Kubla Khan Or a Vision in a Dream: a Fragment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Draft ASMA Plan for Dry Valleys
Measure 18 (2015) Management Plan for Antarctic Specially Managed Area No. 2 MCMURDO DRY VALLEYS, SOUTHERN VICTORIA LAND Introduction The McMurdo Dry Valleys are the largest relatively ice-free region in Antarctica with approximately thirty percent of the ground surface largely free of snow and ice. The region encompasses a cold desert ecosystem, whose climate is not only cold and extremely arid (in the Wright Valley the mean annual temperature is –19.8°C and annual precipitation is less than 100 mm water equivalent), but also windy. The landscape of the Area contains mountain ranges, nunataks, glaciers, ice-free valleys, coastline, ice-covered lakes, ponds, meltwater streams, arid patterned soils and permafrost, sand dunes, and interconnected watershed systems. These watersheds have a regional influence on the McMurdo Sound marine ecosystem. The Area’s location, where large-scale seasonal shifts in the water phase occur, is of great importance to the study of climate change. Through shifts in the ice-water balance over time, resulting in contraction and expansion of hydrological features and the accumulations of trace gases in ancient snow, the McMurdo Dry Valley terrain also contains records of past climate change. The extreme climate of the region serves as an important analogue for the conditions of ancient Earth and contemporary Mars, where such climate may have dominated the evolution of landscape and biota. The Area was jointly proposed by the United States and New Zealand and adopted through Measure 1 (2004). This Management Plan aims to ensure the long-term protection of this unique environment, and to safeguard its values for the conduct of scientific research, education, and more general forms of appreciation. -
Terrestrial Biology
Terrestrial biology Impacts of ultraviolet-B radiation and regional warming on antarctic vascular plants THOMAS A. DAY, CHRISTOPHER T. R UHLAND, and FUSHENG XIONG, Department of Plant Biology, Arizona State University, Tempe, Arizona 85287-1601 he Antarctic Peninsula provides a unique opportunity to tion. Additionally, key enzymes in the photosynthetic Calvin T examine the influence of climate change on plants. Cycle of these species appear sensitive to higher temperatures Stratospheric ozone depletion events over the continent dur- and further depress photosynthetic rates. ing spring and early summer lead to well-documented Because of the sensitivity of the photosynthetic apparatus enhanced levels of ultraviolet-B (UV-B) radiation [280-320 to higher temperatures in these species, continued regional nanometers (nm); UV-B] levels (Booth et al. 1994; Madronich warming might prove detrimental to their performance on the et al. 1995). In addition, mean summer air temperatures along peninsula, but an assessment of their performance under ris- the peninsula have risen more than 1°C in the last 45 years ing temperatures also depends on (Smith 1994; Smith, Stammerjohn, and Baker 1996). • their ability to acclimate photosynthetically to warmer The 1996–1997 field season (November to March) was the growing temperatures as well as second year of our main field experiment on Stepping Stones • how well photosynthetic rates predict plant growth rates Island, near Palmer Station, Antarctic Peninsula. We are using and overall performance. filters to manipulate UV levels and temperatures around natu- With respect to acclimation, when we grew both species rally growing plants of Deschampsia antarctica (antarctic hair under contrasting temperature regimes (ranging from 7 to 20°) grass) and Colobanthus quitensis (antarctic pearlwort), the in growth chambers at Arizona State University, their photo- only vascular plant species native to Antarctica. -
The Antarctic Treaty
