Parallel Optimization Algorithms for High Performance Computing

Total Page:16

File Type:pdf, Size:1020Kb

Parallel Optimization Algorithms for High Performance Computing UPC CTTC Parallel optimization algorithms for High Performance Computing. Application to thermal systems. Centre Tecnològic de Transferència de Calor Departament de Màquines i Motors Tèrmics Universitat Politècnica de Catalunya Imanol Aizpurua Udabe Doctoral Thesis Parallel optimization algorithms for High Performance Computing. Application to thermal systems. Imanol Aizpurua Udabe TESI DOCTORAL presentada al Departament de Màquines i Motors Tèrmics E.S.E.I.A.A.T. Universitat Politècnica de Catalunya per a l’obtenció del grau de Doctor per la Universitat Politècnica de Catalunya Terrassa, February 28, 2017 Parallel optimization algorithms for High Performance Computing. Application to thermal systems. Imanol Aizpurua Udabe Director de la tesi Dr. Assensi Oliva Llena Tribunal Qualificador Dr. Antonio Pascau Benito Universidad de Zaragoza Dr. Cristóbal Cortés Gracia Universidad de Zaragoza Dr. Francesc Xavier Trias Miquel Universitat Politècnica de Catalunya To my family. Wayfarer, the only way is your footprints and no other. Wayfarer, there is no way. Make your way by going farther. By going farther, make your way till looking back at where you’ve wandered, you look back on that path you may not set foot on from now onward. Wayfarer, there is no way; only wake-trails on the waters. Antonio Machado (translated by A. Z. Foreman) i A mi familia. Caminante, son tus huellas el camino y nada más; caminante, no hay camino, se hace camino al andar. Al andar se hace camino y al volver la vista atrás se ve la senda que nunca se ha de volver a pisar. Caminante no hay camino sino estelas en la mar... Antonio Machado iii Aknowledgments The end of the Doctoral Thesis is a good chance to look back and observe the timeline of events that took place during these almost five years. As it usually happens, and even if the research activity has been highly enriching, the traces left by collateral experiences lived during this period are the most valuable treasure I will take with me and have decisively contributed to my personal growth. I can’t help smiling every time I remember that innocent boy who arrived at Barcelona and the new dimensions of life he came to discover. In this sense, I am happy to notice that time did not go by uselessly. I would like to thank the people with whom I had the occasion to share important experiences, especially Estela, for the time spent together. I am also grateful for the love and guidance received from my parents during all my life. I think that my effort to join my father’s sense of discipline and search for excellence with my mother’s tact and practical point of view has been worth it. Next, I would like to thank the teachers I had in my early years at kindergarten and school for their job. Education is a long process and, as it happens with research, the greatest dedication and the most remarkable results do not necessarily arise at the same time but are part of the same single process. The completion of this Doctoral Thesis would not have been possible without the collaboration of other researchers and staff from the Heat and Mass Transfer Techno- logical Center (CTTC). I would like to thank especially Prof. Assensi Oliva for believing in me and for giving me the opportunity to join the CTTC, as well as the support and coordination received during the development of the Thesis. His determination and ability to overcome any bureaucratic barrier are laudable and have been really useful. Other members of the group to whom I am grateful are Oriol Lehmkuhl, for his guidance at the early development stage of this Thesis; Joan López, for the time spent philosophizing with me about object oriented programming and parallelization; Jorge Chiva, for checking the accuracy of the Thesis regarding computational topics and v vi his suggestions; and the computer scientists Octavi Pavón and Ramiro Alba, for their support every time I was about to desperate struggling with my computer. In the personal aspect, I appreciate the conversations and points of view shared with Daniel Martínez. I feel that we have been sources of mutual inspiration from time to time. Finally, I would like to thank my former roommates and members of the Latin section of the MALET project, Santiago Torras and Nicolás Ablanque, for their good mood and team work. It has been a