAIN AGES IN ORIGINAL ORDER ------Grain RhoS (Ns) RhoI (Ni) Squares U+/-2s Grain Age (Ma) no. (cm^-2) (cm^-2) Age --95% CI-- 26 2.51E+06 ( 97) 2.20E+06 ( 85) 40 112 25 44.9 33.0 61.0 27 6.48E+05 ( 15) 2.42E+06 ( 56) 24 123 33 10.6 5.5 19.0 28 1.79E+06 ( 69) 1.04E+06 ( 40) 40 53 17 67.6 45.1 102.7 29 1.80E+06 ( 52) 1.52E+06 ( 44) 30 77 24 46.4 30.4 71.2 30 8.30E+05 ( 20) 1.95E+06 ( 47) 25 99 29 16.8 9.4 28.9 31 5.60E+05 ( 27) 3.32E+05 ( 16) 50 17 8 66.0 34.4 131.2 32 3.15E+06 ( 91) 4.87E+06 ( 141) 30 248 44 25.4 19.4 33.4 33 2.20E+06 ( 68) 2.40E+06 ( 74) 32 122 29 36.2 25.5 51.1 34 6.27E+05 ( 29) 1.66E+06 ( 77) 48 85 20 14.9 9.3 23.1 35 3.89E+06 ( 45) 6.22E+06 ( 72) 12 317 76 24.6 16.5 36.3 36 1.10E+06 ( 36) 3.14E+06 ( 103) 34 160 33 13.8 9.1 20.4 37 2.66E+06 ( 77) 2.04E+06 ( 59) 30 104 28 51.3 35.9 73.5 38 1.90E+06 ( 44) 2.59E+06 ( 60) 24 132 35 28.9 19.0 43.4 39 2.62E+06 ( 101) 2.39E+06 ( 92) 40 121 26 43.1 32.3 57.6 40 3.73E+06 ( 90) 2.32E+06 ( 56) 25 118 32 63.0 44.6 89.9 41 4.36E+06 ( 84) 2.54E+06 ( 49) 20 129 37 67.2 46.6 97.9 42 1.87E+06 ( 90) 1.24E+06 ( 60) 50 63 17 58.9 41.9 83.3 43 1.09E+07 ( 63) 9.33E+06 ( 54) 6 475 131 45.8 31.3 67.4 44 4.20E+06 ( 81) 3.73E+06 ( 72) 20 190 46 44.2 31.7 61.8

10 Data Repository item 2004023

45 2.87E+06 ( 83) 1.59E+06 ( 46) 30 81 24 70.7 48.7 104.0 46 4.98E+06 ( 72) 4.42E+06 ( 64) 15 225 57 44.2 31.0 63.1 47 4.15E+06 ( 100) 2.57E+06 ( 62) 25 131 34 63.3 45.5 88.6 48 1.87E+06 ( 47) 2.47E+06 ( 62) 26 126 33 29.9 19.9 44.4 49 1.58E+06 ( 76) 1.16E+06 ( 56) 50 59 16 53.3 37.1 76.9 50 5.81E+05 ( 28) 1.97E+06 ( 95) 50 100 21 11.7 7.3 17.9

Lab# Z117 Field # 92JG68 Hoh mélange north of Hoh Head Garver RP130-31 (first dataset), RP130-32 (second dataset)

>>NEW PARAMETERS--ZETA METHOD<< EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2): 2.480E+05 RELATIVE ERROR (%): 3.18 EFFECTIVE URANIUM CONTENT OF MONITOR (ppm): 12.50 ZETA FACTOR AND STANDARD ERROR (yr cm^2): 320.67 7.79 SIZE OF COUNTER SQUARE (cm^2): 9.645E-07 ------GRAIN AGES IN ORIGINAL ORDER ------Grain RhoS (Ns) RhoI (Ni) Squares U+/-2s Grain Age (Ma) no. (cm^-2) (cm^-2) Age --95% CI-- 1 3.80E+06 ( 77) 4.10E+06 ( 83) 21 207 47 36.8 26.5 51.1 2 4.25E+06 ( 123) 3.11E+06 ( 90) 30 157 34 54.0 40.8 71.6 3 3.70E+06 ( 107) 3.21E+06 ( 93) 30 162 35 45.6 34.2 60.7 4 5.08E+06 ( 98) 3.99E+06 ( 77) 20 201 47 50.4 36.8 69.3 5 3.39E+06 ( 98) 2.56E+06 ( 74) 30 129 31 52.4 38.2 72.3 6 3.78E+06 ( 73) 3.21E+06 ( 62) 20 162 42 46.7 32.6 66.9 7 8.16E+06 ( 118) 5.25E+06 ( 76) 15 265 63 61.4 45.4 83.6 8 3.39E+06 ( 98) 3.21E+06 ( 93) 30 162 35 41.8 31.2 55.9 9 3.19E+06 ( 123) 3.11E+06 ( 120) 40 157 30 40.6 31.3 52.8 10 2.80E+06 ( 54) 6.53E+06 ( 126) 20 329 62 17.1 12.1 23.8 11 3.61E+06 ( 87) 2.99E+06 ( 72) 25 150 37 47.9 34.5 66.7 12 3.87E+06 ( 112) 3.11E+06 ( 90) 30 157 34 49.2 37.0 65.6 13 3.63E+06 ( 105) 2.76E+06 ( 80) 30 139 32 52.0 38.3 70.8 14 3.58E+06 ( 69) 3.47E+06 ( 67) 20 175 44 40.8 28.6 58.3 15 6.07E+06 ( 117) 3.84E+06 ( 74) 20 193 46 62.5 46.1 85.4 16 4.77E+06 ( 92) 4.98E+06 ( 96) 20 251 54 38.0 28.1 51.5 17 5.18E+06 ( 100) 5.96E+06 ( 115) 20 300 59 34.5 26.1 45.6 18 2.51E+06 ( 29) 2.94E+06 ( 34) 12 148 51 33.9 19.8 57.4 19 3.21E+06 ( 62) 3.42E+06 ( 66) 20 172 44 37.3 25.8 53.8 20 2.90E+06 ( 70) 2.03E+06 ( 49) 25 102 30 56.5 38.6 83.6 21 8.10E+06 ( 125) 7.00E+06 ( 108) 16 353 71 45.8 35.1 59.9 22 4.72E+06 ( 91) 4.35E+06 ( 84) 20 219 50 43.0 31.4 58.8 23 2.38E+06 ( 46) 2.90E+06 ( 56) 20 146 40 32.6 21.5 49.2 24 6.87E+06 ( 106) 4.80E+06 ( 74) 16 242 58 56.7 41.5 77.8 25 1.89E+06 ( 91) 1.80E+06 ( 87) 50 91 20 41.5 30.4 56.6 26 2.49E+06 ( 24) 5.49E+06 ( 53) 10 277 78 18.1 10.6 29.8 27 3.42E+06 ( 99) 4.49E+06 ( 130) 30 226 42 30.2 23.0 39.7 28 6.01E+06 ( 87) 4.56E+06 ( 66) 15 230 58 52.2 37.3 73.4 29 1.10E+07 ( 106) 9.33E+06 ( 90) 10 470 103 46.6 34.9 62.3 30 4.98E+05 ( 24) 2.01E+06 ( 97) 50 101 22 9.9 6.0 15.6

>>NEW PARAMETERS--ZETA METHOD<< EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2): 2.483E+05 RELATIVE ERROR (%): 3.26 EFFECTIVE URANIUM CONTENT OF MONITOR (ppm): 12.50 ZETA FACTOR AND STANDARD ERROR (yr cm^2): 320.97 7.79 SIZE OF COUNTER SQUARE (cm^2): 9.645E-07 ------GRAIN AGES IN ORIGINAL ORDER ------Grain RhoS (Ns) RhoI (Ni) Squares U+/-2s Grain Age (Ma) no. (cm^-2) (cm^-2) Age --95% CI--

11 Data Repository item 2004023

31 5.39E+05 ( 26) 6.84E+05 ( 33) 50 34 12 31.4 17.9 54.2 32 2.80E+06 ( 81) 1.49E+06 ( 43) 30 75 23 74.5 50.7 111.1 33 1.84E+06 ( 71) 2.85E+06 ( 110) 40 144 29 25.7 18.7 35.2 34 5.34E+06 ( 103) 4.51E+06 ( 87) 20 227 51 47.0 34.8 63.7 35 2.97E+06 ( 143) 2.57E+06 ( 124) 50 129 25 45.8 35.6 58.9 36 2.73E+06 ( 79) 2.32E+06 ( 67) 30 117 29 46.8 33.2 66.2 37 1.99E+06 ( 69) 1.64E+06 ( 57) 36 83 22 48.1 33.2 69.8 38 4.35E+06 ( 84) 3.06E+06 ( 59) 20 154 41 56.5 39.8 80.6 39 2.64E+06 ( 51) 3.99E+06 ( 77) 20 201 47 26.4 18.0 38.2 40 4.87E+06 ( 94) 2.28E+06 ( 44) 20 115 35 84.4 58.3 124.3 41 3.34E+06 ( 129) 2.33E+06 ( 90) 40 117 26 56.8 42.9 75.0 42 6.03E+06 ( 93) 6.09E+06 ( 94) 16 307 66 39.3 29.0 53.3 43 1.17E+06 ( 45) 1.22E+06 ( 47) 40 61 18 38.1 24.6 58.8 44 4.56E+06 ( 132) 2.52E+06 ( 73) 30 127 31 71.6 53.1 97.3 45 1.59E+06 ( 46) 1.52E+06 ( 44) 30 77 23 41.5 26.8 64.5

Lab# Z118 Field # 92JG70 Hoh mélange south of Hoh Head Garver RP130-34 (first dataset); RP130-33 (second dataset)

>>NEW PARAMETERS--ZETA METHOD<< EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2): 2.490E+05 RELATIVE ERROR (%): 3.43 EFFECTIVE URANIUM CONTENT OF MONITOR (ppm): 12.50 ZETA FACTOR AND STANDARD ERROR (yr cm^2): 320.67 7.79 SIZE OF COUNTER SQUARE (cm^2): 9.645E-07 ------GRAIN AGES IN ORIGINAL ORDER ------Grain RhoS (Ns) RhoI (Ni) Squares U+/-2s Grain Age (Ma) no. (cm^-2) (cm^-2) Age --95% CI-- 1 2.20E+06 ( 51) 2.59E+06 ( 60) 24 130 35 33.9 22.7 50.3 2 5.39E+06 ( 104) 3.78E+06 ( 73) 20 190 46 56.6 41.3 78.0 3 1.02E+06 ( 49) 1.04E+06 ( 50) 50 52 15 39.0 25.6 59.3 4 3.73E+06 ( 108) 4.15E+06 ( 120) 30 208 41 35.8 27.3 47.0 5 4.90E+05 ( 17) 7.78E+05 ( 27) 36 39 15 25.2 12.8 47.9 6 3.69E+06 ( 96) 1.69E+06 ( 44) 27 85 26 86.4 59.7 127.1 7 3.21E+06 ( 62) 3.73E+06 ( 72) 20 187 46 34.3 23.9 49.2 8 1.40E+06 ( 54) 1.87E+06 ( 72) 40 94 23 29.9 20.5 43.4 9 1.26E+06 ( 61) 9.75E+05 ( 47) 50 49 15 51.6 34.5 77.5 10 3.99E+06 ( 77) 2.64E+06 ( 51) 20 133 38 60.0 41.4 87.7 11 9.02E+06 ( 87) 4.87E+06 ( 47) 10 245 73 73.4 50.7 107.6 12 2.83E+06 ( 164) 2.26E+06 ( 131) 60 114 21 49.7 39.0 63.4 13 3.42E+06 ( 66) 3.01E+06 ( 58) 20 151 41 45.3 31.2 65.9 14 4.82E+06 ( 93) 4.35E+06 ( 84) 20 219 50 44.1 32.2 60.3 15 3.84E+06 ( 74) 3.11E+06 ( 60) 20 156 42 49.1 34.2 70.6 16 1.71E+06 ( 33) 2.02E+06 ( 39) 20 101 33 33.7 20.5 55.2 17 1.56E+06 ( 27) 1.84E+06 ( 32) 18 93 33 33.7 19.3 58.1 18 1.43E+06 ( 55) 2.20E+06 ( 85) 40 111 25 25.8 17.9 36.9 19 4.51E+06 ( 87) 2.95E+06 ( 57) 20 148 40 60.6 42.7 86.7 20 7.26E+06 ( 70) 5.70E+06 ( 55) 10 286 79 50.6 34.9 73.8 21 7.57E+06 ( 73) 5.91E+06 ( 57) 10 297 81 50.9 35.3 73.7 22 2.85E+06 ( 110) 2.28E+06 ( 88) 40 115 26 49.7 37.1 66.4 23 1.68E+06 ( 65) 3.40E+06 ( 131) 40 170 32 19.8 14.4 27.1 24 2.70E+06 ( 52) 1.24E+06 ( 24) 20 62 26 85.6 51.9 145.8 25 4.73E+06 ( 73) 3.43E+06 ( 53) 16 172 49 54.7 37.7 79.9 26 2.75E+06 ( 53) 2.02E+06 ( 39) 20 101 33 54.0 34.9 84.2 27 5.18E+06 ( 80) 3.56E+06 ( 55) 16 179 50 57.8 40.3 83.5

>>NEW PARAMETERS--ZETA METHOD<< EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2): 2.487E+05 RELATIVE ERROR (%): 3.35

12 Data Repository item 2004023

EFFECTIVE URANIUM CONTENT OF MONITOR (ppm): 12.50 ZETA FACTOR AND STANDARD ERROR (yr cm^2): 320.97 7.79 SIZE OF COUNTER SQUARE (cm^2): 9.643E-07 ------GRAIN AGES IN ORIGINAL ORDER ------Grain RhoS (Ns) RhoI (Ni) Squares U+/-2s Grain Age (Ma) no. (cm^-2) (cm^-2) Age --95% CI-- 28 5.38E+06 ( 83) 3.76E+06 ( 58) 16 189 51 56.8 40.0 81.4 29 2.18E+06 ( 42) 3.94E+06 ( 76) 20 198 47 22.1 14.7 32.7 30 5.05E+06 ( 73) 3.39E+06 ( 49) 15 170 50 59.1 40.5 87.2 31 5.13E+06 ( 99) 3.37E+06 ( 65) 20 169 43 60.5 43.6 84.5 32 9.33E+05 ( 36) 2.33E+06 ( 90) 40 117 26 16.0 10.5 23.9 33 7.05E+06 ( 102) 4.84E+06 ( 70) 15 243 60 57.9 42.0 80.1 34 9.46E+06 ( 73) 7.26E+06 ( 56) 8 365 100 51.8 35.9 75.1 35 3.18E+06 ( 92) 3.08E+06 ( 89) 30 155 34 41.1 30.2 56.1 36 3.94E+06 ( 76) 4.20E+06 ( 81) 20 211 49 37.4 26.8 52.1 37 4.67E+06 ( 45) 3.84E+06 ( 37) 10 193 64 48.3 30.5 77.1 38 2.66E+06 ( 77) 2.73E+06 ( 79) 30 137 32 38.8 27.8 54.1 39 3.32E+06 ( 64) 2.54E+06 ( 49) 20 128 37 51.9 35.1 77.3 40 3.42E+06 ( 99) 2.80E+06 ( 81) 30 141 33 48.6 35.6 66.5 41 2.64E+06 ( 51) 2.33E+06 ( 45) 20 117 36 45.1 29.5 69.2 42 4.93E+05 ( 19) 1.22E+06 ( 47) 40 61 18 16.2 8.9 28.1 43 6.22E+05 ( 12) 9.85E+05 ( 19) 20 50 23 25.3 11.1 54.7 44 3.94E+06 ( 57) 1.80E+06 ( 26) 15 90 36 86.6 53.6 144.1 45 4.10E+06 ( 79) 3.63E+06 ( 70) 20 182 45 44.9 31.9 63.2 46 4.25E+06 ( 82) 3.11E+06 ( 60) 20 156 42 54.3 38.3 77.5 47 7.52E+06 ( 58) 7.26E+06 ( 56) 8 365 100 41.2 27.9 60.9 48 3.95E+06 ( 61) 2.33E+06 ( 36) 16 117 40 67.2 43.7 104.9 49 3.32E+06 ( 96) 2.00E+06 ( 58) 30 101 27 65.7 46.7 93.2 50 3.60E+06 ( 73) 3.75E+06 ( 76) 21 189 45 38.2 27.2 53.8

