Metaheuristic Techniques
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hybridizations of Metaheuristics with Branch & Bound Derivates
Hybridizations of Metaheuristics With Branch & Bound Derivates Christian Blum1, Carlos Cotta2, Antonio J. Fern´andez2,Jos´e E. Gallardo2, and Monaldo Mastrolilli3 1 ALBCOM research group Universitat Polit`ecnica de Catalunya [email protected] 2 Dept. Lenguajes y Ciencias de la Computaci´on Universidad de M´alaga {ccottap,afdez,pepeg}@lcc.uma.es 3 Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA) [email protected] Summary. An important branch of hybrid metaheuristics concerns the hybridiza- tion with branch & bound derivatives. In this chapter we present examples for two different types of hybridization. The first one concerns the use of branch & bound fea- tures within construction-based metaheuristics in order to increase their efficiancy. The second example deals with the use of a metaheuristic, in our case a memetic algorithm, in order to increase the efficiancy of branch & bound, respectively branch & bound derivatives such as beam search. The quality of the resulting hybrid tech- niques is demonstrated by means of the application to classical string problems: the longest common subsequence problem and the shortest common supersequence problem. 1 Introduction One of the basic ingredients of an optimization technique is a mechanism for exploring the search space, that is, the space of valid solutions to the con- sidered optimization problem. Algorithms belonging to the important class of constructive optimization techniques tackle an optimization problem by ex- ploring the search space in form of a tree, a so-called search tree.Thesearch tree is generally defined by an underlying solution construction mechanism. Each path from the root node of the search tree to one of the leaves corre- sponds to the process of constructing a candidate solution. -
Host Alarm Calls Attract the Unwanted Attention of the Brood Parasitic
www.nature.com/scientificreports OPEN Host alarm calls attract the unwanted attention of the brood parasitic common cuckoo Attila Marton 1,2*, Attila Fülöp 2,3, Katalin Ozogány1, Csaba Moskát 4,5 & Miklós Bán 1,3,5 It is well known that avian brood parasites lay their eggs in the nests of other bird species, called hosts. It remains less clear, however, just how parasites are able to recognize their hosts and identify the exact location of the appropriate nests to lay their eggs in. While previous studies attributed high importance to visual signals in fnding the hosts’ nests (e.g. nest building activity or the distance and direct sight of the nest from vantage points used by the brood parasites), the role of host acoustic signals during the nest searching stage has been largely neglected. We present experimental evidence that both female and male common cuckoos Cuculus canorus pay attention to their host’s, the great reed warbler’s Acrocephalus arundinaceus alarm calls, relative to the calls of an unparasitized species used as controls. Parallel to this, we found no diference between the visibility of parasitized and unparasitized nests during drone fights, but great reed warblers that alarmed more frequently experienced higher rates of parasitism. We conclude that alarm calls might be advantageous for the hosts when used against enemies or for alerting conspecifcs, but can act in a detrimental manner by providing important nest location cues for eavesdropping brood parasites. Our results suggest that host alarm calls may constitute a suitable trait on which cuckoo nestlings can imprint on to recognize their primary host species later in life. -
4. Convex Optimization Problems
Convex Optimization — Boyd & Vandenberghe 4. Convex optimization problems optimization problem in standard form • convex optimization problems • quasiconvex optimization • linear optimization • quadratic optimization • geometric programming • generalized inequality constraints • semidefinite programming • vector optimization • 4–1 Optimization problem in standard form minimize f0(x) subject to f (x) 0, i =1,...,m i ≤ hi(x)=0, i =1,...,p x Rn is the optimization variable • ∈ f : Rn R is the objective or cost function • 0 → f : Rn R, i =1,...,m, are the inequality constraint functions • i → h : Rn R are the equality constraint functions • i → optimal value: p⋆ = inf f (x) f (x) 0, i =1,...,m, h (x)=0, i =1,...,p { 0 | i ≤ i } p⋆ = if problem is infeasible (no x satisfies the constraints) • ∞ p⋆ = if problem is unbounded below • −∞ Convex optimization problems 4–2 Optimal and locally optimal points x is feasible if x dom f and it satisfies the constraints ∈ 0 ⋆ a feasible x is optimal if f0(x)= p ; Xopt is the set of optimal points x is locally optimal if there is an R> 0 such that x is optimal for minimize (over z) f0(z) subject to fi(z) 0, i =1,...,m, hi(z)=0, i =1,...,p z x≤ R k − k2 ≤ examples (with n =1, m = p =0) f (x)=1/x, dom f = R : p⋆ =0, no optimal point • 0 0 ++ f (x)= log x, dom f = R : p⋆ = • 0 − 0 ++ −∞ f (x)= x log x, dom f = R : p⋆ = 1/e, x =1/e is optimal • 0 0 ++ − f (x)= x3 3x, p⋆ = , local optimum at x =1 • 0 − −∞ Convex optimization problems 4–3 Implicit constraints the standard form optimization problem has an implicit -
Metaheuristics1