pleasure to share this time with you. Without further delay, here is my little contribution to the development of parallel optimization algorithms for High Performance Computing. Imanol Aizpurua Udabe Agradecimientos El final de la Tesis Doctoral es una buena ocasión para volver la vista atrás y observar los acontecimientos de estos últimos casi cinco años. Como suele ocurrir, y aunque la actividad investigadora haya sido muy enriquecedora, el tesoro más valioso que me llevaré es el poso dejado por experiencias colaterales vividas durante este periodo y que han contribuido decisivamente a mi crecimiento personal. No puedo evitar sonreír cada vez que me acuerdo de aquel chico inocente que llegó a Barcelona y de las nuevas dimensiones de la vida que vino a descubrir. En este sentido, me alegra ver que el tiempo no ha pasado en balde. Me gustaría agradecer a la gente con la que he tenido ocasión de compartir experiencias importantes, especialmente a Estela, el tiempo que hemos pasado juntos. Estoy agradecido también a mis padres por el cariño y la orientación recibidos durante mi vida. Creo que mi esfuerzo por aunar el sentido de la disciplina y la búsqueda de la excelencia de mi padre con el tacto y punto de vista prácticos de mi madre ha merecido la pena. A continuación querría felicitar por su trabajo a los profesores que tuve en el colegio desde muy temprana edad. La educación es un proceso largo y, como sucede con la investigación, la dedicación más intensa y los resultados más notorios no tienen lugar necesariamente al mismo tiempo aunque sean parte de un único proceso. La culminación de esta Tesis Doctoral no habría sido posible sin la colaboración de otros investigadores y personal del Centro Tecnológico de Transferencia de Calor (CTTC). En primer lugar, agradezco al Prof. Assensi Oliva haber creído en mí y haberme dado la oportunidad de incorporarme al CTTC, así como el soporte y coordinación recibidos durante el transcurso de la Tesis. Su determinación y habilidad para superar cualquier traba burocrática son loables y han sido de gran utilidad. Otros miembros del grupo a los que estoy agradecido son Oriol Lehmkuhl, por haberme guiado en la fase inicial del desarrollo de esta Tesis; Joan López, por el tiempo dedicado a filosofar vii viii conmigo sobre la programación orientada a objetos y la paralelización; Jorge Chiva, por supervisar la exactitud de la Tesis en lo concerniente al campo de la computación y por sus sugerencias; y los informáticos Octavi Pavón y Ramiro Alba, por su ayuda cada vez que estuve a punto de desesperarme mientras me peleaba con el ordenador. En el aspecto personal, aprecio las conversaciones y puntos de vista compartidos con Daniel Martínez. Creo que de tanto en tanto hemos sido fuentes de inspiración mutua. Por último, me gustaría agradecer a mis antiguos compañeros de sala y miembros de la sección latina del proyecto MALET, Santiago Torras y Nicolás Ablanque, su buen humor y trabajo en equipo. Ha sido un placer compartir mi tiempo con vosotros. Sin más preámbulos, aquí está mi pequeña contribución al desarrollo de algoritmos de optimización paralelos para la computación de alto rendimiento. Imanol Aizpurua Udabe Contents Dedication i Abstract xiii 1 State of the art of optimization algorithms1 1.1 Introduction.....................................2 1.2 Single-objective vs. Multi-objective optimization...............5 1.2.1 Single-objective optimization......................5 1.2.2 Multi-objective optimization.......................9 1.3 Constraint handling................................ 16 1.4 Surrogate-based optimization.......................... 16 1.5 Hybrid optimization methods.......................... 18 1.6 The genetic algorithm............................... 20 1.6.1 Basic concepts............................... 20 1.6.2 Structure of the algorithm........................ 22 1.7 Parallelization of genetic and other population-based optimization algo- rithms........................................ 25 1.7.1 General concepts.............................. 25 1.7.2 Main parallelization strategies..................... 27 1.7.3 Shortcomings of standard parallelization techniques........ 31 1.8 Test suites for optimization algorithms..................... 39 1.8.1 Single-objective optimization tests................... 41 1.8.2 Multi-objective optimization tests................... 43 1.9 Random number generators........................... 45 1.10 Conclusions..................................... 