Lab# Z140, Field# RJS91-64 tuff at Prairie Creek Quarry, Stewart RR-7-6-94B- 29

>>NEW PARAMETERS--ZETA METHOD<< EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2): 1.859E+05 RELATIVE ERROR (%): 1.04 EFFECTIVE URANIUM CONTENT OF MONITOR (ppm): 12.30 ZETA FACTOR AND STANDARD ERROR (yr cm^2): 331.03 6.66 SIZE OF COUNTER SQUARE (cm^2): 9.545E-07 ------GRAIN AGES IN ORIGINAL ORDER ------Grain RhoS (Ns) RhoI (Ni) Squares U+/-2s Grain Age (Ma) no. (cm^-2) (cm^-2) Age --95% CI-- 1 7.68E+05 ( 22) 1.82E+06 ( 52) 30 120 33 13.1 7.5 21.8 2 3.49E+05 ( 8) 6.55E+05 ( 15) 24 43 22 16.5 6.0 41.1 3 1.13E+06 ( 27) 2.10E+06 ( 50) 25 139 39 16.6 10.0 27.0 4 1.68E+06 ( 40) 3.06E+06 ( 73) 25 202 47 16.9 11.2 25.1 5 1.17E+06 ( 28) 2.14E+06 ( 51) 25 141 40 16.9 10.2 27.3 6 1.84E+06 ( 44) 3.27E+06 ( 78) 25 216 49 17.4 11.7 25.4 7 2.39E+06 ( 57) 3.77E+06 ( 90) 25 250 53 19.5 13.7 27.4 8 1.47E+06 ( 35) 2.30E+06 ( 55) 25 152 41 19.6 12.4 30.4 9 1.72E+06 ( 41) 2.60E+06 ( 62) 25 172 44 20.3 13.3 30.6 10 1.09E+06 ( 26) 1.59E+06 ( 38) 25 105 34 21.1 12.3 35.5 11 1.34E+06 ( 32) 1.89E+06 ( 45) 25 125 37 21.9 13.4 35.1 12 2.68E+06 ( 64) 3.44E+06 ( 82) 25 227 50 24.0 17.0 33.7 13 1.13E+06 ( 27) 1.42E+06 ( 34) 25 94 32 24.4 14.2 41.6 14 1.14E+06 ( 25) 1.41E+06 ( 31) 23 93 33 24.8 14.0 43.3 15 1.26E+06 ( 30) 1.51E+06 ( 36) 25 100 33 25.6 15.2 42.7 16 1.22E+06 ( 29) 1.38E+06 ( 33) 25 91 32 27.0 15.8 45.8

13 Data Repository item 2004023

17 1.17E+06 ( 28) 1.30E+06 ( 31) 25 86 31 27.8 16.0 47.7 18 1.80E+06 ( 43) 1.97E+06 ( 47) 25 130 38 28.1 18.1 43.4 19 2.73E+06 ( 73) 2.88E+06 ( 77) 28 191 43 29.1 20.8 40.6 20 1.38E+06 ( 33) 1.38E+06 ( 33) 25 91 32 30.7 18.4 51.3 21 1.84E+06 ( 44) 1.55E+06 ( 37) 25 103 34 36.5 23.0 58.0 22 1.68E+06 ( 40) 1.38E+06 ( 33) 25 91 32 37.2 22.9 60.8 23 2.22E+06 ( 53) 1.80E+06 ( 43) 25 119 36 37.8 24.8 57.9 24 2.10E+06 ( 50) 1.55E+06 ( 37) 25 103 34 41.4 26.6 65.1 25 2.18E+06 ( 52) 1.59E+06 ( 38) 25 105 34 41.9 27.1 65.5 26 3.73E+06 ( 89) 2.68E+06 ( 64) 25 177 44 42.6 30.6 59.7 27 2.10E+06 ( 54) 1.44E+06 ( 37) 27 95 31 44.7 28.9 69.8 28 1.80E+06 ( 43) 1.22E+06 ( 29) 25 80 30 45.4 27.8 75.4 29 7.54E+05 ( 18) 5.03E+05 ( 12) 25 33 19 45.8 21.0 104.2 30 3.52E+06 ( 84) 2.26E+06 ( 54) 25 150 41 47.6 33.5 68.4 31 2.22E+06 ( 53) 1.42E+06 ( 34) 25 94 32 47.7 30.5 75.7 32 2.20E+06 ( 63) 1.40E+06 ( 40) 30 92 29 48.2 32.0 73.6 33 1.21E+06 ( 30) 7.25E+05 ( 18) 26 48 22 50.9 27.6 97.0 34 6.29E+06 ( 150) 3.65E+06 ( 87) 25 241 52 52.7 40.4 68.8 35 4.38E+06 ( 92) 2.48E+06 ( 52) 22 164 45 54.1 38.2 77.6 36 1.42E+06 ( 34) 7.96E+05 ( 19) 25 53 24 54.6 30.4 101.4 37 8.05E+06 ( 192) 4.02E+06 ( 96) 25 266 54 61.1 47.7 78.2 38 8.76E+06 ( 209) 4.19E+06 ( 100) 25 277 56 63.8 50.2 81.2 39 3.52E+06 ( 84) 1.68E+06 ( 40) 25 111 35 64.2 43.7 96.0 40 3.81E+06 ( 91) 1.80E+06 ( 43) 25 119 36 64.7 44.7 95.3 41 2.98E+06 ( 71) 1.38E+06 ( 33) 25 91 32 65.7 43.1 102.6 42 1.63E+06 ( 39) 7.54E+05 ( 18) 25 50 23 66.0 37.1 122.7 43 2.10E+06 ( 50) 9.64E+05 ( 23) 25 64 26 66.3 39.9 113.9 44 3.02E+06 ( 72) 1.34E+06 ( 32) 25 89 31 68.7 44.9 107.7 45 2.93E+06 ( 70) 1.30E+06 ( 31) 25 86 31 68.9 44.7 108.9 46 2.93E+06 ( 70) 1.26E+06 ( 30) 25 83 30 71.2 46.0 113.2 47 3.25E+06 ( 93) 1.36E+06 ( 39) 30 90 29 72.8 49.8 108.7 48 3.94E+06 ( 94) 1.63E+06 ( 39) 25 108 34 73.6 50.3 109.8 49 5.62E+06 ( 134) 2.14E+06 ( 51) 25 141 40 80.2 57.9 113.0 50 4.02E+06 ( 96) 1.22E+06 ( 29) 25 80 30 100.7 66.3 158.2

Lab# Z142, Field# RJS91-66 Clearwater, 2070 Road, Stewart RR-7-6-94B-30

>>NEW PARAMETERS--ZETA METHOD<< EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2): 1.854E+05 RELATIVE ERROR (%): 1.06 EFFECTIVE URANIUM CONTENT OF MONITOR (ppm): 12.30 ZETA FACTOR AND STANDARD ERROR (yr cm^2): 331.03 6.66 SIZE OF COUNTER SQUARE (cm^2): 9.545E-07 ------GRAIN AGES IN ORIGINAL ORDER ------Grain RhoS (Ns) RhoI (Ni) Squares U+/-2s Grain Age (Ma) no. (cm^-2) (cm^-2) Age --95% CI-- 1 4.89E+05 ( 14) 1.36E+06 ( 39) 30 90 29 11.1 5.5 20.7 2 6.29E+05 ( 15) 1.68E+06 ( 40) 25 111 35 11.6 5.9 21.3 3 1.38E+06 ( 33) 3.02E+06 ( 72) 25 200 47 14.1 9.0 21.5 4 1.68E+06 ( 45) 3.78E+06 ( 101) 28 251 50 13.7 9.4 19.6 5 8.38E+05 ( 20) 1.89E+06 ( 45) 25 125 37 13.7 7.6 23.5 6 1.75E+06 ( 45) 3.57E+06 ( 92) 27 237 50 15.0 10.3 21.6 7 1.09E+06 ( 28) 2.21E+06 ( 57) 27 147 39 15.1 9.2 24.1 8 7.20E+05 ( 22) 1.41E+06 ( 43) 32 93 28 15.7 8.9 26.8 9 1.71E+06 ( 44) 3.26E+06 ( 84) 27 216 47 16.1 10.9 23.4 10 9.64E+05 ( 23) 1.72E+06 ( 41) 25 114 35 17.2 9.8 29.3 11 9.12E+05 ( 27) 1.59E+06 ( 47) 31 105 31 17.7 10.5 28.8 12 2.39E+06 ( 57) 3.98E+06 ( 95) 25 264 54 18.4 13.0 25.8 13 2.35E+06 ( 56) 3.90E+06 ( 93) 25 259 54 18.5 13.0 26.0

14 Data Repository item 2004023

14 7.86E+05 ( 21) 1.27E+06 ( 34) 28 84 29 19.0 10.4 33.5 15 1.30E+06 ( 31) 2.10E+06 ( 50) 25 139 39 19.0 11.7 30.3 16 7.54E+05 ( 18) 1.22E+06 ( 29) 25 81 30 19.1 10.0 35.4 17 9.22E+05 ( 22) 1.47E+06 ( 35) 25 97 33 19.3 10.8 33.7 18 2.55E+06 ( 73) 4.02E+06 ( 115) 30 266 50 19.5 14.3 26.3 19 1.47E+06 ( 35) 2.26E+06 ( 54) 25 150 41 19.9 12.6 30.9 20 2.62E+06 ( 65) 4.03E+06 ( 100) 26 267 54 19.9 14.3 27.5 21 1.75E+06 ( 40) 2.66E+06 ( 61) 24 177 45 20.1 13.1 30.4 22 1.72E+06 ( 41) 2.60E+06 ( 62) 25 172 44 20.3 13.3 30.5 23 2.36E+06 ( 54) 3.49E+06 ( 80) 24 232 52 20.7 14.4 29.6 24 8.73E+05 ( 25) 1.29E+06 ( 37) 30 86 28 20.7 11.9 35.3 25 6.85E+05 ( 17) 1.01E+06 ( 25) 26 67 27 20.9 10.6 40.1 26 2.51E+06 ( 60) 3.65E+06 ( 87) 25 242 52 21.1 14.9 29.7 27 1.53E+06 ( 41) 2.21E+06 ( 59) 28 146 38 21.3 13.9 32.2 28 1.68E+06 ( 48) 2.41E+06 ( 69) 30 160 38 21.3 14.4 31.3 29 3.01E+06 ( 69) 4.28E+06 ( 98) 24 284 58 21.6 15.6 29.7 30 1.01E+06 ( 24) 1.38E+06 ( 33) 25 92 32 22.3 12.6 38.8 31 1.47E+06 ( 35) 1.89E+06 ( 45) 25 125 37 23.8 14.9 37.9 32 2.17E+06 ( 62) 2.48E+06 ( 71) 30 164 39 26.8 18.7 38.1 33 1.17E+06 ( 28) 1.34E+06 ( 32) 25 89 31 26.8 15.6 45.9 34 2.93E+06 ( 70) 3.27E+06 ( 78) 25 217 49 27.5 19.6 38.4 35 1.05E+06 ( 25) 1.13E+06 ( 27) 25 75 29 28.4 15.8 50.7 36 1.30E+06 ( 31) 1.30E+06 ( 31) 25 86 31 30.6 18.0 52.0 37 1.55E+06 ( 37) 1.30E+06 ( 31) 25 86 31 36.5 22.1 60.8 38 1.55E+06 ( 37) 1.17E+06 ( 28) 25 78 29 40.4 24.1 68.5 39 1.05E+06 ( 25) 2.93E+06 ( 70) 25 195 47 11.0 6.6 17.5 40 2.93E+06 ( 70) 2.01E+06 ( 48) 25 133 38 44.6 30.5 65.7 41 2.72E+06 ( 65) 1.84E+06 ( 44) 25 122 37 45.1 30.4 67.7 42 1.57E+06 ( 42) 1.01E+06 ( 27) 28 67 26 47.5 28.7 80.1 43 2.01E+06 ( 48) 1.26E+06 ( 30) 25 83 30 48.8 30.4 79.8 44 3.03E+06 ( 78) 1.82E+06 ( 47) 27 121 35 50.7 34.9 74.4 45 1.17E+06 ( 28) 6.70E+05 ( 16) 25 44 22 53.2 28.0 105.4 46 2.51E+06 ( 60) 1.30E+06 ( 31) 25 86 31 59.0 37.8 94.2 47 2.64E+06 ( 63) 1.34E+06 ( 32) 25 89 31 60.0 38.7 94.9 48 2.85E+06 ( 68) 1.34E+06 ( 32) 25 89 31 64.7 42.1 101.9

Lab# Z143, Field# RJS91-72 Yahoo Lake tuff, Stewart RR-2-6-96B-29

>>NEW PARAMETERS--ZETA METHOD<< EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2): 1.764E+05 RELATIVE ERROR (%): 1.08 EFFECTIVE URANIUM CONTENT OF MONITOR (ppm): 12.30 ZETA FACTOR AND STANDARD ERROR (yr cm^2): 331.03 6.66 SIZE OF COUNTER SQUARE (cm^2): 9.545E-07 ------GRAIN AGES IN ORIGINAL ORDER ------Grain RhoS (Ns) RhoI (Ni) Squares U+/-2s Grain Age (Ma) no. (cm^-2) (cm^-2) Age --95% CI-- 1 5.59E+05 ( 16) 1.12E+06 ( 32) 30 78 27 14.7 7.5 27.4 2 3.20E+06 ( 61) 5.97E+06 ( 114) 20 416 78 15.6 11.2 21.5 3 3.61E+06 ( 69) 6.34E+06 ( 121) 20 442 81 16.6 12.2 22.5 4 3.46E+06 ( 66) 5.45E+06 ( 104) 20 380 75 18.5 13.4 25.4 5 4.19E+06 ( 120) 6.50E+06 ( 186) 30 453 67 18.8 14.9 23.8 6 3.88E+06 ( 74) 5.97E+06 ( 114) 20 416 78 18.9 13.9 25.6 7 4.40E+06 ( 84) 6.76E+06 ( 129) 20 471 83 19.0 14.4 25.1 8 5.94E+05 ( 17) 9.08E+05 ( 26) 30 63 25 19.1 9.7 36.5 9 5.59E+06 ( 128) 7.77E+06 ( 178) 24 542 82 21.0 16.7 26.4 10 4.98E+06 ( 114) 7.42E+06 ( 170) 24 517 80 19.6 15.4 24.9 11 2.44E+06 ( 56) 3.54E+06 ( 81) 24 247 55 20.2 14.1 28.7 12 5.46E+06 ( 125) 7.55E+06 ( 173) 24 527 81 21.1 16.7 26.6

15 Data Repository item 2004023

13 4.68E+06 ( 134) 6.46E+06 ( 185) 30 450 67 21.1 16.9 26.5 14 3.18E+06 ( 91) 3.95E+06 ( 113) 30 275 52 23.5 17.8 31.0 15 2.97E+06 ( 68) 3.67E+06 ( 84) 24 256 56 23.6 16.9 32.9 16 5.06E+06 ( 145) 6.25E+06 ( 179) 30 436 66 23.6 18.9 29.5 17 3.63E+06 ( 104) 4.40E+06 ( 126) 30 307 55 24.1 18.5 31.3 18 5.87E+06 ( 168) 6.74E+06 ( 193) 30 470 68 25.4 20.5 31.3 19 3.60E+06 ( 55) 3.67E+06 ( 56) 16 256 68 28.6 19.4 42.3 20 3.38E+06 ( 87) 3.30E+06 ( 85) 27 230 50 29.8 21.9 40.7 21 5.19E+06 ( 99) 4.98E+06 ( 95) 20 347 71 30.3 22.9 40.3 22 8.73E+05 ( 25) 8.03E+05 ( 23) 30 56 23 31.6 17.3 58.3 23 6.23E+06 ( 119) 5.66E+06 ( 108) 20 394 76 32.1 24.7 41.7 24 2.37E+06 ( 68) 1.36E+06 ( 39) 30 95 30 50.6 33.7 77.1 25 2.41E+06 ( 62) 1.32E+06 ( 34) 27 92 31 52.9 34.4 83.0 26 2.62E+06 ( 75) 1.33E+06 ( 38) 30 93 30 57.2 38.4 87.0 27 3.67E+06 ( 70) 1.68E+06 ( 32) 20 117 41 63.4 41.3 99.6

Lab# Z148, Field# RJS91-98 Huelsdonk Ridge N of Owl Ck, Stewart RR-7-6-94B-35

>>NEW PARAMETERS--ZETA METHOD<< EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2): 1.831E+05 RELATIVE ERROR (%): 1.20 EFFECTIVE URANIUM CONTENT OF MONITOR (ppm): 12.30 ZETA FACTOR AND STANDARD ERROR (yr cm^2): 331.03 6.66 SIZE OF COUNTER SQUARE (cm^2): 9.545E-07 ------GRAIN AGES IN ORIGINAL ORDER ------Grain RhoS (Ns) RhoI (Ni) Squares U+/-2s Grain Age (Ma) no. (cm^-2) (cm^-2) Age --95% CI-- 1 8.38E+05 ( 20) 1.47E+06 ( 35) 25 99 33 17.4 9.5 30.8 2 3.19E+06 ( 70) 5.28E+06 ( 116) 23 355 66 18.3 13.4 24.8 3 9.49E+05 ( 29) 1.57E+06 ( 48) 32 106 30 18.3 11.1 29.6 4 1.26E+06 ( 36) 1.89E+06 ( 54) 30 127 34 20.2 12.9 31.3 5 1.89E+06 ( 56) 2.80E+06 ( 83) 31 188 41 20.4 14.3 29.0 6 1.99E+06 ( 57) 2.86E+06 ( 82) 30 192 43 21.1 14.7 29.9 7 2.82E+06 ( 78) 3.87E+06 ( 107) 29 260 50 22.1 16.2 29.8 8 1.42E+06 ( 34) 1.93E+06 ( 46) 25 129 38 22.4 13.9 35.6 9 3.49E+06 ( 80) 4.71E+06 ( 108) 24 317 61 22.4 16.8 30.0 10 1.64E+06 ( 50) 2.03E+06 ( 62) 32 136 35 24.4 16.5 36.0 11 1.95E+06 ( 54) 2.38E+06 ( 66) 29 160 39 24.8 16.9 36.0 12 1.62E+06 ( 37) 1.75E+06 ( 40) 24 117 37 28.0 17.4 44.8 13 1.13E+06 ( 27) 1.13E+06 ( 27) 25 76 29 30.2 17.1 53.5 14 3.07E+06 ( 41) 2.39E+06 ( 32) 14 161 57 38.7 23.8 63.4 15 1.70E+06 ( 39) 1.13E+06 ( 26) 24 76 30 45.2 26.9 77.4 16 3.71E+06 ( 78) 2.43E+06 ( 51) 22 163 46 46.1 32.0 67.0 17 3.61E+06 ( 62) 2.21E+06 ( 38) 18 149 48 49.2 32.4 75.7 18 1.51E+06 ( 36) 8.80E+05 ( 21) 25 59 26 51.6 29.4 93.0 19 2.51E+06 ( 67) 1.35E+06 ( 36) 28 90 30 56.0 36.9 86.6 20 2.71E+06 ( 62) 1.40E+06 ( 32) 24 94 33 58.3 37.6 92.4 21 4.68E+06 ( 134) 2.30E+06 ( 66) 30 155 38 61.2 45.3 83.5 22 6.04E+06 ( 121) 2.84E+06 ( 57) 21 191 51 63.9 46.4 89.2 23 3.44E+06 ( 69) 1.60E+06 ( 32) 21 107 38 64.8 42.2 102.0 24 3.95E+06 ( 98) 1.65E+06 ( 41) 26 111 35 71.9 49.6 106.2 25 3.04E+06 ( 90) 1.25E+06 ( 37) 31 84 28 73.1 49.5 110.4 26 5.70E+06 ( 147) 2.21E+06 ( 57) 27 149 39 77.5 56.9 107.3 27 3.07E+06 ( 82) 1.09E+06 ( 29) 28 73 27 84.8 55.2 134.5 28 2.84E+06 ( 65) 9.17E+05 ( 21) 24 62 27 92.6 56.3 159.7