The Antarctic Treaty Measures adopted at the Thirty-fourth Consultative Meeting held at Buenos Aires, 20 June – 1 July 2011 Presented to Parliament by the Secretary of State for Foreign and Commonwealth Affairs by Command of Her Majesty January 2014 Cm 8809 £31.50 © Crown copyright 2014 You may re-use this information (excluding logos) free of charge in any format or medium, under the terms of the Open Government Licence. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-licence or email. [email protected] Where we have identified any third party copyright information you will need to obtain permission from the copyright holders concerned. Any enquiries regarding this publication should be sent to us at Treaty Section, Foreign and Commonwealth Office, King Charles Street, London, SW1A 2AH. ISBN: 9780101880923 Printed in the UK by The Stationery Office Limited on behalf of the Controller of Her Majesty’s Stationery Office ID P002619602 01/14 36734 19585 Printed on paper containing 30% recycled fibre content minimum. MEASURES ADOPTED AT THE THIRTY-FOURTH ANTARCTIC TREATY CONSULTATIVE MEETING Buenos Aires, Argentina 20 June – 1 July 2011 The Measures1 adopted at the Thirty-fourth Antarctic Treaty Consultative Meeting are reproduced below from the Final Report of the Meeting. In accordance with Article IX, paragraph 4, of the Antarctic Treaty, the Measures adopted at Consultative Meetings become effective upon approval by all Contracting Parties whose representatives were entitled to participate in the meeting at which they were adopted (i.e. all the Consultative Parties). The full text of the Final Report of the Meeting, including the Decisions and Resolutions adopted at that Meeting and colour copies of the maps found in this command paper, is available on the website of the Antarctic Treaty Secretariat at www.ats.aq/documents. -
Mcmurdo Dry Valleys, Southern Victoria Land
Measure 18 (2015) Management Plan for Antarctic Specially Managed Area No. 2 MCMURDO DRY VALLEYS, SOUTHERN VICTORIA LAND Introduction The McMurdo Dry Valleys are the largest relatively ice-free region in Antarctica with approximately thirty percent of the ground surface largely free of snow and ice. The region encompasses a cold desert ecosystem, whose climate is not only cold and extremely arid (in the Wright Valley the mean annual temperature is –19.8°C and annual precipitation is less than 100 mm water equivalent), but also windy. The landscape of the Area contains mountain ranges, nunataks, glaciers, ice-free valleys, coastline, ice-covered lakes, ponds, meltwater streams, arid patterned soils and permafrost, sand dunes, and interconnected watershed systems. These watersheds have a regional influence on the McMurdo Sound marine ecosystem. The Area’s location, where large-scale seasonal shifts in the water phase occur, is of great importance to the study of climate change. Through shifts in the ice-water balance over time, resulting in contraction and expansion of hydrological features and the accumulations of trace gases in ancient snow, the McMurdo Dry Valley terrain also contains records of past climate change. The extreme climate of the region serves as an important analogue for the conditions of ancient Earth and contemporary Mars, where such climate may have dominated the evolution of landscape and biota. The Area was jointly proposed by the United States and New Zealand and adopted through Measure 1 (2004). This Management Plan aims to ensure the long-term protection of this unique environment, and to safeguard its values for the conduct of scientific research, education, and more general forms of appreciation. -
A Pilot Framework and Gap Analysis Towards Developing a Fluvial Classification System in the Ross Sea Region Antarctica
PCAS 17 (2014/2015) Supervised Project A PILOT FRAMEWORK AND GAP ANALYSIS TOWARDS DEVELOPING A FLUVIAL CLASSIFICATION SYSTEM IN THE ROSS SEA REGION ANTARCTICA Lorna Louise Thurston Student ID: 12670481 Abstract: An integrated literature review has been undertaken with regards to the hydrological regime and fluvial geomorphology of the Ross Sea Region, Antarctica. The findings have been applied to develop a pilot framework for a process-based classification system of channels, ponds and lakes, and to identify gaps in knowledge that need to be addressed in order for the classification system to be developed further. The intention of the process-based classification system is that, once developed, it will be applied as a tool to help understand fluvial response to climate change and an increasing human footprint in the Ross Sea Region. In this regard, it would contribute towards a contemporary project - Assessing the Sensitivity of Dry Valleys to Change. It may also be useful for other applications, such as ecological research, and applicable to other regions of Antarctica. Several gaps in research have been identified that need to be addressed in order to integrate knowledge of the hydrological regime and fluvial morphology and subsequently develop a process-based classification system. In no particular order, these gaps include knowledge of: the spatial distribution of channel morphologies; fluvial morphological behaviour under heavily transport- and supply- limited conditions; the formation and desiccation of ponds, and their associated -