45 References...................................... 46 ix x Contents 2 Implementation of a new optimization library: Optimus 57 2.1 Introduction..................................... 58 2.1.1 General design requirements of a library............... 58 2.1.2 Specific design requirements of the new optimization library... 59 2.1.3 Computing facilities at CTTC...................... 60 2.1.4 Concluding remarks............................ 61 2.2 State of the art of optimization libraries.................... 62 2.2.1 Description of the project’s needs.................... 62 2.2.2 Free open-source software........................ 64 2.2.3 Proprietary commercial software.................... 66 2.2.4 Concluding remarks............................ 67 2.3 Main features
Recommended publications
  • Appendix H: MOEA Software Availability
    H MOEA Software Availability H.1 Introduction This appendix describes some of the main public-domain MOEA software that is currently available. This description includes the following information: Name: Name of the software system Description: Any relevant information about the system Environment: Software environment for which the software is intended Language: Programming language in which the software is written Availability: Software availability Original sources of each of the systems analyzed are cited, but readers should be aware of the fact that many of these systems are also mirrored at the EMOO repository located at (see under Software): http://delta.cs.cinvestav.mx/~ccoello/EMOO/ with a mirror at: http://www.lania.mx/~ccoello/EMOO Note that although commercial software for multi-objective optimization also exists (e.g., iSIGHT, which is briefly described in Chapter 5), such systems are not included here, since we limited the contents of this appendix to public- domain software. 678 H MOEA Software Availability Table H.1: MOEA Software Name Description Environment Availability Metaheuristic Includes imple- Any platform Antonio J. Nebro Algorithms in mentations in supporting Java ([email protected]), or download Java (JMetal) Java of: NSGA-II at: http://neo.lcc.uma.es/metal/ [358], SPEA2 index.html [1712], PAES [858], OMOPSO [1546], AbYSS [1137], MOCell [1136]. It also includes several test functions Multiple- Includes: Pareto Linux/Unix; Andrzej Jaszkiewicz Objective Simulated An- Standard C++ ([email protected]) MetaHeuristics
    [Show full text]
  • Metaheuristic Optimization Frameworks: a Survey and Benchmarking
    Soft Comput DOI 10.1007/s00500-011-0754-8 ORIGINAL PAPER Metaheuristic optimization frameworks: a survey and benchmarking Jose´ Antonio Parejo • Antonio Ruiz-Corte´s • Sebastia´n Lozano • Pablo Fernandez Ó Springer-Verlag 2011 Abstract This paper performs an unprecedented com- and affordable time and cost. However, heuristics are parative study of Metaheuristic optimization frameworks. usually based on specific characteristics of the problem at As criteria for comparison a set of 271 features grouped in hand, which makes their design and development a com- 30 characteristics and 6 areas has been selected. These plex task. In order to solve this drawback, metaheuristics features include the different metaheuristic techniques appear as a significant advance (Glover 1977); they are covered, mechanisms for solution encoding, constraint problem-agnostic algorithms that can be adapted to incor- handling, neighborhood specification, hybridization, par- porate the problem-specific knowledge. Metaheuristics allel and distributed computation, software engineering have been remarkably developed in recent decades (Voß best practices, documentation and user interface, etc. A 2001), becoming popular and being applied to many metric has been defined for each feature so that the scores problems in diverse areas (Glover and Kochenberger 2002; obtained by a framework are averaged within each group of Back et al. 1997). However, when new are considered, features, leading to a final average score for each frame- metaheuristics should be implemented and tested, implying work. Out of 33 frameworks ten have been selected from costs and risks. the literature using well-defined filtering criteria, and the As a solution, object-oriented paradigm has become a results of the comparison are analyzed with the aim of successful mechanism used to ease the burden of applica- identifying improvement areas and gaps in specific tion development and particularly, on adapting a given frameworks and the whole set.