Lab# Z149, Field# RJS91-99 Quarry, top of C2070 road, Stewart RR-7-6-94B-36

16 Data Repository item 2004023

>>NEW PARAMETERS--ZETA METHOD<< EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2): 1.826E+05 RELATIVE ERROR (%): 1.23 EFFECTIVE URANIUM CONTENT OF MONITOR (ppm): 12.30 ZETA FACTOR AND STANDARD ERROR (yr cm^2): 331.03 6.66 SIZE OF COUNTER SQUARE (cm^2): 9.545E-07 ------GRAIN AGES IN ORIGINAL ORDER ------Grain RhoS (Ns) RhoI (Ni) Squares U+/-2s Grain Age (Ma) no. (cm^-2) (cm^-2) Age --95% CI-- 1 6.73E+05 ( 18) 2.06E+06 ( 55) 28 139 37 9.9 5.5 17.1 2 2.55E+06 ( 73) 4.89E+06 ( 140) 30 329 56 15.8 11.9 21.0 3 1.98E+06 ( 53) 3.67E+06 ( 98) 28 247 50 16.3 11.5 23.0 4 1.17E+06 ( 28) 2.10E+06 ( 50) 25 141 40 16.9 10.2 27.4 5 2.30E+06 ( 55) 3.94E+06 ( 94) 25 265 55 17.7 12.4 24.9 6 1.88E+06 ( 43) 3.19E+06 ( 73) 24 215 50 17.8 11.9 26.3 7 2.46E+06 ( 61) 4.07E+06 ( 101) 26 274 55 18.2 13.0 25.3 8 3.23E+06 ( 74) 5.33E+06 ( 122) 24 359 65 18.4 13.7 24.6 9 1.09E+06 ( 27) 1.73E+06 ( 43) 26 117 36 19.0 11.3 31.4 10 8.23E+05 ( 22) 1.31E+06 ( 35) 28 88 30 19.0 10.6 33.2 11 2.14E+06 ( 51) 3.31E+06 ( 79) 25 223 50 19.5 13.4 28.1 12 2.71E+06 ( 62) 4.15E+06 ( 95) 24 279 58 19.7 14.1 27.4 13 1.42E+06 ( 34) 2.14E+06 ( 51) 25 144 40 20.2 12.6 31.7 14 1.46E+06 ( 32) 2.14E+06 ( 47) 23 144 42 20.6 12.7 32.9 15 2.10E+06 ( 54) 3.07E+06 ( 79) 27 206 47 20.6 14.3 29.5 16 1.69E+06 ( 37) 2.41E+06 ( 53) 23 163 45 21.1 13.5 32.7 17 1.45E+06 ( 29) 2.05E+06 ( 41) 21 138 43 21.4 12.8 35.2 18 2.26E+06 ( 56) 3.06E+06 ( 76) 26 206 47 22.3 15.5 31.8 19 6.50E+05 ( 18) 8.67E+05 ( 24) 29 58 24 22.7 11.6 43.4 20 1.96E+06 ( 56) 2.58E+06 ( 74) 30 174 41 22.8 15.8 32.8 21 2.30E+06 ( 55) 3.06E+06 ( 73) 25 206 48 22.8 15.7 32.7 22 1.70E+06 ( 47) 2.20E+06 ( 61) 29 148 38 23.3 15.5 34.6 23 1.80E+06 ( 48) 1.91E+06 ( 51) 28 129 36 28.4 18.7 42.9 24 2.01E+06 ( 46) 2.53E+06 ( 58) 24 171 45 23.9 15.9 35.8 25 1.31E+06 ( 40) 1.60E+06 ( 49) 32 108 31 24.6 15.8 38.2 26 1.12E+06 ( 16) 1.33E+06 ( 19) 15 89 41 25.4 12.2 52.1 27 2.44E+06 ( 70) 2.90E+06 ( 83) 30 195 43 25.5 18.2 35.4 28 3.37E+06 ( 90) 3.78E+06 ( 101) 28 255 51 26.9 20.2 35.8 29 1.38E+06 ( 33) 1.55E+06 ( 37) 25 104 34 26.9 16.3 44.2 30 1.76E+06 ( 42) 1.93E+06 ( 46) 25 130 38 27.5 17.7 42.8 31 2.70E+06 ( 67) 4.23E+06 ( 105) 26 285 56 19.3 14.0 26.4 32 1.57E+06 ( 36) 1.40E+06 ( 32) 24 94 33 33.9 20.5 56.3 33 2.30E+06 ( 55) 1.97E+06 ( 47) 25 133 39 35.3 23.5 53.2 34 1.53E+06 ( 38) 1.05E+06 ( 26) 26 71 27 43.9 26.1 75.4 35 2.85E+06 ( 79) 1.88E+06 ( 52) 29 127 35 45.7 31.8 66.2 36 1.47E+06 ( 35) 9.64E+05 ( 23) 25 65 27 45.7 26.4 81.1 37 2.59E+06 ( 52) 1.65E+06 ( 33) 21 111 38 47.4 30.1 75.7 38 3.42E+06 ( 85) 2.14E+06 ( 53) 26 144 39 48.2 33.9 69.4 39 2.36E+06 ( 54) 1.44E+06 ( 33) 24 97 34 49.2 31.4 78.3 40 2.88E+06 ( 77) 1.80E+06 ( 48) 28 121 35 48.2 33.3 70.7 41 2.47E+06 ( 59) 1.51E+06 ( 36) 25 102 34 49.3 32.1 76.8 42 2.75E+06 ( 63) 1.66E+06 ( 38) 24 112 36 49.8 32.9 76.6 43 1.79E+06 ( 41) 1.00E+06 ( 23) 24 68 28 53.5 31.5 93.4 44 2.58E+06 ( 59) 1.35E+06 ( 31) 24 91 33 57.1 36.5 91.4 45 2.78E+06 ( 69) 1.41E+06 ( 35) 26 95 32 59.2 39.0 91.6 46 4.32E+06 ( 99) 2.14E+06 ( 49) 24 144 41 60.7 42.8 87.3 47 2.72E+06 ( 65) 1.34E+06 ( 32) 25 90 32 60.9 39.5 96.2 48 2.30E+06 ( 66) 3.21E+06 ( 92) 30 216 45 21.7 15.5 30.0 49 3.01E+06 ( 66) 1.37E+06 ( 30) 23 92 33 66.0 42.4 105.3 50 4.19E+06 ( 104) 1.81E+06 ( 45) 26 122 36 69.3 48.6 100.7 51 3.18E+06 ( 85) 8.61E+05 ( 23) 28 58 24 110.2 69.4 183.1

17 Data Repository item 2004023

Lab# Z150, Field# RJS92-7 Clearwater road (C2040 road), Stewart RR-2-6-96B-32

>>NEW PARAMETERS--ZETA METHOD<< EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2): 1.760E+05 RELATIVE ERROR (%): 1.15 EFFECTIVE URANIUM CONTENT OF MONITOR (ppm): 12.30 ZETA FACTOR AND STANDARD ERROR (yr cm^2): 331.03 6.66 SIZE OF COUNTER SQUARE (cm^2): 9.545E-07 ------GRAIN AGES IN ORIGINAL ORDER ------Grain RhoS (Ns) RhoI (Ni) Squares U+/-2s Grain Age (Ma) no. (cm^-2) (cm^-2) Age --95% CI-- 1 9.08E+05 ( 26) 3.28E+06 ( 94) 30 229 47 8.1 5.0 12.5 2 9.60E+05 ( 22) 2.01E+06 ( 46) 24 140 41 14.0 8.0 23.6 3 2.93E+06 ( 56) 5.50E+06 ( 105) 20 384 75 15.5 11.0 21.7 4 2.26E+06 ( 54) 4.02E+06 ( 96) 25 281 58 16.4 11.5 23.1 5 2.43E+06 ( 44) 4.25E+06 ( 77) 19 297 68 16.7 11.2 24.4 6 1.50E+06 ( 30) 2.59E+06 ( 52) 21 181 50 16.8 10.3 26.8 7 2.10E+06 ( 36) 3.55E+06 ( 61) 18 248 64 17.2 11.0 26.3 8 1.27E+06 ( 34) 2.02E+06 ( 54) 28 141 38 18.3 11.6 28.6 9 2.78E+06 ( 53) 4.19E+06 ( 80) 20 293 66 19.3 13.4 27.6 10 3.44E+06 ( 82) 5.20E+06 ( 124) 25 363 66 19.3 14.5 25.5 11 3.23E+06 ( 74) 4.80E+06 ( 110) 24 336 64 19.6 14.4 26.5 12 4.44E+06 ( 72) 6.10E+06 ( 99) 17 426 86 21.2 15.4 29.0 13 2.26E+06 ( 54) 2.98E+06 ( 71) 25 208 49 22.1 15.2 32.0 14 2.57E+06 ( 54) 3.33E+06 ( 70) 22 233 56 22.4 15.4 32.5 15 5.30E+06 ( 91) 6.52E+06 ( 112) 18 456 87 23.6 17.9 31.3 16 1.51E+06 ( 36) 1.72E+06 ( 41) 25 120 37 25.5 15.9 40.9 17 2.51E+06 ( 48) 2.20E+06 ( 42) 20 154 47 33.2 21.5 51.5 18 1.60E+06 ( 32) 1.30E+06 ( 26) 21 91 35 35.7 20.7 62.4 19 7.51E+06 ( 129) 5.65E+06 ( 97) 18 395 80 38.6 29.6 50.3 20 1.99E+06 ( 38) 1.41E+06 ( 27) 20 99 38 40.8 24.3 69.5 21 4.67E+06 ( 107) 3.19E+06 ( 73) 24 223 52 42.5 31.3 58.1 22 4.98E+06 ( 95) 2.78E+06 ( 53) 20 194 53 51.9 36.8 74.1 23 1.47E+06 ( 35) 7.96E+05 ( 19) 25 56 25 53.2 29.8 98.6

Lab# Z151, Field# RJS93-3 Red Creek Quarry, Stewart RR-7-6-94B-39

>>NEW PARAMETERS--ZETA METHOD<< EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2): 1.813E+05 RELATIVE ERROR (%): 1.34 EFFECTIVE URANIUM CONTENT OF MONITOR (ppm): 12.30 ZETA FACTOR AND STANDARD ERROR (yr cm^2): 331.03 6.66 SIZE OF COUNTER SQUARE (cm^2): 9.545E-07 ------GRAIN AGES IN ORIGINAL ORDER ------Grain RhoS (Ns) RhoI (Ni) Squares U+/-2s Grain Age (Ma) no. (cm^-2) (cm^-2) Age --95% CI-- 1 3.98E+06 ( 114) 9.67E+06 ( 277) 30 656 81 12.4 9.9 15.5 2 1.30E+06 ( 31) 2.26E+06 ( 54) 25 154 42 17.2 10.7 27.2 3 1.26E+06 ( 30) 2.18E+06 ( 52) 25 148 41 17.3 10.6 27.6 4 1.44E+06 ( 37) 2.41E+06 ( 62) 27 163 42 17.9 11.6 27.3 5 2.26E+06 ( 54) 3.35E+06 ( 80) 25 227 51 20.2 14.0 28.9 6 7.68E+05 ( 22) 1.08E+06 ( 31) 30 73 26 21.3 11.7 37.9 7 1.17E+06 ( 28) 1.59E+06 ( 38) 25 108 35 22.1 13.0 36.9 8 2.69E+06 ( 59) 3.33E+06 ( 73) 23 226 53 24.2 16.9 34.6 9 1.93E+06 ( 46) 2.30E+06 ( 55) 25 156 42 25.1 16.6 37.7 10 8.38E+05 ( 20) 9.22E+05 ( 22) 25 63 26 27.2 14.1 52.2 11 3.35E+06 ( 96) 3.67E+06 ( 105) 30 249 49 27.4 20.7 36.2 12 1.99E+06 ( 57) 2.13E+06 ( 61) 30 145 37 28.0 19.1 40.8

18 Data Repository item 2004023

13 2.06E+06 ( 59) 2.13E+06 ( 61) 30 145 37 29.0 19.9 42.1 14 2.14E+06 ( 51) 2.14E+06 ( 51) 25 145 41 29.9 19.9 45.0 15 1.76E+06 ( 42) 1.59E+06 ( 38) 25 108 35 33.1 20.8 52.7 16 2.01E+06 ( 48) 1.68E+06 ( 40) 25 114 36 35.9 23.1 56.0 17 2.10E+06 ( 50) 1.68E+06 ( 40) 25 114 36 37.4 24.2 58.1 18 2.41E+06 ( 69) 1.85E+06 ( 53) 30 126 34 38.9 26.8 56.8 19 3.58E+06 ( 99) 2.71E+06 ( 75) 29 184 43 39.5 28.9 54.0 20 1.80E+06 ( 43) 1.34E+06 ( 32) 25 91 32 40.1 24.9 65.6 21 2.90E+06 ( 83) 2.10E+06 ( 60) 30 142 37 41.3 29.3 58.7 22 2.18E+06 ( 52) 1.55E+06 ( 37) 25 105 34 42.0 27.1 65.8 23 3.67E+06 ( 105) 2.55E+06 ( 73) 30 173 41 43.0 31.6 58.8 24 2.48E+06 ( 71) 1.68E+06 ( 48) 30 114 33 44.2 30.2 65.2 25 3.60E+06 ( 103) 2.34E+06 ( 67) 30 159 39 45.9 33.5 63.5 26 2.58E+06 ( 74) 1.68E+06 ( 48) 30 114 33 46.0 31.6 67.7 27 4.50E+06 ( 129) 2.83E+06 ( 81) 30 192 43 47.5 35.9 62.9 28 2.87E+06 ( 74) 1.78E+06 ( 46) 27 121 36 48.0 32.9 71.0 29 1.76E+06 ( 42) 1.09E+06 ( 26) 25 74 29 48.2 28.9 81.9 30 4.11E+06 ( 98) 2.39E+06 ( 57) 25 162 43 51.3 36.7 72.5 31 3.91E+06 ( 112) 2.17E+06 ( 62) 30 147 37 53.9 39.2 74.8 32 1.89E+06 ( 45) 1.01E+06 ( 24) 25 68 28 55.8 33.4 95.9 33 3.10E+06 ( 74) 1.63E+06 ( 39) 25 111 35 56.6 38.0 85.7 34 4.23E+06 ( 121) 2.17E+06 ( 62) 30 147 37 58.2 42.6 80.5 35 3.25E+06 ( 93) 1.61E+06 ( 46) 30 109 32 60.3 42.0 87.9 36 2.88E+06 ( 66) 1.40E+06 ( 32) 24 95 33 61.4 39.8 96.9 37 3.31E+06 ( 79) 1.59E+06 ( 38) 25 108 35 61.9 41.7 93.8 38 5.24E+06 ( 125) 1.76E+06 ( 42) 25 119 37 88.5 62.1 128.7 39 3.06E+06 ( 73) 1.47E+06 ( 35) 25 100 34 62.1 41.1 95.9 40 4.14E+06 ( 91) 1.91E+06 ( 42) 23 130 40 64.6 44.4 95.5 41 4.78E+06 ( 114) 2.10E+06 ( 50) 25 142 40 67.9 48.4 96.8 42 3.98E+06 ( 114) 1.75E+06 ( 50) 30 118 33 67.9 48.4 96.8 43 2.47E+06 ( 59) 1.05E+06 ( 25) 25 71 28 70.2 43.5 117.0 44 5.69E+06 ( 163) 2.23E+06 ( 64) 30 152 38 75.6 56.6 101.1 45 3.32E+06 ( 95) 1.26E+06 ( 36) 30 85 28 78.5 53.2 118.7 46 3.39E+06 ( 97) 1.22E+06 ( 35) 30 83 28 82.4 55.7 125.1 47 6.29E+05 ( 18) 2.10E+05 ( 6) 30 14 11 87.8 34.1 271.4 48 3.06E+06 ( 73) 1.01E+06 ( 24) 25 68 28 90.2 56.6 149.8 49 5.66E+06 ( 135) 1.68E+06 ( 40) 25 114 36 100.2 70.2 146.5 50 2.58E+06 ( 69) 5.61E+05 ( 15) 28 38 19 135.4 77.7 254.9