Nitrate-Rich Inland Waters of the Ross Ice Shelf Region, Antarctica
Antarctic Science 6 (3): 339-346 (1994) Nitrate-rich inland waters of the Ross Ice Shelf region, Antarctica WARWICK F. VINCENT' and CLIVE HOWARD-WILLIAMS2 IDkpartement de Biologie et Centre d'Etudes Nordiques, Universite'Laval, Sainte Foy, Qukbec GlK 7P4,Canada 2NationalInstitute of Water and Atmospheric Research Ltd P.O. Box 8602, Christchurch, New Zealand Abstract: Nutrient and major ion concentrations were measured in surface water samples from lakes, ponds and streams at sites 30-320 km south of McMurdo Sound: the Darwin Glacier region (79.7-8O.O0S), Pyramid Trough in the southern Dry Valleys (78.2"S), and the McMurdo Ice Shelf ablation zone (77.8-78.4"s). These aquatic environments ranged from dilute meltwaters (conductivity < 0.05 mS cm-l)to concentrated brines (> 50 mS cm-I). The lowest nitrate concentrations were recorded at the sites closest to the seasonally open waters of the Ross Sea. Muchhighervalues(100-142000mgNO~-N~3)wererecordedatsitesfurthersouth. Theseobservationssupport the hypothesis that NO; precipitation over Antarctica is of stratospheric rather than coastal marine origin. The nitrogen-rich waters contained chloride and nitrate in the ratio 5.45 g C1 : 1g N (C.V. = 8.4%) which is within therange forAntarcticsnow, and indicativeofnitrate enrichmentby freeze concentrationprocesses. Cyanobacterial mats were conspicuous elements of the biota across the full range of salinities, and were usually dominated by oscillatoriacean species. Nitrogen-fixing cyanobacteria and diatoms were also represented in these benthic microbial communities at the more northern sites, but were absent from all samples from the Darwin Glacier region. Received 2 March 1992,8 November 1993 Key words: Antarctica, cyanobacteria, nitrate, nutrients, organic nitrogen, Ross Ice Shelf Introduction High nitrate concentrations in natural waters are often attributed external inputs. -
COMPOSITE GAZETTEER of ANTARCTICA (CGA) Draft Of
Draft July 2002 Letter “A” only COMPOSITE GAZETTEER OF ANTARCTICA (CGA) Draft of Volume 2, letter A only Shanghai, July 2002 1 . 2 INTRODUCTION From 1998 to 2000 At the meeting of the WG on Geodesy and Geographic Information held in Concepción, Chile, July 1998, the first edition of the SCAR Composite Gazetteer of Antarctica (CGA) was presented and discussed. As a consequence of the discussion, the WG decided the upgrading of the CGA in order to include in future editions the dates of approval of names and the descriptions of the geographical features. All Member Countries were asked to send their contributions to the Italian team charged with the new task. An additional requirement, mainly addressed to those Countries that had already got the required supplementary information in their Gazetteers, was that the descriptions should be shortened in order to not exceed, on the average, 300 characters. The request was issued on 15 June 1999. At the meeting of the WG Program Leaders held in Heppenheim, Germany, July 1999, the difficulties of assembling a large amount of data in a comparatively short time appeared quite evident. It was decided, accordingly, that only the geographical names beginning with the letter "A" should be taken into consideration at the present stage. During the two year span between Concepción meeting (1998) and Tokyo meeting (2000) the work on the CGA went on along two lines: on the one side, dates of approval and descriptions were added to existing names; on the other side, new names were collected and included in the CGA, those new names coming most often complete with dates and descriptions.