    [Show full text]
  • Paradiseo-MO: from Fitness Landscape Analysis to Efficient
    ParadisEO-MO: From Fitness Landscape Analysis to Efficient Local Search Algorithms Jérémie Humeau, Arnaud Liefooghe, El-Ghazali Talbi, Sébastien Verel To cite this version: Jérémie Humeau, Arnaud Liefooghe, El-Ghazali Talbi, Sébastien Verel. ParadisEO-MO: From Fitness Landscape Analysis to Efficient Local Search Algorithms. [Research Report] RR-7871, 2012. hal- 00665421v1 HAL Id: hal-00665421 https://hal.inria.fr/hal-00665421v1 Submitted on 1 Feb 2012 (v1), last revised 4 Jun 2013 (v2) HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ParadisEO-MO: From Fitness Landscape Analysis to Efficient Local Search Algorithms Jérémie Humeau, Arnaud Liefooghe, El-Ghazali Talbi, Sébastien Verel RESEARCH REPORT N° 7871 February 2012 Project-Team Dolphin ISSN 0249-6399 ISRN INRIA/RR--7871--FR+ENG ParadisEO-MO: From Fitness Landscape Analysis to Efficient Local Search Algorithms Jérémie Humeau∗, Arnaud Liefooghe†, El-Ghazali Talbi‡, Sébastien Verel§ Project-Team Dolphin Research Report n° 7871 — February 2012 — 34 pages Abstract: This document presents a general-purpose software framework dedicated to the design, the analysis and the implementation of local search algorithms: ParadisEO-MO. A sub- stantial number of single-solution based local search metaheuristics has been proposed so far, and an attempt of unifying existing approaches is here presented.
    [Show full text]
  • Arxiv:1903.02915V2 [Cs.NE] 17 Apr 2019 an Important Factor That Has Ignited the Widespread Adop- Namic Problems
    jMetalPy: a Python Framework for Multi-Objective Optimization with Metaheuristics Antonio Ben´ıtez-Hidalgoa, Antonio J. Nebroa, Jose´ Garc´ıa-Nietoa, Izaskun Oregib, Javier Del Serb,c,d aDepartamento de Lenguajes y Ciencias de la Computaci´on,Ada Byron Research Building, University of M´alaga, 29071 M´alaga, Spain bTECNALIA, 48160 Derio, Spain cUniversity of the Basque Country (UPV/EHU), 48013 Bilbao, Spain dBasque Center for Applied Mathematics (BCAM), 48009 Bilbao, Spain Abstract This paper describes jMetalPy, an object-oriented Python-based framework for multi-objective optimization with metaheuristic techniques. Building upon our experiences with the well-known jMetal framework, we have developed a new multi-objective optimization software platform aiming not only at replicating the former one in a different programming language, but also at taking advantage of the full feature set of Python, including its facilities for fast prototyping and the large amount of available libraries for data processing, data analysis, data visualization, and high-performance computing. As a result, jMetalPy provides an environment for solving multi-objective optimization problems focused not only on traditional metaheuristics, but also on techniques supporting preference articulation and dynamic problems, along with a rich set of features related to the automatic generation of statistical data from the results generated, as well as the real-time and interactive visualization of the Pareto front approximations produced by the algorithms. jMetalPy offers additionally support for parallel computing in multicore and cluster systems. We include some use cases to explore the main features of jMetalPy and to illustrate how to work with it. Keywords: Multi-Objective Optimization, Metaheuristics, Software Framework, Python, Statistical Analysis, Visualization 1.