Lab #Z152 Field # RS93-4.FTZ Undifferentiated, Clearwater Summit Stewart RR-7- 6-94B-37

>>NEW PARAMETERS--ZETA METHOD<<

EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2): 1.822E+05 RELATIVE ERROR (%): 1.26 EFFECTIVE URANIUM CONTENT OF MONITOR (ppm): 12.30 ZETA FACTOR AND STANDARD ERROR (yr cm^2): 331.03 6.66 SIZE OF COUNTER SQUARE (cm^2): 9.545E-07 ------GRAIN AGES IN ORIGINAL ORDER ------Grain RhoS (Ns) RhoI (Ni) Squares U+/-2s Grain Age (Ma) no. (cm^-2) (cm^-2) Age --95% CI-- 1 9.22E+05 ( 22) 9.64E+05 ( 23) 25 65 27 28.8 15.3 54.0 2 3.47E+06 ( 53) 3.60E+06 ( 55) 16 243 66 29.0 19.5 43.1 3 3.35E+05 ( 8) 3.35E+05 ( 8) 25 23 16 30.1 9.9 91.6 4 1.44E+06 ( 33) 1.31E+06 ( 30) 24 88 32 33.1 19.6 56.1 5 1.64E+06 ( 25) 1.44E+06 ( 22) 16 97 41 34.2 18.5 63.5 6 1.72E+06 ( 23) 1.50E+06 ( 20) 14 101 45 34.6 18.2 66.3 7 8.80E+05 ( 21) 7.54E+05 ( 18) 25 51 24 35.0 17.8 69.7

19 Data Repository item 2004023

8 1.13E+06 ( 27) 9.64E+05 ( 23) 25 65 27 35.3 19.5 64.4 9 2.10E+06 ( 32) 1.70E+06 ( 26) 16 115 45 37.0 21.4 64.6 10 2.10E+06 ( 32) 1.64E+06 ( 25) 16 111 44 38.4 22.1 67.6 11 1.42E+06 ( 34) 1.09E+06 ( 26) 25 74 29 39.3 22.9 68.1 12 1.48E+06 ( 34) 1.05E+06 ( 24) 24 71 29 42.5 24.5 74.9 13 4.71E+06 ( 72) 3.14E+06 ( 48) 16 212 61 45.0 30.9 66.3 14 3.09E+06 ( 59) 1.89E+06 ( 36) 20 127 42 49.2 32.0 76.6 15 2.14E+06 ( 51) 1.30E+06 ( 31) 25 88 31 49.3 31.0 79.8 16 1.00E+06 ( 23) 5.67E+05 ( 13) 24 38 21 52.9 25.9 113.7 17 3.61E+06 ( 69) 1.99E+06 ( 38) 20 134 43 54.4 36.2 83.2 18 3.61E+06 ( 62) 1.80E+06 ( 31) 18 122 44 59.9 38.4 95.4 19 2.62E+06 ( 40) 1.31E+06 ( 20) 16 88 39 59.8 34.3 108.1 20 2.68E+06 ( 64) 1.26E+06 ( 30) 25 85 31 63.8 40.9 102.1 21 2.68E+06 ( 41) 1.18E+06 ( 18) 16 80 37 68.0 38.5 125.9 22 2.68E+06 ( 41) 1.05E+06 ( 16) 16 71 35 76.3 42.3 145.9 23 2.36E+06 ( 36) 7.86E+05 ( 12) 16 53 30 89.0 45.8 188.3

Lab# Z154, Field# RJS93-22 Fletcher's Quarry, N of Hoh, Stewart RR-7-6-94B-38

>>NEW PARAMETERS--ZETA METHOD<< EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2): 1.817E+05 RELATIVE ERROR (%): 1.30 EFFECTIVE URANIUM CONTENT OF MONITOR (ppm): 12.30 ZETA FACTOR AND STANDARD ERROR (yr cm^2): 331.03 6.66 SIZE OF COUNTER SQUARE (cm^2): 9.545E-07 ------GRAIN AGES IN ORIGINAL ORDER ------Grain RhoS (Ns) RhoI (Ni) Squares U+/-2s Grain Age (Ma) no. (cm^-2) (cm^-2) Age --95% CI-- 1 1.30E+06 ( 31) 3.44E+06 ( 82) 25 233 52 11.4 7.3 17.4 2 1.76E+06 ( 42) 3.98E+06 ( 95) 25 269 56 13.3 9.0 19.3 3 1.59E+06 ( 38) 3.35E+06 ( 80) 25 227 51 14.3 9.4 21.3 4 2.88E+06 ( 77) 5.39E+06 ( 144) 28 365 61 16.1 12.2 21.3 5 2.35E+06 ( 56) 4.19E+06 ( 100) 25 284 57 16.8 11.9 23.6 6 2.81E+06 ( 67) 4.94E+06 ( 118) 25 335 62 17.1 12.4 23.2 7 1.09E+06 ( 26) 1.89E+06 ( 45) 25 128 38 17.4 10.3 28.7 8 1.68E+06 ( 40) 2.85E+06 ( 68) 25 193 47 17.7 11.6 26.5 9 1.38E+06 ( 33) 2.35E+06 ( 56) 25 159 42 17.7 11.1 27.7 10 3.94E+06 ( 94) 6.66E+06 ( 159) 25 451 72 17.8 13.7 23.0 11 2.76E+06 ( 79) 4.37E+06 ( 125) 30 295 53 19.0 14.3 25.3 12 1.24E+06 ( 32) 1.90E+06 ( 49) 27 129 37 19.6 12.2 31.2 13 2.26E+06 ( 54) 3.39E+06 ( 81) 25 230 51 20.0 13.9 28.6 14 3.35E+06 ( 80) 4.82E+06 ( 115) 25 326 61 20.9 15.7 27.9 15 1.47E+06 ( 35) 2.10E+06 ( 50) 25 142 40 21.0 13.2 33.0 16 2.03E+06 ( 58) 2.86E+06 ( 82) 30 194 43 21.3 14.9 30.1 17 1.76E+06 ( 42) 2.43E+06 ( 58) 25 165 43 21.8 14.3 32.9 18 2.51E+06 ( 60) 3.35E+06 ( 80) 25 227 51 22.5 15.8 31.9 19 3.10E+06 ( 74) 4.02E+06 ( 96) 25 272 56 23.2 16.8 31.7 20 1.38E+06 ( 33) 1.76E+06 ( 42) 25 119 37 23.6 14.5 38.1 21 4.40E+06 ( 126) 5.13E+06 ( 147) 30 348 58 25.7 20.2 32.8 22 1.77E+06 ( 44) 1.97E+06 ( 49) 26 134 38 27.0 17.5 41.3 23 3.86E+06 ( 92) 3.39E+06 ( 81) 25 230 51 34.1 25.0 46.5 24 3.04E+06 ( 87) 2.90E+06 ( 83) 30 196 43 31.4 23.0 43.0 25 4.57E+06 ( 109) 4.19E+06 ( 100) 25 284 57 32.7 24.8 43.0 26 2.51E+06 ( 60) 2.05E+06 ( 49) 25 139 40 36.7 24.8 54.7 27 2.26E+06 ( 54) 1.80E+06 ( 43) 25 122 37 37.6 24.8 57.5 28 1.22E+06 ( 29) 9.64E+05 ( 23) 25 65 27 37.8 21.1 68.3 29 3.69E+06 ( 88) 2.81E+06 ( 67) 25 190 47 39.4 28.3 54.9 30 3.14E+06 ( 81) 2.33E+06 ( 60) 27 158 41 40.4 28.6 57.5 31 2.43E+06 ( 58) 1.63E+06 ( 39) 25 111 35 44.5 29.2 68.6

20 Data Repository item 2004023

32 2.77E+06 ( 66) 1.63E+06 ( 39) 25 111 35 50.6 33.6 77.3 33 3.23E+06 ( 77) 1.68E+06 ( 40) 25 113 36 57.5 38.9 86.6 34 4.69E+06 ( 112) 2.43E+06 ( 58) 25 165 43 57.7 41.7 80.8 35 3.56E+06 ( 85) 1.84E+06 ( 44) 25 125 38 57.7 39.8 85.1 36 3.73E+06 ( 89) 1.93E+06 ( 46) 25 130 38 57.8 40.2 84.5 37 2.77E+06 ( 66) 1.42E+06 ( 34) 25 96 33 58.0 37.9 90.5 38 4.23E+06 ( 101) 2.18E+06 ( 52) 25 148 41 58.1 41.2 82.8 39 4.57E+06 ( 131) 2.30E+06 ( 66) 30 156 38 59.3 43.9 81.1 40 2.43E+06 ( 58) 1.22E+06 ( 29) 25 82 30 59.7 37.7 96.8 41 2.64E+06 ( 63) 1.30E+06 ( 31) 25 88 31 60.7 39.0 96.6 42 4.65E+06 ( 111) 2.18E+06 ( 52) 25 148 41 63.8 45.6 90.5 43 5.20E+06 ( 124) 2.43E+06 ( 58) 25 165 43 63.9 46.5 88.9 44 3.77E+06 ( 90) 1.76E+06 ( 42) 25 119 37 64.0 44.0 94.7 45 4.44E+06 ( 106) 2.10E+06 ( 50) 25 142 40 63.3 44.9 90.6

Lab# Z155, Field# RJS93-24 Owl Mountain, Stewart RR-7-6-94B-27

>>NEW PARAMETERS--ZETA METHOD<< EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2): 1.868E+05 RELATIVE ERROR (%): 1.00 EFFECTIVE URANIUM CONTENT OF MONITOR (ppm): 12.30 ZETA FACTOR AND STANDARD ERROR (yr cm^2): 331.03 6.66 SIZE OF COUNTER SQUARE (cm^2): 9.545E-07 ------GRAIN AGES IN ORIGINAL ORDER ------Grain RhoS (Ns) RhoI (Ni) Squares U+/-2s Grain Age (Ma) no. (cm^-2) (cm^-2) Age --95% CI-- 1 7.12E+05 ( 17) 2.64E+06 ( 63) 25 174 44 8.4 4.6 14.4 2 6.70E+05 ( 16) 1.55E+06 ( 37) 25 102 33 13.4 6.9 24.6 3 1.42E+06 ( 34) 3.18E+06 ( 76) 25 210 48 13.9 8.9 21.0 4 1.64E+06 ( 47) 2.90E+06 ( 83) 30 191 42 17.5 12.0 25.3 5 3.23E+06 ( 71) 5.42E+06 ( 119) 23 357 66 18.4 13.5 24.9 6 1.75E+06 ( 50) 2.79E+06 ( 80) 30 184 41 19.3 13.3 27.8 7 1.80E+06 ( 43) 2.85E+06 ( 68) 25 188 45 19.6 13.0 29.0 8 1.38E+06 ( 33) 2.10E+06 ( 50) 25 138 39 20.4 12.7 32.2 9 1.93E+06 ( 46) 2.89E+06 ( 69) 25 190 46 20.6 13.9 30.3 10 2.72E+06 ( 78) 4.05E+06 ( 116) 30 267 50 20.8 15.6 27.8 11 2.34E+06 ( 67) 3.46E+06 ( 99) 30 228 46 20.9 15.1 28.8 12 2.65E+06 ( 76) 3.84E+06 ( 110) 30 253 48 21.3 15.7 28.8 13 1.89E+06 ( 54) 2.72E+06 ( 78) 30 179 41 21.4 14.8 30.6 14 1.97E+06 ( 47) 2.93E+06 ( 70) 25 193 46 20.8 14.0 30.4 15 2.20E+06 ( 63) 3.11E+06 ( 89) 30 205 43 21.9 15.6 30.5 16 3.14E+06 ( 75) 4.36E+06 ( 104) 25 287 56 22.3 16.3 30.2 17 4.19E+06 ( 100) 5.74E+06 ( 137) 25 378 65 22.6 17.4 29.3 18 3.14E+06 ( 75) 3.86E+06 ( 92) 25 254 53 25.2 18.3 34.5 19 2.90E+06 ( 83) 3.25E+06 ( 93) 30 214 44 27.5 20.2 37.4 20 2.48E+06 ( 71) 2.72E+06 ( 78) 30 179 41 28.1 20.1 39.2 21 3.42E+06 ( 98) 3.70E+06 ( 106) 30 244 47 28.5 21.6 37.6 22 2.81E+06 ( 67) 2.60E+06 ( 62) 25 171 43 33.3 23.2 47.8 23 1.51E+06 ( 36) 1.30E+06 ( 31) 25 86 31 35.8 21.5 59.8 24 4.33E+06 ( 124) 3.39E+06 ( 97) 30 223 45 39.4 30.1 51.4 25 2.47E+06 ( 59) 1.76E+06 ( 42) 25 116 36 43.2 28.7 65.8 26 3.65E+06 ( 87) 2.47E+06 ( 59) 25 163 42 45.4 32.3 64.3 27 4.11E+06 ( 98) 2.60E+06 ( 62) 25 171 43 48.6 35.1 68.0 28 4.02E+06 ( 96) 2.51E+06 ( 60) 25 166 43 49.2 35.3 69.2 29 3.10E+06 ( 68) 1.91E+06 ( 42) 23 126 39 49.8 33.5 75.0 30 6.98E+06 ( 160) 4.06E+06 ( 93) 24 267 56 52.9 40.8 68.4 31 5.24E+06 ( 125) 2.85E+06 ( 68) 25 188 45 56.5 41.8 77.1 32 6.45E+06 ( 154) 3.39E+06 ( 81) 25 224 50 58.3 44.5 76.5 33 7.58E+06 ( 181) 3.94E+06 ( 94) 25 259 54 59.1 46.0 76.0

21 Data Repository item 2004023

34 3.69E+06 ( 88) 1.84E+06 ( 44) 25 121 36 61.4 42.4 90.4 35 6.50E+06 ( 155) 3.06E+06 ( 73) 25 201 47 65.1 49.2 86.1 36 8.43E+06 ( 169) 3.94E+06 ( 79) 21 260 58 65.6 50.1 85.8 37 8.26E+06 ( 197) 3.86E+06 ( 92) 25 254 53 65.7 51.2 84.3 38 6.75E+06 ( 161) 3.06E+06 ( 73) 25 201 47 67.6 51.2 89.2 39 5.52E+06 ( 116) 2.48E+06 ( 52) 22 163 45 68.5 49.1 96.9 40 6.18E+06 ( 177) 2.72E+06 ( 78) 30 179 41 69.5 53.2 90.9 41 8.67E+06 ( 207) 3.81E+06 ( 91) 25 251 53 69.7 54.4 89.4 42 8.72E+06 ( 208) 3.73E+06 ( 89) 25 246 52 71.6 55.8 92.0 43 5.28E+06 ( 126) 2.14E+06 ( 51) 25 141 39 75.8 54.5 107.1 44 2.93E+06 ( 70) 1.13E+06 ( 27) 25 75 28 79.4 50.5 128.8 45 6.96E+06 ( 186) 2.54E+06 ( 68) 28 168 41 83.6 63.3 110.5 46 8.26E+06 ( 197) 3.02E+06 ( 72) 25 199 47 83.7 63.8 109.7 47 9.26E+06 ( 221) 3.02E+06 ( 72) 25 199 47 93.8 71.8 122.4 48 5.40E+06 ( 165) 1.70E+06 ( 52) 32 112 31 97.2 71.0 135.4 49 3.31E+06 ( 79) 9.64E+05 ( 23) 25 63 26 104.8 65.7 174.8