    [Show full text]
  • Paradiseo-MOEO Arnaud Liefooghe, Laetitia Jourdan, El-Ghazali Talbi
    A software framework based on a conceptual unified model for evolutionary multiobjective optimization: ParadisEO-MOEO Arnaud Liefooghe, Laetitia Jourdan, El-Ghazali Talbi To cite this version: Arnaud Liefooghe, Laetitia Jourdan, El-Ghazali Talbi. A software framework based on a conceptual unified model for evolutionary multiobjective optimization: ParadisEO-MOEO. European Journal of Operational Research, Elsevier, 2011, 209 (2), pp.104-112. 10.1016/j.ejor.2010.07.023. hal-00522612 HAL Id: hal-00522612 https://hal.archives-ouvertes.fr/hal-00522612 Submitted on 1 Oct 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. European Journal of Operational Research xxx (2010) xxx–xxx Contents lists available at ScienceDirect European Journal of Operational Research journal homepage: www.elsevier.com/locate/ejor Decision Support A software framework based on a conceptual unified model for evolutionary multiobjective optimization: ParadisEO-MOEO ⇑ Arnaud Liefooghe a,b, , Laetitia Jourdan a, El-Ghazali Talbi a,c a Université Lille 1, Laboratoire d’Informatique Fondamentale de Lille, UMR CNRS 8022, INRIA Lille-Nord Europe, Parc Scientifique de la Haute Borne, 40 Avenue Halley, 59650 Villeneuve d’Ascq, France b University of Coimbra, CISUC, Department of Informatics Engineering, Portugal c King Saud University, Riyadh, Saudi Arabia article info abstract Article history: This paper presents a general-purpose software framework dedicated to the design and the implementa- Received 24 April 2009 tion of evolutionary multiobjective optimization techniques: ParadisEO-MOEO.
    [Show full text]
  • Parallel Evolutionary Algorithms for Multi- Objective Optimization
    Parallel evolutionary algorithms for multi- objective optimization Prof. El-Ghazali TALBI University Lille 1 [email protected] www.lifl.fr/~talbi Motivations . High-dimensional and complex optimization problems in many areas of academic and industrial concern Telecommunication, genomics, transportation, engineering design, … . Metaheuristics (ex. EAs) reduce the computational complexity of search BUT Parallel issue remains important: . More and more complex metaheuristics . Huge search space . CPU or memory intensive of the objective function Motivations . Rapid development of technology . Processors: Multi-core processors, GPU, … . Networks (LAN & WAN): Myrinet, Infiniband, Optical networks, … . Data storage . Increasing ratio performance / cost Goals . Speedup the search real-time and interactive optimization methods, dynamic optimisation, … . Improve quality of solutions cooperation, better even on a single processor . Improve robustness (different instances, design space) . Solving large problems instances, accuracy of mathematics models Taxonomy of metaheuristics Metaheuristics Single Population solution Hill Simulated Tabu Evol. Swarm Climbing annealing search algorithms optimisation . Solution-based metaheuristics: Hill Climbing, Simulated Annealing, Tabu Search, VNS, … . Population-based metaheuristics: Evolutionary Algorithms, Scatter Search, Swarm optimization, … Outline . Parallel Metaheuristics: Design issues . Parallel Metaheuristics: Implementation issues . Hardware platforms, Programming models . Performance
    [Show full text]
  • Paradiseo-MOEO Arnaud Liefooghe, Laetitia Jourdan, El-Ghazali Talbi
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by HAL - Lille 3 A Unified Model for Evolutionary Multiobjective Optimization and its Implementation in a General Purpose Software Framework: ParadisEO-MOEO Arnaud Liefooghe, Laetitia Jourdan, El-Ghazali Talbi To cite this version: Arnaud Liefooghe, Laetitia Jourdan, El-Ghazali Talbi. A Unified Model for Evolutionary Mul- tiobjective Optimization and its Implementation in a General Purpose Software Framework: ParadisEO-MOEO. [Research Report] RR-6906, INRIA. 2009. <inria-00376770> HAL Id: inria-00376770 https://hal.inria.fr/inria-00376770 Submitted on 20 Apr 2009 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE A Unified Model for Evolutionary Multiobjective Optimization and its Implementation in a General Purpose Software Framework: ParadisEO-MOEO Arnaud Liefooghe — Laetitia Jourdan — El-Ghazali Talbi N° 6906 April 2009 Thème NUM apport de recherche ISSN 0249-6399 ISRN INRIA/RR--6906--FR+ENG A Unified Model for Evolutionary Multiobjective Optimization and its Implementation in a General Purpose Software Framework: ParadisEO-MOEO Arnaud Liefooghe , Laetitia Jourdan , El-Ghazali Talbi Th`eme NUM — Syst`emes num´eriques Equipe-Projet´ Dolphin Rapport de recherche n° 6906 — April 2009 — 28 pages Abstract: This paper gives a concise overview of evolutionary algorithms for multiobjective optimization.
    [Show full text]
  • An Experimental Comparison of Metaheuristic Frameworks for Multi-Objective Optimization
    An experimental comparison of metaheuristic frameworks for multi-objective optimization | Extended study | Technical Report Aurora Ram´ırez, Rafael Barbudo and Jos´eRa´ulRomero1 Knowledge Discovery and Intelligent Systems Research Group Department of Computer Science and Numerical Analysis University of C´ordoba September 27, 2020 1Corresponding author: [email protected] An experimental comparison of metaheuristic frameworks for multi-objective optimization 1 Introduction Metaheuristic optimization frameworks (MOFs) are software tools or class libraries that provide a collection of extensible building blocks to create algorithms and experiments aimed at solving optimization problems. Several alternatives are currently available to deal with multi-objective optimization (MOO) problems, which are characterized by the definition of two or more objectives. This technical report is provided as additional material to the research paper of the same title. Therefore, the information presented in this technical report is intended to complement those aspects that have been summarized or omitted due to space limitations. Essentially, it provides further details about the evaluation of ten MOFs in terms of characteristics like the set of algorithms and operators each one offers or the availability of general utilities, among others. This document presents the information extracted from the available documentation and the source code, serving as a reference guide to domain experts and researchers interested in the application of metaheuristic algorithms to solve multi-objective problems. More specifically, the content of this technical report can be summarized as follows: • The detailed methodology followed to evaluate the frameworks, including technical details of external tools and the experimental environment. • The exhaustive evaluation of each characteristic is presented in tables.
    [Show full text]
  • Paradiseo-MOEO
    ParadisEO-MOEO: A Software Framework for Evolutionary Multi-Objective Optimization Arnaud Liefooghe, Laetitia Jourdan, Thomas Legrand, Jérémie Humeau, El-Ghazali Talbi To cite this version: Arnaud Liefooghe, Laetitia Jourdan, Thomas Legrand, Jérémie Humeau, El-Ghazali Talbi. ParadisEO-MOEO: A Software Framework for Evolutionary Multi-Objective Optimization. Ad- vances in Multi-Objective Nature Inspired Computing, Springer Berlin / Heidelberg, pp.87-117, 2010, 10.1007/978-3-642-11218-8_5. hal-00522623 HAL Id: hal-00522623 https://hal.archives-ouvertes.fr/hal-00522623 Submitted on 1 Oct 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 5 ParadisEO-MOEO: A Software Framework for Evolutionary Multi-Objective Optimization Arnaud Liefooghe1,2,LaetitiaJourdan1,2,ThomasLegrand2,J´er´emie Humeau2, and El-Ghazali Talbi1,2 1 Laboratoire d’Informatique Fondamentale de Lille (LIFL), UMR CNRS 8022, Universit´eLille1,Bˆatiment M3, 59655 Villeneuve d’Ascq cedex, France 2 INRIA Lille-Nord Europe, Parc Scientifique de la Haute Borne, 40 avenue Halley, 59650 Villeneuve d’Ascq, France [email protected], [email protected], [email protected], [email protected], [email protected] Summary. This chapter presents ParadisEO-MOEO, awhite-boxobject-orientedsoftware framework dedicated to the flexible design of metaheuristics for multi-objective optimization.