Lab# Z156, Field# RJS93-50 East of 2070, Stewart RR-7-6-94B-28

>>NEW PARAMETERS--ZETA METHOD<< EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2): 1.863E+05 RELATIVE ERROR (%): 1.02 EFFECTIVE URANIUM CONTENT OF MONITOR (ppm): 12.30 ZETA FACTOR AND STANDARD ERROR (yr cm^2): 331.03 6.66 SIZE OF COUNTER SQUARE (cm^2): 9.545E-07 ------GRAIN AGES IN ORIGINAL ORDER ------Grain RhoS (Ns) RhoI (Ni) Squares U+/-2s Grain Age (Ma) no. (cm^-2) (cm^-2) Age --95% CI-- 1 2.51E+05 ( 6) 6.70E+05 ( 16) 25 44 22 11.7 3.7 31.0 2 1.47E+06 ( 42) 3.60E+06 ( 103) 30 237 47 12.6 8.6 18.2 3 1.19E+06 ( 34) 2.69E+06 ( 77) 30 178 40 13.6 8.8 20.6 4 2.10E+06 ( 48) 4.50E+06 ( 103) 24 297 59 14.4 10.0 20.4 5 1.09E+06 ( 26) 2.22E+06 ( 53) 25 147 40 15.2 9.1 24.6 6 1.59E+06 ( 41) 3.22E+06 ( 83) 27 213 47 15.2 10.2 22.4 7 1.76E+06 ( 42) 3.56E+06 ( 85) 25 235 51 15.3 10.3 22.3 8 7.12E+05 ( 17) 1.42E+06 ( 34) 25 94 32 15.5 8.1 28.3 9 2.10E+06 ( 52) 4.15E+06 ( 103) 26 274 54 15.6 10.9 21.9 10 2.51E+06 ( 72) 4.89E+06 ( 140) 30 323 55 15.9 11.9 21.2 11 2.77E+06 ( 66) 5.36E+06 ( 128) 25 354 63 15.9 11.6 21.5 12 1.66E+06 ( 49) 3.21E+06 ( 95) 31 212 44 15.9 11.0 22.7 13 2.43E+06 ( 58) 4.65E+06 ( 111) 25 307 59 16.1 11.5 22.3 14 2.10E+06 ( 60) 3.98E+06 ( 114) 30 263 49 16.2 11.7 22.4 15 1.55E+06 ( 37) 2.81E+06 ( 67) 25 185 45 17.0 11.1 25.8 16 1.80E+06 ( 43) 2.98E+06 ( 71) 25 196 47 18.7 12.5 27.6 17 2.06E+06 ( 59) 3.25E+06 ( 93) 30 214 45 19.6 13.8 27.4 18 2.54E+06 ( 63) 3.99E+06 ( 99) 26 263 53 19.6 14.1 27.1 19 2.58E+06 ( 74) 3.91E+06 ( 112) 30 258 49 20.4 15.0 27.5 20 2.58E+06 ( 74) 3.74E+06 ( 107) 30 247 48 21.3 15.6 28.9 21 1.89E+06 ( 54) 2.58E+06 ( 74) 30 171 40 22.5 15.5 32.3 22 2.27E+06 ( 65) 3.07E+06 ( 88) 30 203 43 22.8 16.2 31.7 23 2.26E+06 ( 54) 3.06E+06 ( 73) 25 202 47 22.8 15.7 32.8 24 4.09E+06 ( 117) 5.34E+06 ( 153) 30 353 57 23.6 18.5 30.1 25 2.46E+06 ( 61) 3.14E+06 ( 78) 26 208 47 24.1 16.9 34.1 26 2.37E+06 ( 68) 3.00E+06 ( 86) 30 198 43 24.4 17.4 33.8 27 2.06E+06 ( 59) 2.58E+06 ( 74) 30 171 40 24.6 17.1 35.0 28 7.54E+05 ( 18) 9.22E+05 ( 22) 25 61 26 25.2 12.7 49.1 29 1.29E+06 ( 37) 1.54E+06 ( 44) 30 101 30 25.9 16.3 41.0 30 2.22E+06 ( 53) 2.51E+06 ( 60) 25 166 43 27.2 18.4 40.0 31 1.97E+06 ( 47) 2.18E+06 ( 52) 25 144 40 27.8 18.3 42.1

22 Data Repository item 2004023

32 1.78E+06 ( 51) 1.96E+06 ( 56) 30 129 34 28.0 18.8 41.7 33 2.13E+06 ( 57) 2.81E+06 ( 75) 28 185 43 23.4 16.3 33.5 34 3.31E+06 ( 79) 3.44E+06 ( 82) 25 227 50 29.6 21.5 40.9 35 2.68E+06 ( 64) 2.47E+06 ( 59) 25 163 42 33.4 23.1 48.3 36 2.73E+06 ( 60) 2.41E+06 ( 53) 23 159 44 34.8 23.7 51.3 37 6.29E+05 ( 18) 5.59E+05 ( 16) 30 37 18 34.6 16.7 72.3 38 3.27E+06 ( 78) 2.60E+06 ( 62) 25 172 44 38.7 27.4 54.9 39 3.60E+06 ( 86) 2.72E+06 ( 65) 25 180 45 40.6 29.1 57.0 40 4.54E+06 ( 130) 3.35E+06 ( 96) 30 221 45 41.6 31.9 54.2 41 2.97E+06 ( 85) 1.85E+06 ( 53) 30 122 34 49.2 34.6 70.7 42 3.14E+06 ( 90) 1.89E+06 ( 54) 30 125 34 51.1 36.2 73.0 43 4.57E+06 ( 131) 2.72E+06 ( 78) 30 180 41 51.4 38.8 68.2 44 2.05E+06 ( 49) 1.22E+06 ( 29) 25 80 30 51.8 32.2 85.0 45 3.45E+06 ( 89) 2.02E+06 ( 52) 27 133 37 52.5 36.9 75.4 46 3.39E+06 ( 97) 1.68E+06 ( 48) 30 111 32 61.9 43.5 89.4 47 3.56E+06 ( 85) 1.55E+06 ( 37) 25 102 33 70.3 47.4 106.4 48 3.55E+06 ( 95) 1.46E+06 ( 39) 28 96 31 74.5 51.0 111.1 49 3.90E+06 ( 93) 1.30E+06 ( 31) 25 86 31 91.5 60.7 142.3 50 4.43E+06 ( 110) 1.17E+06 ( 29) 26 77 28 115.4 76.6 180.3

Lab# Z157 Field# 93-56 End of Hoh sample, S Fork Campground

>>NEW PARAMETERS--ZETA METHOD<< EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2): 1.755E+05 RELATIVE ERROR (%): 1.30 EFFECTIVE URANIUM CONTENT OF MONITOR (ppm): 12.30 ZETA FACTOR AND STANDARD ERROR (yr cm^2): 331.03 6.66 SIZE OF COUNTER SQUARE (cm^2): 9.545E-07 ------GRAIN AGES IN ORIGINAL ORDER ------Grain RhoS (Ns) RhoI (Ni) Squares U+/-2s Grain Age (Ma) no. (cm^-2) (cm^-2) Age --95% CI-- 1 7.12E+05 ( 17) 1.30E+06 ( 31) 25 91 33 16.0 8.3 29.6 2 1.19E+06 ( 34) 1.89E+06 ( 54) 30 132 36 18.3 11.5 28.6 3 1.76E+06 ( 42) 2.39E+06 ( 57) 25 167 44 21.4 14.0 32.4 4 1.17E+06 ( 28) 1.47E+06 ( 35) 25 103 35 23.2 13.6 39.2 5 1.41E+06 ( 35) 1.69E+06 ( 42) 26 119 37 24.2 15.0 38.8 6 1.59E+06 ( 38) 1.68E+06 ( 40) 25 117 37 27.5 17.2 44.0 7 2.38E+06 ( 59) 2.34E+06 ( 58) 26 164 43 29.5 20.2 43.1 8 1.09E+06 ( 28) 9.70E+05 ( 25) 27 68 27 32.4 18.3 58.0 9 1.63E+06 ( 39) 9.22E+05 ( 22) 25 65 27 51.1 29.7 90.6 10 2.81E+06 ( 51) 1.21E+06 ( 22) 19 85 36 66.7 40.0 115.6

Lab# Z162, Field# RJS94-15 Snahapish River, Stewart RR-2-6-96B-8

>>NEW PARAMETERS--ZETA METHOD<< EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2): 1.789E+05 RELATIVE ERROR (%): 1.17 EFFECTIVE URANIUM CONTENT OF MONITOR (ppm): 12.30 ZETA FACTOR AND STANDARD ERROR (yr cm^2): 331.03 6.66 SIZE OF COUNTER SQUARE (cm^2): 9.545E-07 ------GRAIN AGES IN ORIGINAL ORDER ------Grain RhoS (Ns) RhoI (Ni) Squares U+/-2s Grain Age (Ma) no. (cm^-2) (cm^-2) Age --95% CI-- 1 1.42E+06 ( 34) 3.39E+06 ( 81) 25 233 52 12.5 8.1 18.8 2 1.09E+06 ( 26) 2.14E+06 ( 51) 25 147 41 15.1 9.0 24.6 3 9.64E+05 ( 23) 1.76E+06 ( 42) 25 121 37 16.2 9.3 27.5 4 1.63E+06 ( 39) 2.93E+06 ( 70) 25 202 48 16.5 10.8 24.7 5 1.05E+06 ( 16) 1.77E+06 ( 27) 16 122 46 17.6 8.8 33.7

23 Data Repository item 2004023

6 1.09E+06 ( 26) 1.80E+06 ( 43) 25 124 38 17.9 10.5 29.8 7 2.03E+06 ( 58) 2.97E+06 ( 85) 30 204 44 20.2 14.2 28.5 8 2.68E+06 ( 41) 3.86E+06 ( 59) 16 266 69 20.6 13.4 31.1 9 1.84E+06 ( 44) 2.56E+06 ( 61) 25 176 45 21.3 14.1 31.9 10 7.57E+05 ( 13) 9.89E+05 ( 17) 18 68 33 22.7 10.1 49.3 11 1.09E+06 ( 26) 1.22E+06 ( 29) 25 84 31 26.5 15.0 46.6 12 2.10E+06 ( 50) 2.10E+06 ( 50) 25 144 41 29.5 19.6 44.6 13 1.09E+06 ( 26) 6.29E+05 ( 15) 25 43 22 50.9 26.1 103.5

Lab# Z163, Field# RJS94-18 NE Solleks River ridge, Stewart RR-2-6-96B-10

>>NEW PARAMETERS--ZETA METHOD<< EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2): 1.786E+05 RELATIVE ERROR (%): 1.12 EFFECTIVE URANIUM CONTENT OF MONITOR (ppm): 12.30 ZETA FACTOR AND STANDARD ERROR (yr cm^2): 331.03 6.66 SIZE OF COUNTER SQUARE (cm^2): 9.545E-07 ------GRAIN AGES IN ORIGINAL ORDER ------Grain RhoS (Ns) RhoI (Ni) Squares U+/-2s Grain Age (Ma) no. (cm^-2) (cm^-2) Age --95% CI-- 1 3.25E+05 ( 9) 7.95E+05 ( 22) 29 55 23 12.2 4.9 27.3 2 5.24E+05 ( 14) 1.27E+06 ( 34) 28 88 30 12.2 6.0 23.3 3 4.03E+05 ( 10) 8.06E+05 ( 20) 26 55 25 14.9 6.2 33.0 4 9.64E+05 ( 23) 1.80E+06 ( 43) 25 124 38 15.8 9.1 26.8 5 2.13E+06 ( 55) 3.84E+06 ( 99) 27 265 53 16.4 11.6 23.0 6 1.22E+06 ( 35) 2.10E+06 ( 60) 30 144 37 17.3 11.0 26.6 7 1.17E+06 ( 28) 2.01E+06 ( 48) 25 139 40 17.3 10.4 28.0 8 1.00E+06 ( 23) 1.57E+06 ( 36) 24 108 36 18.9 10.7 32.7 9 1.45E+06 ( 36) 2.14E+06 ( 53) 26 147 40 20.1 12.8 31.2 10 6.16E+05 ( 20) 8.94E+05 ( 29) 34 62 23 20.4 10.9 37.2 11 1.59E+06 ( 38) 2.30E+06 ( 55) 25 159 43 20.4 13.1 31.4 12 2.22E+06 ( 55) 3.10E+06 ( 77) 26 214 49 21.1 14.6 30.2 13 8.38E+05 ( 20) 1.17E+06 ( 28) 25 81 30 21.1 11.3 38.8 14 2.17E+06 ( 58) 2.96E+06 ( 79) 28 204 46 21.7 15.2 30.8 15 1.30E+06 ( 31) 1.72E+06 ( 41) 25 118 37 22.3 13.5 36.4 16 2.41E+06 ( 69) 3.14E+06 ( 90) 30 216 46 22.6 16.3 31.3 17 1.34E+06 ( 32) 1.72E+06 ( 41) 25 118 37 23.1 14.0 37.5 18 7.86E+05 ( 21) 9.35E+05 ( 25) 28 64 26 24.8 13.2 46.1 19 1.17E+06 ( 28) 1.34E+06 ( 32) 25 92 32 25.8 15.0 44.2 20 7.96E+05 ( 19) 8.38E+05 ( 20) 25 58 26 28.0 14.2 55.2 21 9.22E+05 ( 22) 9.22E+05 ( 22) 25 63 27 29.5 15.6 55.8 22 1.13E+06 ( 26) 1.13E+06 ( 26) 24 78 30 29.5 16.5 52.8 23 1.76E+06 ( 42) 1.63E+06 ( 39) 25 113 36 31.7 20.1 50.4 24 5.92E+05 ( 13) 5.47E+05 ( 12) 23 38 21 31.9 13.5 76.4 25 1.50E+06 ( 33) 1.32E+06 ( 29) 23 91 34 33.5 19.8 57.2 26 2.22E+06 ( 53) 1.76E+06 ( 42) 25 121 37 37.2 24.4 57.1 27 2.49E+06 ( 69) 1.88E+06 ( 52) 29 129 36 39.1 26.9 57.1 28 1.66E+06 ( 38) 1.13E+06 ( 26) 24 78 30 43.0 25.5 73.7 29 7.96E+05 ( 19) 5.45E+05 ( 13) 25 38 20 42.9 20.2 94.5 30 1.77E+06 ( 44) 1.17E+06 ( 29) 26 80 30 44.6 27.4 74.0 31 3.02E+06 ( 72) 1.97E+06 ( 47) 25 136 39 45.1 30.8 66.6 32 2.01E+06 ( 48) 1.30E+06 ( 31) 25 89 32 45.5 28.5 74.0 33 1.89E+06 ( 45) 1.17E+06 ( 28) 25 81 30 47.2 28.9 78.7 34 2.97E+06 ( 68) 1.79E+06 ( 41) 24 123 38 48.8 32.7 73.7 35 1.92E+06 ( 44) 1.13E+06 ( 26) 24 78 30 49.7 30.0 84.1

36 2.62E+06 ( 60) 1.53E+06 ( 35) 24 105 35 50.4 32.8 78.8 37 2.43E+06 ( 58) 1.38E+06 ( 33) 25 95 33 51.6 33.2 81.8 38 1.82E+06 ( 47) 1.01E+06 ( 26) 27 69 27 53.1 32.3 89.3

24 Data Repository item 2004023

39 1.80E+06 ( 43) 9.64E+05 ( 23) 25 66 27 54.9 32.5 95.4 40 3.80E+06 ( 87) 2.01E+06 ( 46) 24 138 41 55.6 38.5 81.3 41 2.30E+06 ( 55) 1.22E+06 ( 29) 25 84 31 55.7 35.0 90.6 42 2.10E+06 ( 50) 1.09E+06 ( 26) 25 75 29 56.4 34.6 94.5 43 3.76E+06 ( 97) 1.90E+06 ( 49) 27 131 37 58.2 40.9 83.8 44 1.37E+06 ( 34) 6.85E+05 ( 17) 26 47 23 58.6 32.0 111.9 45 2.35E+06 ( 56) 1.05E+06 ( 25) 25 72 29 65.6 40.5 109.9 46 2.35E+06 ( 56) 9.22E+05 ( 22) 25 63 27 74.5 45.0 128.2

Lab# Z168, Field# RJS95-5 Kalaloch Creek Loop, Stewart RR-2-6-96B-22

>>NEW PARAMETERS--ZETA METHOD<< EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2): 1.412E+05 RELATIVE ERROR (%): 0.99 EFFECTIVE URANIUM CONTENT OF MONITOR (ppm): 12.30 ZETA FACTOR AND STANDARD ERROR (yr cm^2): 331.03 6.66 SIZE OF COUNTER SQUARE (cm^2): 9.545E-07 ------GRAIN AGES IN ORIGINAL ORDER ------Grain RhoS (Ns) RhoI (Ni) Squares U+/-2s Grain Age (Ma) no. (cm^-2) (cm^-2) Age --95% CI-- 1 6.29E+05 ( 15) 1.76E+06 ( 42) 25 153 47 8.4 4.3 15.4 2 2.35E+06 ( 56) 5.41E+06 ( 129) 25 471 83 10.2 7.3 14.0 3 6.70E+05 ( 16) 1.09E+06 ( 26) 25 95 37 14.4 7.2 27.8 4 1.31E+06 ( 30) 2.53E+06 ( 58) 24 221 58 12.1 7.5 19.1 5 1.22E+06 ( 29) 1.89E+06 ( 45) 25 164 49 15.1 9.1 24.5 6 7.96E+05 ( 19) 1.17E+06 ( 28) 25 102 38 15.9 8.4 29.4 7 2.10E+06 ( 50) 3.02E+06 ( 72) 25 263 62 16.2 11.1 23.6 8 1.26E+06 ( 30) 1.72E+06 ( 41) 25 150 47 17.1 10.3 28.0 9 8.80E+05 ( 21) 1.17E+06 ( 28) 25 102 38 17.5 9.5 31.9 10 2.26E+06 ( 54) 2.93E+06 ( 70) 25 256 61 18.0 12.4 26.0 11 1.96E+06 ( 56) 2.44E+06 ( 70) 30 213 51 18.7 12.9 26.9 12 2.05E+06 ( 49) 2.56E+06 ( 61) 25 223 57 18.8 12.6 27.8 13 1.47E+06 ( 35) 1.59E+06 ( 38) 25 139 45 21.5 13.2 34.9 14 2.05E+06 ( 49) 2.14E+06 ( 51) 25 186 52 22.4 14.8 33.8 15 2.30E+06 ( 55) 2.35E+06 ( 56) 25 204 55 22.9 15.5 33.8 16 3.65E+06 ( 87) 3.35E+06 ( 80) 25 292 65 25.4 18.5 34.8 17 4.27E+06 ( 102) 3.90E+06 ( 93) 25 339 71 25.6 19.3 33.9 18 1.15E+06 ( 33) 1.05E+06 ( 30) 30 91 33 25.6 15.2 43.5 19 2.10E+06 ( 50) 1.63E+06 ( 39) 25 142 45 29.9 19.3 46.6 20 3.35E+06 ( 80) 2.60E+06 ( 62) 25 226 57 30.1 21.3 42.6 21 3.36E+06 ( 77) 1.48E+06 ( 34) 24 129 44 52.6 34.8 81.3 22 4.02E+06 ( 96) 2.47E+06 ( 59) 25 215 56 37.9 27.1 53.3 23 7.54E+05 ( 18) 4.19E+05 ( 10) 25 37 23 41.6 18.4 101.2 24 3.42E+06 ( 98) 1.89E+06 ( 54) 30 164 45 42.2 30.0 60.0 25 3.35E+06 ( 80) 1.72E+06 ( 41) 25 150 47 45.4 30.8 67.8 26 2.30E+06 ( 55) 1.13E+06 ( 27) 25 99 38 47.3 29.4 78.1 27 3.94E+06 ( 94) 1.93E+06 ( 46) 25 168 49 47.5 33.1 69.2 28 5.07E+06 ( 121) 2.14E+06 ( 51) 25 186 52 55.1 39.5 78.1 29 2.39E+06 ( 57) 9.22E+05 ( 22) 25 80 34 60.0 36.3 103.2 30 3.35E+06 ( 80) 1.59E+06 ( 38) 25 139 45 48.9 32.9 74.0 31 2.60E+06 ( 62) 8.80E+05 ( 21) 25 77 33 68.3 41.3 118.1 32 3.06E+06 ( 73) 1.01E+06 ( 24) 25 88 35 70.4 44.1 116.9 33 2.77E+06 ( 66) 8.38E+05 ( 20) 25 73 32 76.2 46.0 133.0 34 3.77E+06 ( 90) 9.22E+05 ( 22) 25 80 34 94.4 59.2 158.2 35 2.18E+06 ( 52) 1.13E+06 ( 27) 25 99 38 44.7 27.7 74.1 36 2.18E+06 ( 52) 4.61E+05 ( 11) 25 40 24 108.3 56.7 230.7

Lab# Z170, Field# RJS95-13 Dry Creek, Stewart RR-2-6-96B-25

25 Data Repository item 2004023

>>NEW PARAMETERS--ZETA METHOD<< EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2): 1.769E+05 RELATIVE ERROR (%): 1.02 EFFECTIVE URANIUM CONTENT OF MONITOR (ppm): 12.30 ZETA FACTOR AND STANDARD ERROR (yr cm^2): 331.03 6.66 SIZE OF COUNTER SQUARE (cm^2): 9.545E-07 ------GRAIN AGES IN ORIGINAL ORDER ------Grain RhoS (Ns) RhoI (Ni) Squares U+/-2s Grain Age (Ma) no. (cm^-2) (cm^-2) Age --95% CI-- 1 8.15E+05 ( 21) 1.90E+06 ( 49) 27 132 38 12.6 7.1 21.3 2 1.30E+06 ( 31) 2.47E+06 ( 59) 25 172 45 15.4 9.6 24.1 3 3.77E+05 ( 9) 7.12E+05 ( 17) 25 50 24 15.6 6.1 36.7 4 1.01E+06 ( 24) 1.63E+06 ( 39) 25 114 36 18.0 10.4 30.7 5 2.35E+06 ( 56) 3.65E+06 ( 87) 25 253 54 18.8 13.2 26.6 6 1.85E+06 ( 53) 2.58E+06 ( 74) 30 180 42 21.0 14.4 30.2 7 6.70E+05 ( 16) 9.22E+05 ( 22) 25 64 27 21.3 10.4 42.3 8 1.26E+06 ( 30) 1.72E+06 ( 41) 25 119 37 21.4 12.9 35.1 9 1.40E+06 ( 40) 1.85E+06 ( 53) 30 129 35 22.1 14.3 33.9 10 1.38E+06 ( 33) 1.80E+06 ( 43) 25 125 38 22.5 13.8 36.1 11 7.54E+05 ( 18) 9.64E+05 ( 23) 25 67 28 22.9 11.6 44.2 12 1.40E+06 ( 32) 1.70E+06 ( 39) 24 118 38 24.0 14.5 39.3 13 1.01E+06 ( 24) 1.22E+06 ( 29) 25 84 31 24.2 13.5 43.0 14 1.30E+06 ( 31) 1.55E+06 ( 37) 25 108 35 24.5 14.7 40.5 15 1.09E+06 ( 26) 1.30E+06 ( 31) 25 90 32 24.5 14.0 42.6 16 2.10E+06 ( 50) 2.47E+06 ( 59) 25 172 45 24.8 16.6 36.7 17 1.63E+06 ( 39) 1.89E+06 ( 45) 25 131 39 25.3 16.1 39.8 18 2.24E+06 ( 62) 2.35E+06 ( 65) 29 163 40 27.9 19.4 40.1 19 1.22E+06 ( 29) 1.26E+06 ( 30) 25 87 32 28.2 16.4 48.6 20 1.61E+06 ( 43) 1.65E+06 ( 44) 28 114 34 28.6 18.3 44.5 21 2.47E+06 ( 59) 2.30E+06 ( 55) 25 160 43 31.3 21.3 46.1 22 1.96E+06 ( 56) 1.75E+06 ( 50) 30 121 34 32.7 21.9 48.9 23 1.97E+06 ( 47) 1.72E+06 ( 41) 25 119 37 33.5 21.6 52.1 24 1.84E+06 ( 44) 1.55E+06 ( 37) 25 108 35 34.7 21.9 55.2 25 1.51E+06 ( 36) 1.26E+06 ( 30) 25 87 32 35.0 21.0 58.8 26 1.13E+06 ( 26) 9.17E+05 ( 21) 24 64 28 36.1 19.6 67.4 27 2.60E+06 ( 62) 1.80E+06 ( 43) 25 125 38 42.0 28.1 63.5 28 3.39E+06 ( 81) 2.26E+06 ( 54) 25 157 43 43.7 30.7 62.9 29 1.61E+06 ( 43) 9.35E+05 ( 25) 28 65 26 50.0 30.0 85.5 30 2.10E+06 ( 60) 1.15E+06 ( 33) 30 80 28 52.9 34.1 83.6 31 2.88E+06 ( 66) 1.48E+06 ( 34) 24 103 35 56.5 36.9 88.1 32 3.10E+06 ( 74) 1.55E+06 ( 37) 25 108 35 58.2 38.8 88.8 33 1.51E+06 ( 36) 6.70E+05 ( 16) 25 47 23 65.2 35.5 126.0 34 2.85E+06 ( 68) 1.26E+06 ( 30) 25 87 32 65.8 42.4 104.9 35 3.39E+06 ( 81) 1.38E+06 ( 33) 25 96 33 71.3 47.2 110.4 36 6.29E+05 ( 15) 2.93E+05 ( 7) 25 20 15 61.7 24.0 179.4 37 3.06E+06 ( 73) 9.64E+05 ( 23) 25 67 28 91.8 57.2 153.9

Lab# 171, Field# RS95-15 E of South Fork Hoh Camp Ground, Stewart RR-2-6-96B- 26

>>NEW PARAMETERS--ZETA METHOD<< EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2): 1.768E+05 RELATIVE ERROR (%): 1.03 EFFECTIVE URANIUM CONTENT OF MONITOR (ppm): 12.30 ZETA FACTOR AND STANDARD ERROR (yr cm^2): 331.03 6.66 SIZE OF COUNTER SQUARE (cm^2): 9.545E-07

26 Data Repository item 2004023

------GRAIN AGES IN ORIGINAL ORDER ------Grain RhoS (Ns) RhoI (Ni) Squares U+/-2s Grain Age (Ma) no. (cm^-2) (cm^-2) Age --95% CI-- 1 1.53E+06 ( 35) 3.06E+06 ( 70) 24 213 51 14.7 9.5 22.2 2 8.38E+05 ( 20) 1.47E+06 ( 35) 25 102 34 16.8 9.1 29.7 3 1.09E+06 ( 26) 1.89E+06 ( 45) 25 131 39 16.9 10.0 28.0 4 7.12E+05 ( 17) 1.13E+06 ( 27) 25 79 30 18.5 9.4 35.0 5 9.22E+05 ( 22) 1.42E+06 ( 34) 25 99 34 19.0 10.5 33.3 6 1.05E+06 ( 25) 1.59E+06 ( 38) 25 111 36 19.3 11.1 32.7 7 1.22E+06 ( 29) 1.84E+06 ( 44) 25 128 39 19.3 11.6 31.5 8 1.47E+06 ( 35) 2.22E+06 ( 53) 25 155 42 19.3 12.2 30.1 9 1.34E+06 ( 32) 2.01E+06 ( 48) 25 140 40 19.5 12.1 31.1 10 1.09E+06 ( 26) 1.63E+06 ( 39) 25 114 36 19.5 11.4 32.8 11 9.64E+05 ( 23) 1.38E+06 ( 33) 25 96 33 20.4 11.4 35.7 12 1.37E+06 ( 30) 1.87E+06 ( 41) 23 130 40 21.4 12.9 35.1 13 8.46E+05 ( 21) 1.05E+06 ( 26) 26 73 28 23.6 12.6 43.6 14 1.62E+06 ( 37) 1.96E+06 ( 45) 24 137 41 24.0 15.1 37.9 15 6.70E+05 ( 16) 7.54E+05 ( 18) 25 52 24 26.0 12.4 53.8 16 1.34E+06 ( 32) 1.34E+06 ( 32) 25 93 33 29.2 17.3 49.2 17 1.34E+06 ( 32) 1.26E+06 ( 30) 25 87 32 31.1 18.3 53.0 18 1.05E+06 ( 25) 9.64E+05 ( 23) 25 67 28 31.7 17.3 58.4 19 1.17E+06 ( 28) 1.05E+06 ( 25) 25 73 29 32.7 18.4 58.4 20 1.47E+06 ( 35) 1.26E+06 ( 30) 25 87 32 34.0 20.3 57.3 21 1.09E+06 ( 26) 9.22E+05 ( 22) 25 64 27 34.5 18.8 63.7 22 1.09E+06 ( 25) 6.98E+05 ( 16) 24 49 24 45.4 23.4 91.0 23 2.27E+06 ( 52) 1.44E+06 ( 33) 24 100 35 45.9 29.2 73.3 24 1.70E+06 ( 39) 9.17E+05 ( 21) 24 64 28 53.9 31.1 96.6 25 2.31E+06 ( 53) 1.22E+06 ( 28) 24 85 32 55.0 34.3 90.4 26 2.30E+06 ( 55) 1.13E+06 ( 27) 25 79 30 59.2 36.8 97.6 27 2.22E+06 ( 53) 1.05E+06 ( 25) 25 73 29 61.5 37.8 103.4 28 2.98E+06 ( 71) 1.30E+06 ( 31) 25 90 32 66.5 43.2 105.0

Lab# Z173, Field# RJS95-18b Mélange sandstone, Abbey Is., Stewart RR-2-6-96B- 28

>>NEW PARAMETERS--ZETA METHOD<< EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2): 1.765E+05 RELATIVE ERROR (%): 1.06 EFFECTIVE URANIUM CONTENT OF MONITOR (ppm): 12.30 ZETA FACTOR AND STANDARD ERROR (yr cm^2): 331.03 6.66 SIZE OF COUNTER SQUARE (cm^2): 9.545E-07 ------GRAIN AGES IN ORIGINAL ORDER ------Grain RhoS (Ns) RhoI (Ni) Squares U+/-2s Grain Age (Ma) no. (cm^-2) (cm^-2) Age --95% CI-- 1 2.27E+06 ( 52) 2.40E+06 ( 55) 24 167 45 27.6 18.5 41.0 2 1.22E+06 ( 29) 1.13E+06 ( 27) 25 79 30 31.3 17.9 54.9 3 1.49E+06 ( 37) 1.25E+06 ( 31) 26 87 31 34.7 21.0 57.9 4 1.63E+06 ( 39) 1.34E+06 ( 32) 25 93 33 35.5 21.7 58.5 5 1.97E+06 ( 47) 1.51E+06 ( 36) 25 105 35 38.0 24.1 60.4 6 1.51E+06 ( 36) 1.01E+06 ( 24) 25 70 28 43.6 25.4 76.4 7 1.40E+06 ( 36) 8.92E+05 ( 23) 27 62 26 45.4 26.3 80.4 8 2.10E+06 ( 60) 9.08E+05 ( 26) 30 63 25 66.8 41.7 110.4 9 2.30E+06 ( 55) 7.54E+05 ( 18) 25 53 24 88.1 51.4 159.6

Lab # Z175 Field # RS62796.FTZ Undifferentiated (La Push) Stewart RR-5-2197B- 24

>>NEW PARAMETERS--ZETA METHOD<<

27 Data Repository item 2004023

EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2): 1.593E+05 RELATIVE ERROR (%): 1.30 EFFECTIVE URANIUM CONTENT OF MONITOR (ppm): 12.30 ZETA FACTOR AND STANDARD ERROR (yr cm^2): 331.03 6.66 SIZE OF COUNTER SQUARE (cm^2): 9.545E-07 ------GRAIN AGES IN ORIGINAL ORDER ------Grain RhoS (Ns) RhoI (Ni) Squares U+/-2s Grain Age (Ma) no. (cm^-2) (cm^-2) Age --95% CI-- 1 9.82E+05 ( 15) 1.51E+06 ( 23) 16 116 48 17.2 8.3 34.3 2 5.24E+05 ( 15) 7.68E+05 ( 22) 30 59 25 18.0 8.7 36.2 3 7.20E+05 ( 22) 9.49E+05 ( 29) 32 73 27 20.0 10.9 36.0 4 1.05E+06 ( 16) 1.38E+06 ( 21) 16 106 46 20.1 9.8 40.3 5 8.51E+05 ( 13) 1.11E+06 ( 17) 16 86 41 20.2 9.0 44.0 6 6.29E+05 ( 15) 7.96E+05 ( 19) 25 61 28 20.8 9.8 43.1 7 1.59E+06 ( 38) 1.84E+06 ( 44) 25 142 43 22.7 14.3 35.9 8 2.23E+06 ( 34) 2.49E+06 ( 38) 16 192 62 23.6 14.4 38.4 9 1.47E+06 ( 35) 1.55E+06 ( 37) 25 120 39 24.9 15.2 40.6 10 1.38E+06 ( 21) 1.44E+06 ( 22) 16 111 47 25.1 13.1 47.8 11 1.10E+06 ( 22) 1.15E+06 ( 23) 21 89 37 25.2 13.4 47.2 12 2.82E+06 ( 43) 2.88E+06 ( 44) 16 222 67 25.7 16.5 40.1 13 1.31E+06 ( 20) 1.24E+06 ( 19) 16 96 44 27.7 14.0 54.8 14 1.57E+06 ( 24) 1.44E+06 ( 22) 16 111 47 28.7 15.4 53.6 15 2.29E+06 ( 35) 2.03E+06 ( 31) 16 157 56 29.7 17.8 49.8 16 1.31E+06 ( 20) 1.11E+06 ( 17) 16 86 41 30.9 15.4 62.8 17 2.82E+06 ( 43) 2.23E+06 ( 34) 16 172 59 33.2 20.7 53.7 18 1.28E+06 ( 22) 9.89E+05 ( 17) 18 76 37 34.0 17.3 68.1 19 1.11E+06 ( 17) 8.51E+05 ( 13) 16 66 36 34.3 15.7 76.8 20 1.18E+06 ( 18) 8.51E+05 ( 13) 16 66 36 36.3 16.9 80.6 21 1.12E+06 ( 32) 8.03E+05 ( 23) 30 62 26 36.5 20.8 65.4 22 1.80E+06 ( 43) 1.17E+06 ( 28) 25 91 34 40.3 24.5 67.4 23 3.01E+06 ( 46) 1.77E+06 ( 27) 16 137 52 44.7 27.3 74.8 24 1.96E+06 ( 45) 1.13E+06 ( 26) 24 88 34 45.4 27.5 76.6 25 1.84E+06 ( 44) 1.05E+06 ( 25) 25 81 32 46.1 27.7 78.7 26 1.25E+06 ( 25) 6.49E+05 ( 13) 21 50 27 50.2 24.9 107.1 27 1.13E+06 ( 27) 5.87E+05 ( 14) 25 45 24 50.4 25.7 104.1 28 2.16E+06 ( 33) 1.11E+06 ( 17) 16 86 41 50.7 27.6 97.3 29 2.05E+06 ( 49) 1.05E+06 ( 25) 25 81 32 51.3 31.2 86.8 30 2.14E+06 ( 51) 1.09E+06 ( 26) 25 84 33 51.4 31.5 85.9 31 2.36E+06 ( 36) 1.11E+06 ( 17) 16 86 41 55.3 30.5 105.2 32 1.83E+06 ( 28) 8.51E+05 ( 13) 16 66 36 56.2 28.4 118.4 33 2.85E+06 ( 68) 1.30E+06 ( 31) 25 100 36 57.4 37.2 91.0 34 7.68E+05 ( 22) 3.49E+05 ( 10) 30 27 17 57.2 26.3 135.8 35 2.16E+06 ( 33) 9.17E+05 ( 14) 16 71 37 61.4 32.3 124.6 36 1.77E+06 ( 27) 7.20E+05 ( 11) 16 56 33 63.8 31.0 143.0 37 1.34E+06 ( 32) 5.45E+05 ( 13) 25 42 23 64.1 33.0 133.4 38 1.90E+06 ( 29) 7.20E+05 ( 11) 16 56 33 68.5 33.6 152.5 39 1.22E+06 ( 35) 4.54E+05 ( 13) 30 35 19 70.0 36.5 144.7 40 2.68E+06 ( 41) 7.86E+05 ( 12) 16 61 34 88.6 46.3 185.7 41 1.84E+06 ( 44) 4.19E+05 ( 10) 25 32 20 113.6 57.2 253.6