    [Show full text]
  • From Fitness Landscape Analysis to Efficient Local Search Algorithms
    ParadisEO-MO: From Fitness Landscape Analysis to Efficient Local Search Algorithms Jérémie Humeau, Arnaud Liefooghe, El-Ghazali Talbi, Sébastien Verel To cite this version: Jérémie Humeau, Arnaud Liefooghe, El-Ghazali Talbi, Sébastien Verel. ParadisEO-MO: From Fitness Landscape Analysis to Efficient Local Search Algorithms. [Research Report] RR-7871, INRIA. 2013. hal-00665421v2 HAL Id: hal-00665421 https://hal.inria.fr/hal-00665421v2 Submitted on 4 Jun 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ParadisEO-MO: From Fitness Landscape Analysis to Efficient Local Search Algorithms Jérémie Humeau, Arnaud Liefooghe, El-Ghazali Talbi, Sébastien Verel RESEARCH REPORT N° 7871 June 2013 Project-Team Dolphin ISSN 0249-6399 ISRN INRIA/RR--7871--FR+ENG ParadisEO-MO: From Fitness Landscape Analysis to Efficient Local Search Algorithms Jérémie Humeau∗, Arnaud Liefooghe†, El-Ghazali Talbi‡, Sébastien Verel§ Project-Team Dolphin Research Report n° 7871 — June 2013 — 36 pages Abstract: This document presents a general-purpose software framework dedicated to the design, the analysis and the implementation of local search algorithms: ParadisEO-MO. A sub- stantial number of single-solution based local search metaheuristics has been proposed so far, and an attempt of unifying existing approaches is here presented.
    [Show full text]
  • Analysis of Various Multi-Objective Optimization Evolutionary Algorithms for Monte Carlo Treatment Planning System Summer Student Report
    EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH EN-STI-FDA Analysis of Various Multi-Objective Optimization Evolutionary Algorithms for Monte Carlo Treatment Planning System Summer Student Report Author Supervisor M. TYDRICHOVA W. Koz lowska August 4, 2017, Geneva Introduction The principal goal of this project was to analyze various multiobjective opti- mization algorithms (MOEA) for the Monte Carlo Treatment Planning System. After doing literature research on testing and quality evaluation methods, the comparison of available frameworks was done to select the most suitable one for our test needs. Then the software for testing was developed, we tried to provide a solid objective-oriented architecture to allow easy modifications in the future, another high priority was to create an user-friendly software. From all available algorithms, candidates for testing were selected. Apart results from the literature that were taken into account to do this selection, we placed emphasis on a diverse scale of algorithms - the aim was not only to find the best performing algorithm, but also to describe the comportment, advantages and weak points of different types of algorithms, in hope that this output could be helpful and valuable for the further research. In performed tests, we focused mostly on the quality of DOSE and LET values of obtained solutions, as the main goal of the problem was to minimize these quantities. Distribution of solutions and population size were also analyzed. Another important criterion was the reliability of the algorithm. That means, we studied if the algorithm performed the same way in all seeds and if it was independent on a given data set.
    [Show full text]
  • Parallel Metaheuristics: from Design to Implementation
    Laboratoire d’Informatique Fondamentale de Lille Parallel Metaheuristics: from Design to Implementation Prof. E-G. Talbi Parallel Cooperative Optimization Research Group Motivations High-dimensional and complex optimization problems in many areas of industrial concern → Telecommunication, genomics, transportation, engineering design, … Metaheuristics reduce the computational complexity of search BUT Parallel issue remains important: More and more complex metaheuristics Huge search space CPU or memory intensive of the objective function Motivations Rapid development of technology Processors: Multi-core processors, … Networks (LAN & WAN): Myrinet, Infiniband, Optical networks, … Data storage Increasing ratio performance / cost Goals Speedup the search Æ real-time and interactive optimization methods, dynamic optimisation, … Improve quality of solutions Æ cooperation, better even on a single processor Improve robustness (different instances, design space) Solving large problems Æ instances, accuracy of mathematics models Taxonomy of metaheuristics Metaheuristics Single Population solution Hill Simulated Tabu Evol. Scatter Climbing annealing search algorithms search Solution-based metaheuristics: Hill Climbing, Simulated Annealing, Tabu Search, VNS, … Population-based metaheuristics: Evolutionary Algorithms, Scatter Search, Swarm optimization, … Outline Parallel Metaheuristics: Design issues Parallel Metaheuristics: Implementation issues Hardware platforms, Programming models Performance evaluation Adaptation to Multi-objective
    [Show full text]