Lab #Z176 Field # RS63096.FTZ Undiffereniated (Scott) Stewart RR-5-21-97B-25

>>NEW PARAMETERS--ZETA METHOD<< EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2): 1.587E+05 RELATIVE ERROR (%): 1.31 EFFECTIVE URANIUM CONTENT OF MONITOR (ppm): 12.30 ZETA FACTOR AND STANDARD ERROR (yr cm^2): 331.03 6.66 SIZE OF COUNTER SQUARE (cm^2): 9.545E-07 ------GRAIN AGES IN ORIGINAL ORDER ------

28 Data Repository item 2004023

Grain RhoS (Ns) RhoI (Ni) Squares U+/-2s Grain Age (Ma) no. (cm^-2) (cm^-2) Age --95% CI-- 1 6.55E+05 ( 10) 1.57E+06 ( 24) 16 122 49 11.0 4.7 23.7 2 2.93E+05 ( 7) 7.12E+05 ( 17) 25 55 26 11.0 3.8 27.4 3 7.86E+05 ( 12) 1.44E+06 ( 22) 16 112 47 14.4 6.5 30.2 4 5.89E+05 ( 9) 8.51E+05 ( 13) 16 66 36 18.3 6.9 45.8 5 7.96E+05 ( 19) 1.05E+06 ( 25) 25 81 32 20.0 10.4 37.7 6 6.70E+05 ( 16) 7.12E+05 ( 17) 25 55 26 24.7 11.7 51.9 7 1.24E+06 ( 19) 1.31E+06 ( 20) 16 101 45 24.9 12.6 49.1 8 4.80E+05 ( 11) 4.80E+05 ( 11) 24 37 22 26.2 10.3 66.5 9 4.61E+05 ( 11) 4.61E+05 ( 11) 25 36 21 26.2 10.3 66.5 10 5.45E+05 ( 13) 5.03E+05 ( 12) 25 39 22 28.4 12.0 67.9 11 7.86E+05 ( 12) 6.55E+05 ( 10) 16 51 31 31.4 12.5 81.0 12 1.22E+06 ( 29) 7.96E+05 ( 19) 25 62 28 39.9 21.7 75.3 13 1.51E+06 ( 23) 7.20E+05 ( 11) 16 56 33 54.3 25.7 123.7 14 4.61E+05 ( 11) 2.10E+05 ( 5) 25 16 14 56.6 18.5 208.8 15 2.10E+06 ( 50) 9.64E+05 ( 23) 25 75 31 56.6 34.1 97.4

Lab# Z178 Field# RS93-49.FTZ RR-2-6-96B-34 C-3600 "Greensand"

>>NEW PARAMETERS--ZETA METHOD<< EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2): 1.758E+05 RELATIVE ERROR (%): 1.21 EFFECTIVE URANIUM CONTENT OF MONITOR (ppm): 12.30 ZETA FACTOR AND STANDARD ERROR (yr cm^2): 331.03 6.66 SIZE OF COUNTER SQUARE (cm^2): 9.545E-07 ------GRAIN AGES IN ORIGINAL ORDER ------Grain RhoS (Ns) RhoI (Ni) Squares U+/-2s Grain Age (Ma) no. (cm^-2) (cm^-2) Age --95% CI-- 1 5.45E+05 ( 13) 6.70E+05 ( 16) 25 47 23 23.7 10.4 52.2 2 1.09E+06 ( 26) 1.26E+06 ( 30) 25 88 32 25.2 14.3 44.0 3 3.27E+06 ( 50) 3.27E+06 ( 50) 16 229 65 29.0 19.2 43.8 4 2.88E+06 ( 33) 2.44E+06 ( 28) 12 171 64 34.2 20.1 58.7 5 9.22E+05 ( 22) 7.54E+05 ( 18) 25 53 25 35.4 18.2 70.0 6 1.90E+06 ( 29) 1.51E+06 ( 23) 16 105 44 36.5 20.5 66.1 7 2.44E+06 ( 28) 1.75E+06 ( 20) 12 122 54 40.5 22.1 75.9 8 3.38E+06 ( 29) 1.98E+06 ( 17) 9 138 66 49.3 26.3 95.6 9 3.01E+06 ( 46) 1.64E+06 ( 25) 16 115 45 53.2 32.1 90.4 10 3.80E+06 ( 58) 1.83E+06 ( 28) 16 128 48 59.8 37.6 97.6 11 1.55E+06 ( 37) 6.70E+05 ( 16) 25 47 23 66.6 36.4 128.3 12 4.66E+06 ( 40) 1.98E+06 ( 17) 9 138 66 67.7 37.8 127.6 13 7.60E+06 ( 116) 2.95E+06 ( 45) 16 206 61 74.4 52.5 107.5 14 3.97E+06 ( 53) 1.42E+06 ( 19) 14 99 45 80.2 47.1 143.7 15 3.67E+06 ( 42) 1.31E+06 ( 15) 12 92 47 80.4 44.1 156.3 16 1.70E+06 ( 26) 5.89E+05 ( 9) 16 41 27 82.5 38.0 200.8 17 2.75E+06 ( 42) 7.20E+05 ( 11) 16 50 30 109.0 55.9 235.0

Lab #Z182 Field # RS94-17.FTZ Undiffereniated Stewart RR-2-6-96B-9

>>NEW PARAMETERS--ZETA METHOD<< EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2): 1.788E+05 RELATIVE ERROR (%): 1.15 EFFECTIVE URANIUM CONTENT OF MONITOR (ppm): 12.30 ZETA FACTOR AND STANDARD ERROR (yr cm^2): 331.03 7.20 SIZE OF COUNTER SQUARE (cm^2): 9.545E-07 ------GRAIN AGES IN ORIGINAL ORDER ------Grain RhoS (Ns) RhoI (Ni) Squares U+/-2s Grain Age (Ma) no. (cm^-2) (cm^-2) Age --95% CI--

29 Data Repository item 2004023

1 6.36E+05 ( 17) 1.68E+06 ( 45) 28 116 34 11.2 6.0 19.9 2 8.38E+05 ( 16) 2.15E+06 ( 41) 20 148 46 11.6 6.0 21.0 3 1.38E+06 ( 21) 3.14E+06 ( 48) 16 216 62 13.0 7.4 22.0 4 3.35E+05 ( 8) 5.45E+05 ( 13) 25 37 20 18.3 6.5 47.2 5 1.77E+06 ( 22) 2.74E+06 ( 34) 13 188 64 19.2 10.7 33.6 6 2.23E+06 ( 34) 3.40E+06 ( 52) 16 234 65 19.4 12.2 30.3 7 1.09E+06 ( 26) 1.42E+06 ( 34) 25 98 33 22.6 13.0 38.8 8 2.62E+06 ( 40) 3.27E+06 ( 50) 16 225 64 23.7 15.2 36.5 9 7.86E+05 ( 18) 9.60E+05 ( 22) 24 66 28 24.2 12.2 47.1 10 1.62E+06 ( 31) 1.94E+06 ( 37) 20 133 44 24.8 14.9 41.0 11 1.11E+06 ( 17) 1.31E+06 ( 20) 16 90 40 25.1 12.4 50.4 12 2.36E+06 ( 36) 2.42E+06 ( 37) 16 167 55 28.7 17.6 46.7 13 9.82E+05 ( 15) 9.17E+05 ( 14) 16 63 33 31.6 14.2 70.5 14 2.55E+06 ( 39) 2.36E+06 ( 36) 16 162 54 32.0 19.8 51.7 15 2.36E+06 ( 36) 1.96E+06 ( 30) 16 135 49 35.4 21.2 59.5 16 3.14E+06 ( 48) 2.55E+06 ( 39) 16 176 56 36.3 23.3 56.9 17 1.68E+06 ( 40) 1.26E+06 ( 30) 25 86 31 39.3 23.9 65.3 18 3.73E+06 ( 57) 2.88E+06 ( 44) 16 198 60 38.2 25.4 57.9 19 2.68E+06 ( 41) 2.03E+06 ( 31) 16 140 50 39.0 23.9 64.3 20 4.19E+06 ( 40) 3.14E+06 ( 30) 10 216 78 39.3 23.9 65.3 21 1.34E+06 ( 23) 9.89E+05 ( 17) 18 68 33 39.8 20.4 79.4 22 2.15E+06 ( 43) 1.55E+06 ( 31) 21 106 38 40.9 25.2 67.1 23 3.08E+06 ( 47) 2.10E+06 ( 32) 16 144 51 43.2 27.1 70.0 24 3.34E+06 ( 51) 2.23E+06 ( 34) 16 153 52 44.2 28.1 70.3 25 3.42E+06 ( 49) 2.17E+06 ( 31) 15 149 53 46.5 29.2 75.5 26 2.29E+06 ( 35) 1.38E+06 ( 21) 16 95 41 49.0 27.8 88.6 27 1.96E+06 ( 30) 1.18E+06 ( 18) 16 81 38 49.0 26.5 93.3 28 3.60E+06 ( 55) 2.10E+06 ( 32) 16 144 51 50.6 32.2 80.8 29 4.85E+06 ( 74) 2.82E+06 ( 43) 16 194 59 50.6 34.4 75.6 30 2.95E+06 ( 45) 1.70E+06 ( 26) 16 117 46 50.9 30.8 86.0 31 4.65E+06 ( 71) 2.16E+06 ( 33) 16 149 51 63.2 41.4 98.7 32 3.49E+05 ( 8) 1.31E+05 ( 3) 24 9 10 76.0 18.9 446.1 33 3.08E+06 ( 47) 1.11E+06 ( 17) 16 77 37 80.8 45.9 150.3 34 3.99E+06 ( 61) 1.24E+06 ( 19) 16 86 39 93.8 55.7 166.3 35 4.32E+06 ( 66) 1.24E+06 ( 19) 16 86 39 101.4 60.6 179.0

Lab# Z183, Field# 97-13 S Abutment, Solleks R. bridge, Stewart RR-3-20-98-65

>>NEW PARAMETERS--ZETA METHOD<< EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2): 1.737E+05 RELATIVE ERROR (%): 1.49 EFFECTIVE URANIUM CONTENT OF MONITOR (ppm): 12.70 ZETA FACTOR AND STANDARD ERROR (yr cm^2): 331.03 6.66 SIZE OF COUNTER SQUARE (cm^2): 9.545E-07 ------GRAIN AGES IN ORIGINAL ORDER ------Grain RhoS (Ns) RhoI (Ni) Squares U+/-2s Grain Age (Ma) no. (cm^-2) (cm^-2) Age --95% CI-- 1 1.38E+06 ( 33) 3.35E+06 ( 80) 25 245 55 11.9 7.6 18.0 2 6.29E+05 ( 15) 1.42E+06 ( 34) 25 104 36 12.7 6.4 23.9 3 1.62E+06 ( 31) 3.35E+06 ( 64) 20 245 61 13.9 8.7 21.7 4 1.73E+06 ( 66) 3.25E+06 ( 124) 40 237 43 15.3 11.1 20.8 5 4.61E+05 ( 11) 8.38E+05 ( 20) 25 61 27 15.9 6.8 34.6 6 7.96E+05 ( 19) 1.42E+06 ( 34) 25 104 36 16.1 8.6 28.9 7 1.13E+06 ( 27) 1.89E+06 ( 45) 25 138 41 17.3 10.3 28.4 8 2.27E+06 ( 52) 3.62E+06 ( 83) 24 265 59 18.0 12.5 25.8 9 1.05E+06 ( 30) 1.61E+06 ( 46) 30 117 35 18.8 11.4 30.3 10 1.89E+06 ( 45) 2.89E+06 ( 69) 25 211 51 18.7 12.6 27.7 11 2.34E+06 ( 47) 3.44E+06 ( 69) 21 252 61 19.6 13.2 28.8 12 1.96E+06 ( 45) 2.97E+06 ( 68) 24 217 53 19.0 12.7 28.1

30 Data Repository item 2004023

13 1.52E+06 ( 29) 2.20E+06 ( 42) 20 161 50 19.9 11.9 32.6 14 1.71E+06 ( 49) 2.44E+06 ( 70) 30 179 43 20.1 13.6 29.4 15 2.15E+06 ( 41) 2.57E+06 ( 49) 20 188 54 24.0 15.5 37.1 16 2.16E+06 ( 33) 1.83E+06 ( 28) 16 134 50 33.8 19.8 58.0 17 2.62E+06 ( 40) 1.96E+06 ( 30) 16 144 52 38.2 23.2 63.5 18 3.72E+06 ( 32) 2.79E+06 ( 24) 9 204 83 38.2 21.8 67.7 19 1.12E+06 ( 16) 8.38E+05 ( 12) 15 61 35 38.1 17.0 88.2 20 2.79E+06 ( 40) 2.44E+06 ( 35) 15 179 60 32.8 20.3 53.1 21 1.68E+06 ( 40) 1.17E+06 ( 28) 25 86 32 40.9 24.6 68.8 22 2.35E+06 ( 56) 1.38E+06 ( 33) 25 101 35 48.5 31.1 77.1 23 2.44E+06 ( 35) 1.33E+06 ( 19) 15 97 44 52.5 29.4 97.3 24 3.54E+06 ( 54) 1.70E+06 ( 26) 16 124 49 59.2 36.6 98.7 25 3.40E+06 ( 52) 1.38E+06 ( 21) 16 101 43 70.5 42.0 123.3 26 2.01E+06 ( 48) 7.12E+05 ( 17) 25 52 25 80.2 45.6 149.0 27 3.49E+06 ( 40) 1.22E+06 ( 14) 12 89 47 81.0 43.6 161.5 28 2.29E+06 ( 35) 6.55E+05 ( 10) 16 48 30 98.7 48.5 224.0

>>NEW PARAMETERS--ZETA METHOD<< EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2): 1.641E+05 RELATIVE ERROR (%): 1.26 EFFECTIVE URANIUM CONTENT OF MONITOR (ppm): 12.70 ZETA FACTOR AND STANDARD ERROR (yr cm^2): 331.03 6.66 SIZE OF COUNTER SQUARE (cm^2): 9.545E-07 ------GRAIN AGES IN ORIGINAL ORDER ------Grain RhoS (Ns) RhoI (Ni) Squares U+/-2s Grain Age (Ma)

no. (cm^-2) (cm^-2) Age --95% CI-- 29 5.03E+05 ( 12) 1.72E+06 ( 41) 25 133 41 8.0 3.8 15.4 30 1.15E+06 ( 23) 3.04E+06 ( 61) 21 236 60 10.3 6.0 16.8 31 1.38E+06 ( 33) 3.39E+06 ( 81) 25 263 59 11.1 7.1 16.8 32 1.57E+06 ( 36) 3.49E+06 ( 80) 24 270 61 12.2 8.0 18.3 33 1.88E+06 ( 43) 3.88E+06 ( 89) 24 301 64 13.1 8.9 19.1 34 1.27E+06 ( 34) 2.58E+06 ( 69) 28 200 48 13.4 8.6 20.5 35 1.99E+06 ( 57) 3.63E+06 ( 104) 30 281 55 14.9 10.6 20.7 36 1.90E+06 ( 49) 3.41E+06 ( 88) 27 264 57 15.1 10.4 21.7 37 1.41E+06 ( 27) 2.41E+06 ( 46) 20 186 55 16.0 9.5 26.2 38 4.16E+06 ( 119) 6.39E+06 ( 183) 30 495 74 17.7 14.0 22.3 39 2.71E+06 ( 62) 4.10E+06 ( 94) 24 318 66 17.9 12.8 24.9 40 3.21E+06 ( 92) 4.82E+06 ( 138) 30 373 64 18.1 13.9 23.7 41 2.29E+06 ( 35) 3.21E+06 ( 49) 16 248 71 19.4 12.2 30.5 42 9.43E+05 ( 27) 1.26E+06 ( 36) 30 97 32 20.4 11.9 34.4

Lab # Z184 Field # RS94-19.FTZ Undiffereniated Stewart RR-2-6-96B-11

>>NEW PARAMETERS--ZETA METHOD<< EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2): 1.785E+05 RELATIVE ERROR (%): 1.10 EFFECTIVE URANIUM CONTENT OF MONITOR (ppm): 12.30 ZETA FACTOR AND STANDARD ERROR (yr cm^2): 331.03 6.66 SIZE OF COUNTER SQUARE (cm^2): 9.545E-07 ------GRAIN AGES IN ORIGINAL ORDER ------Grain RhoS (Ns) RhoI (Ni) Squares U+/-2s Grain Age (Ma) no. (cm^-2) (cm^-2) Age --95% CI-- 1 8.38E+05 ( 20) 1.22E+06 ( 29) 25 84 31 20.4 10.9 37.2 2 1.89E+06 ( 36) 2.72E+06 ( 52) 20 188 52 20.5 13.0 31.8 3 1.68E+06 ( 32) 1.78E+06 ( 34) 20 123 42 27.8 16.6 46.3 4 2.88E+06 ( 66) 3.06E+06 ( 70) 24 211 50 27.8 19.6 39.5 5 1.38E+06 ( 33) 1.42E+06 ( 34) 25 98 33 28.6 17.2 47.6 6 7.98E+05 ( 16) 6.98E+05 ( 14) 21 48 25 33.6 15.4 74.3

31 Data Repository item 2004023

7 3.27E+06 ( 50) 2.75E+06 ( 42) 16 189 58 35.1 22.8 54.1 8 1.54E+06 ( 22) 1.26E+06 ( 18) 15 87 40 35.9 18.5 71.1 9 2.44E+06 ( 56) 1.75E+06 ( 40) 24 120 38 41.2 27.0 63.4 10 1.84E+06 ( 44) 1.30E+06 ( 31) 25 90 32 41.7 25.8 68.4 11 4.89E+06 ( 84) 3.26E+06 ( 56) 18 225 60 44.1 31.1 63.0 12 2.05E+06 ( 49) 8.38E+05 ( 20) 25 58 26 71.6 42.1 127.3 13 1.41E+06 ( 31) 4.55E+05 ( 10) 23 31 19 90.0 43.6 206.2 14 4.71E+06 ( 72) 1.24E+06 ( 19) 16 86 39 110.3 66.4 193.8

Lab # Z185 Field # RS94-21.FTZ Undiffereniated Stewart RR-2-6-96B-1x

>>NEW PARAMETERS--ZETA METHOD<< EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2): 1.783E+05 RELATIVE ERROR (%): 1.06 EFFECTIVE URANIUM CONTENT OF MONITOR (ppm): 12.30 ZETA FACTOR AND STANDARD ERROR (yr cm^2): 331.03 6.66 SIZE OF COUNTER SQUARE (cm^2): 9.545E-07 ------GRAIN AGES IN ORIGINAL ORDER ------Grain RhoS (Ns) RhoI (Ni) Squares U+/-2s Grain Age (Ma) no. (cm^-2) (cm^-2) Age --95% CI-- 1 2.10E+05 ( 3) 5.59E+05 ( 8) 15 39 26 11.4 1.9 46.0 2 3.25E+05 ( 9) 7.95E+05 ( 22) 29 55 23 12.2 4.9 27.2 3 5.24E+05 ( 14) 1.27E+06 ( 34) 28 88 30 12.2 6.0 23.2 4 5.49E+05 ( 11) 1.30E+06 ( 26) 21 89 35 12.6 5.6 26.1 5 6.29E+05 ( 15) 1.42E+06 ( 34) 25 98 34 13.1 6.6 24.5 6 5.03E+05 ( 12) 9.64E+05 ( 23) 25 66 27 15.5 7.0 32.2 7 9.64E+05 ( 23) 1.80E+06 ( 43) 25 124 38 15.8 9.1 26.7 8 6.29E+05 ( 12) 1.15E+06 ( 22) 20 79 34 16.2 7.3 33.9 9 1.17E+06 ( 28) 2.01E+06 ( 48) 25 139 40 17.2 10.4 28.0 10 1.01E+06 ( 24) 1.72E+06 ( 41) 25 119 37 17.3 10.0 29.2 11 1.59E+06 ( 38) 2.30E+06 ( 55) 25 159 43 20.4 13.1 31.3 12 8.38E+05 ( 20) 1.17E+06 ( 28) 25 81 30 21.1 11.2 38.7 13 1.13E+06 ( 27) 1.55E+06 ( 37) 25 107 35 21.5 12.6 36.3 14 1.30E+06 ( 31) 1.72E+06 ( 41) 25 119 37 22.3 13.5 36.4 15 1.13E+06 ( 27) 1.42E+06 ( 34) 25 98 34 23.4 13.6 39.9 16 2.51E+06 ( 36) 3.07E+06 ( 44) 15 212 64 24.1 15.1 38.3 17 1.18E+06 ( 27) 1.40E+06 ( 32) 24 96 34 24.9 14.3 42.8 18 1.22E+06 ( 29) 1.42E+06 ( 34) 25 98 34 25.1 14.8 42.5 19 7.86E+05 ( 12) 9.17E+05 ( 14) 16 63 33 25.3 10.7 58.7 20 1.34E+06 ( 23) 1.51E+06 ( 26) 18 104 41 26.1 14.2 47.4 21 1.64E+06 ( 25) 1.83E+06 ( 28) 16 126 47 26.3 14.7 46.7 22 8.73E+05 ( 15) 9.31E+05 ( 16) 18 64 32 27.6 12.7 59.5 23 1.57E+06 ( 24) 1.64E+06 ( 25) 16 113 45 28.3 15.5 51.5 24 1.15E+06 ( 23) 1.15E+06 ( 23) 21 79 33 29.4 15.8 54.8 25 9.22E+05 ( 22) 9.22E+05 ( 22) 25 64 27 29.4 15.6 55.7 26 5.92E+05 ( 13) 5.47E+05 ( 12) 23 38 21 31.9 13.4 76.2 27 5.59E+06 ( 48) 4.66E+06 ( 40) 9 321 101 35.3 22.7 55.1 28 3.93E+06 ( 75) 3.14E+06 ( 60) 20 217 56 36.8 25.9 52.5 29 2.55E+06 ( 39) 2.03E+06 ( 31) 16 140 50 37.0 22.5 61.3 30 3.80E+06 ( 58) 2.75E+06 ( 42) 16 190 58 40.6 26.9 61.9 31 7.96E+05 ( 19) 5.45E+05 ( 13) 25 38 20 42.8 20.2 94.4 32 2.93E+06 ( 56) 1.89E+06 ( 36) 20 130 43 45.7 29.6 71.5 33 3.67E+06 ( 56) 2.23E+06 ( 34) 16 154 52 48.3 31.1 76.4 34 4.32E+06 ( 66) 2.62E+06 ( 40) 16 181 57 48.4 32.3 73.7 35 2.97E+06 ( 68) 1.79E+06 ( 41) 24 123 38 48.7 32.6 73.6 36 3.49E+06 ( 80) 2.10E+06 ( 48) 24 145 42 48.9 33.9 71.5 37 3.73E+06 ( 57) 2.23E+06 ( 34) 16 154 52 49.2 31.7 77.6 38 3.34E+06 ( 51) 1.90E+06 ( 29) 16 131 48 51.6 32.2 84.4 39 3.84E+06 ( 33) 2.10E+06 ( 18) 9 145 67 53.7 29.5 101.3

32 Data Repository item 2004023

40 2.10E+06 ( 50) 1.09E+06 ( 26) 25 75 29 56.3 34.6 94.3 41 3.67E+06 ( 56) 1.83E+06 ( 28) 16 126 47 58.6 36.7 95.8 42 3.40E+06 ( 52) 1.70E+06 ( 26) 16 117 46 58.6 36.1 97.8 43 1.37E+06 ( 34) 6.85E+05 ( 17) 26 47 23 58.5 32.0 111.7 44 1.64E+06 ( 25) 7.86E+05 ( 12) 16 54 31 60.8 29.7 133.0 45 3.14E+06 ( 48) 1.51E+06 ( 23) 16 104 43 61.1 36.6 105.3 46 8.38E+06 ( 128) 3.80E+06 ( 58) 16 262 69 64.7 47.2 89.9 47 4.82E+06 ( 69) 1.96E+06 ( 28) 15 135 51 72.1 46.1 116.2 48 4.39E+06 ( 67) 1.70E+06 ( 26) 16 117 46 75.3 47.5 123.5 49 3.47E+06 ( 53) 1.18E+06 ( 18) 16 81 38 85.8 49.9 155.8 50 6.50E+06 ( 62) 2.20E+06 ( 21) 10 152 66 86.1 52.1 148.8

Lab# Z186 Field# RJS94-22.FTZ RR-2-6-96B-13 NE Solleks Ridge

>>NEW PARAMETERS--ZETA METHOD<< EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2): 1.730E+05 RELATIVE ERROR (%): 1.06 EFFECTIVE URANIUM CONTENT OF MONITOR (ppm): 12.30 ZETA FACTOR AND STANDARD ERROR (yr cm^2): 331.03 6.66 SIZE OF COUNTER SQUARE (cm^2): 9.545E-07 ------GRAIN AGES IN ORIGINAL ORDER ------Grain RhoS (Ns) RhoI (Ni) Squares U+/-2s Grain Age (Ma) no. (cm^-2) (cm^-2) Age --95% CI-- 1 1.22E+06 ( 35) 2.10E+06 ( 60) 30 149 38 16.7 10.7 25.7 2 1.30E+06 ( 31) 1.97E+06 ( 47) 25 140 41 18.9 11.6 30.3 3 1.45E+06 ( 36) 2.14E+06 ( 53) 26 152 42 19.5 12.4 30.2 4 3.14E+06 ( 54) 4.37E+06 ( 75) 18 310 72 20.6 14.2 29.6 5 1.34E+06 ( 32) 1.72E+06 ( 41) 25 122 38 22.3 13.6 36.3 6 1.26E+06 ( 30) 1.51E+06 ( 36) 25 107 36 23.8 14.2 39.7 7 1.01E+06 ( 24) 1.09E+06 ( 26) 25 77 30 26.4 14.5 47.7 8 7.96E+05 ( 19) 8.38E+05 ( 20) 25 60 26 27.2 13.7 53.5 9 1.13E+06 ( 26) 1.13E+06 ( 26) 24 81 31 28.6 15.9 51.1 10 1.76E+06 ( 42) 1.63E+06 ( 39) 25 116 37 30.8 19.4 48.8 11 1.50E+06 ( 33) 1.32E+06 ( 29) 23 94 35 32.5 19.1 55.4 12 1.25E+06 ( 25) 9.98E+05 ( 20) 21 71 31 35.6 19.1 67.6 13 1.77E+06 ( 44) 1.17E+06 ( 29) 26 83 31 43.2 26.5 71.6 14 2.10E+06 ( 32) 1.31E+06 ( 20) 16 93 41 45.5 25.4 84.0 15 1.89E+06 ( 45) 1.17E+06 ( 28) 25 83 31 45.8 28.0 76.2 16 5.01E+06 ( 43) 2.56E+06 ( 22) 9 182 77 55.5 32.7 97.5 17 3.73E+06 ( 57) 1.31E+06 ( 20) 16 93 41 80.7 48.1 141.9 18 2.82E+06 ( 43) 5.89E+05 ( 9) 16 42 27 133.5 65.4 311.6

Lab# Z191 Field# RS97-20A.FTZ RR-1-15-98-42 Shale Creek

>>NEW PARAMETERS--ZETA METHOD<< EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2): 1.431E+05 RELATIVE ERROR (%): 1.82 EFFECTIVE URANIUM CONTENT OF MONITOR (ppm): 12.30 ZETA FACTOR AND STANDARD ERROR (yr cm^2): 331.03 6.66 SIZE OF COUNTER SQUARE (cm^2): 9.545E-07 ------GRAIN AGES IN ORIGINAL ORDER ------Grain RhoS (Ns) RhoI (Ni) Squares U+/-2s Grain Age (Ma) no. (cm^-2) (cm^-2) Age --95% CI-- 1 5.45E+05 ( 13) 4.61E+05 ( 11) 25 40 23 27.9 11.6 68.7 2 2.55E+06 ( 39) 2.10E+06 ( 32) 16 180 64 28.8 17.6 47.5 3 2.55E+06 ( 39) 2.10E+06 ( 32) 16 180 64 28.8 17.6 47.5 4 8.51E+05 ( 13) 6.55E+05 ( 10) 16 56 35 30.6 12.5 78.0 5 5.45E+05 ( 13) 4.19E+05 ( 10) 25 36 22 30.6 12.5 78.0

33 Data Repository item 2004023

6 1.77E+06 ( 27) 1.31E+06 ( 20) 16 113 50 31.8 17.2 59.9 7 2.65E+06 ( 38) 1.96E+06 ( 28) 15 168 63 32.0 19.2 54.2 8 1.42E+06 ( 34) 1.05E+06 ( 25) 25 90 36 32.1 18.6 56.2 9 1.05E+06 ( 16) 7.20E+05 ( 11) 16 62 37 34.2 15.0 81.7 10 5.03E+05 ( 12) 3.35E+05 ( 8) 25 29 20 35.2 13.3 99.5 11 8.51E+05 ( 13) 5.24E+05 ( 8) 16 45 31 38.1 14.8 106.3 12 2.47E+06 ( 59) 1.42E+06 ( 34) 25 122 42 40.9 26.4 64.4 13 1.34E+06 ( 32) 7.54E+05 ( 18) 25 65 30 41.8 22.9 79.3 14 7.33E+05 ( 21) 3.84E+05 ( 11) 30 33 20 44.8 20.8 103.1 15 1.77E+06 ( 27) 9.17E+05 ( 14) 16 79 41 45.3 23.1 93.7 16 1.38E+06 ( 33) 7.12E+05 ( 17) 25 61 29 45.6 24.8 87.5 17 2.29E+06 ( 35) 1.18E+06 ( 18) 16 101 47 45.7 25.3 85.9 18 3.67E+06 ( 56) 1.77E+06 ( 27) 16 152 58 48.8 30.4 80.5 19 7.33E+05 ( 21) 3.49E+05 ( 10) 30 30 19 49.1 22.4 117.3 20 1.77E+06 ( 27) 7.86E+05 ( 12) 16 68 38 52.7 26.0 114.6 21 2.75E+06 ( 42) 1.24E+06 ( 19) 16 107 49 51.9 29.7 94.7 22 2.75E+06 ( 42) 1.18E+06 ( 18) 16 101 47 54.8 31.0 101.3 23 2.16E+06 ( 33) 9.17E+05 ( 14) 16 79 41 55.2 29.0 112.1 24 1.72E+06 ( 41) 7.12E+05 ( 17) 25 61 29 56.6 31.6 106.5 25 2.10E+06 ( 32) 8.51E+05 ( 13) 16 73 40 57.6 29.7 120.0 26 2.36E+06 ( 45) 9.43E+05 ( 18) 20 81 38 58.6 33.5 107.9 27 2.36E+06 ( 45) 9.43E+05 ( 18) 20 81 38 58.6 33.5 107.9 28 2.37E+06 ( 34) 9.08E+05 ( 13) 15 78 43 61.2 31.8 126.8 29 1.51E+06 ( 36) 5.45E+05 ( 13) 25 47 26 64.7 33.8 133.5 30 2.23E+06 ( 34) 7.86E+05 ( 12) 16 68 38 66.2 33.8 140.9 31 2.42E+06 ( 37) 8.51E+05 ( 13) 16 73 40 66.5 34.9 136.9 32 2.30E+06 ( 55) 7.96E+05 ( 19) 25 68 31 67.8 39.9 121.4 33 2.47E+06 ( 59) 8.38E+05 ( 20) 25 72 32 69.1 41.3 121.5 34 2.23E+06 ( 34) 6.55E+05 ( 10) 16 56 35 79.1 38.7 180.4 35 3.14E+06 ( 48) 9.17E+05 ( 14) 16 79 41 80.0 43.8 157.7 36 2.10E+06 ( 32) 5.24E+05 ( 8) 16 45 31 92.7 42.6 233.9 37 2.42E+06 ( 37) 5.89E+05 ( 9) 16 51 33 95.4 45.9 225.7

Lab# Z195, Field# WL798-5 RR-11-16-98-10 Stewart 8-31-99

>>NEW PARAMETERS--ZETA METHOD<< EFFECTIVE TRACK DENSITY FOR FLUENCE MONITOR (tracks/cm^2): 1.676E+05 RELATIVE ERROR (%): 1.50 EFFECTIVE URANIUM CONTENT OF MONITOR (ppm): 12.30 ZETA FACTOR AND STANDARD ERROR (yr cm^2): 331.03 6.66 SIZE OF COUNTER SQUARE (cm^2): 9.545E-07 ------GRAIN AGES IN ORIGINAL ORDER ------Grain RhoS (Ns) RhoI (Ni) Squares U+/-2s Grain Age (Ma) no. (cm^-2) (cm^-2) Age --95% CI-- 1 7.57E+05 ( 13) 1.16E+06 ( 20) 18 85 38 18.1 8.2 38.0 2 1.68E+06 ( 48) 2.30E+06 ( 66) 30 169 42 20.2 13.6 29.7 3 1.92E+06 ( 22) 2.44E+06 ( 28) 12 179 67 21.8 11.9 39.4 4 1.05E+06 ( 25) 1.30E+06 ( 31) 25 95 34 22.4 12.6 39.1 5 1.94E+06 ( 37) 2.25E+06 ( 43) 20 165 50 23.8 14.9 37.9 6 3.32E+06 ( 38) 3.23E+06 ( 37) 12 237 78 28.4 17.6 46.0 7 1.41E+06 ( 27) 1.36E+06 ( 26) 20 100 39 28.7 16.1 51.2 8 1.42E+06 ( 19) 1.27E+06 ( 17) 14 93 45 30.9 15.2 63.2 9 2.75E+06 ( 42) 2.23E+06 ( 34) 16 163 56 34.1 21.2 55.4 10 3.01E+06 ( 23) 2.36E+06 ( 18) 8 173 81 35.3 18.3 69.4 11 1.51E+06 ( 23) 9.82E+05 ( 15) 16 72 37 42.2 21.2 87.1 12 1.68E+06 ( 32) 1.05E+06 ( 20) 20 77 34 44.1 24.5 81.4 13 1.83E+06 ( 21) 1.13E+06 ( 13) 12 83 45 44.4 21.4 96.7 14 5.47E+06 ( 47) 3.03E+06 ( 26) 9 222 87 49.8 30.3 83.9 15 4.19E+06 ( 36) 2.10E+06 ( 18) 9 154 72 55.0 30.6 103.0

34 Data Repository item 2004023

16 1.38E+06 ( 21) 6.55E+05 ( 10) 16 48 30 57.5 26.2 137.2 17 3.96E+06 ( 34) 1.63E+06 ( 14) 9 120 63 66.6 35.1 134.6 18 2.05E+06 ( 47) 6.98E+05 ( 16) 24 51 25 80.4 45.2 152.3

35