METAHEURISTICS1 Kenneth Sörensen University of Antwerp, Belgium Fred Glover University of Colorado and OptTek Systems, Inc., USA 1 Definition A metaheuristic is a high-level problem-independent algorithmic framework that provides a set of guidelines or strategies to develop heuristic optimization algorithms (Sörensen and Glover, To appear). Notable examples of metaheuristics include genetic/evolutionary algorithms, tabu search, simulated annealing, and ant colony optimization, although many more exist. A problem-specific implementation of a heuristic optimization algorithm according to the guidelines expressed in a metaheuristic framework is also referred to as a metaheuristic. The term was coined by Glover (1986) and combines the Greek prefix meta- (metá, beyond in the sense of high-level) with heuristic (from the Greek heuriskein or euriskein, to search). Metaheuristic algorithms, i.e., optimization methods designed according to the strategies laid out in a metaheuristic framework, are — as the name suggests — always heuristic in nature. This fact distinguishes them from exact methods, that do come with a proof that the optimal solution will be found in a finite (although often prohibitively large) amount of time. Metaheuristics are therefore developed specifically to find a solution that is “good enough” in a computing time that is “small enough”. As a result, they are not subject to combinatorial explosion – the phenomenon where the computing time required to find the optimal solution of NP- hard problems increases as an exponential function of the problem size. Metaheuristics have been demonstrated by the scientific community to be a viable, and often superior, alternative to more traditional (exact) methods of mixed- integer optimization such as branch and bound and dynamic programming. -
An Exhaustive Review of Bio-Inspired Algorithms and Its Applications for Optimization in Fuzzy Clustering
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 March 2021 doi:10.20944/preprints202103.0282.v1 Article An Exhaustive Review of Bio-Inspired Algorithms and its Applications for Optimization in Fuzzy Clustering Fevrier Valdez1, Oscar Castillo1,* and Patricia Melin1 1 Division Graduate of Studies, Tijuana Institute of Technology, Calzada Tecnologico S/N, Tijuana, 22414, BC, Mexico. Tel.: 664 607 8400 * Correspondence: [email protected]; Tel.: 664 607 8400 1 Abstract: In recent years, new metaheuristic algorithms have been developed taking as reference 2 the inspiration on biological and natural phenomena. This nature-inspired approach for algorithm 3 development has been widely used by many researchers in solving optimization problem. These 4 algorithms have been compared with the traditional ones algorithms and have demonstrated to 5 be superior in complex problems. This paper attempts to describe the algorithms based on nature, 6 that are used in fuzzy clustering. We briefly describe the optimization methods, the most cited 7 nature-inspired algorithms published in recent years, authors, networks and relationship of the 8 works, etc. We believe the paper can serve as a basis for analysis of the new are of nature and 9 bio-inspired optimization of fuzzy clustering. 10 11 Keywords: FUZZY; CLUSTERING; OPTIMIZATION ALGORITHMS 12 1. Introduction 13 Optimization is a discipline for finding the best solutions to specific problems. 14 Every day we developed many actions, which we have tried to improve to obtain the 15 best solution; for example, the route at work can be optimized depending on several 16 factors, as traffic, distance, etc. On other hand, the design of the new cars implies an 17 optimization process with many objectives as wind resistance, reduce the use of fuel, Citation: Valdez, F.; Castillo, O.; Melin, 18 maximize the potency of motor, etc. -
Genetic Programming: Theory, Implementation, and the Evolution of Unconstrained Solutions
Genetic Programming: Theory, Implementation, and the Evolution of Unconstrained Solutions Alan Robinson Division III Thesis Committee: Lee Spector Hampshire College Jaime Davila May 2001 Mark Feinstein Contents Part I: Background 1 INTRODUCTION................................................................................................7 1.1 BACKGROUND – AUTOMATIC PROGRAMMING...................................................7 1.2 THIS PROJECT..................................................................................................8 1.3 SUMMARY OF CHAPTERS .................................................................................8 2 GENETIC PROGRAMMING REVIEW..........................................................11 2.1 WHAT IS GENETIC PROGRAMMING: A BRIEF OVERVIEW ...................................11 2.2 CONTEMPORARY GENETIC PROGRAMMING: IN DEPTH .....................................13 2.3 PREREQUISITE: A LANGUAGE AMENABLE TO (SEMI) RANDOM MODIFICATION ..13 2.4 STEPS SPECIFIC TO EACH PROBLEM.................................................................14 2.4.1 Create fitness function ..........................................................................14 2.4.2 Choose run parameters.........................................................................16 2.4.3 Select function / terminals.....................................................................17 2.5 THE GENETIC PROGRAMMING ALGORITHM IN ACTION .....................................18 2.5.1 Generate random population ................................................................18 -
An Improved Bees Algorithm Local Search Mechanism for Numerical Dataset
An Improved Bees Algorithm Local Search Mechanism for Numerical dataset Prepared By: Aras Ghazi Mohammed Al-dawoodi Supervisor: Dr. Massudi bin Mahmuddin DISSERTATION SUBMITTED TO THE AWANG HAD SALLEH GRADUATE SCHOOL OF COMPUTING UUM COLLEGE OF ARTS AND SCIENCES UNIVERSITI UTARA MALAYSIA IN PARITIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER IN (INFORMATION TECHNOLOGY) 2014 - 2015 Permission to Use In presenting this dissertation report in partial fulfilment of the requirements for a postgraduate degree from University Utara Malaysia, I agree that the University Library may make it freely available for inspection. I further agree that permission for the copying of this report in any manner, in whole or in part, for scholarly purpose may be granted by my supervisor(s) or, in their absence, by the Dean of Awang Had Salleh Graduate School of Arts and Sciences. It is understood that any copying or publication or use of this report or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to University Utara Malaysia for any scholarly use which may be made of any material from my report. Requests for permission to copy or to make other use of materials in this project report, in whole or in part, should be addressed to: Dean of Awang Had Salleh Graduate School of Arts and Sciences UUM College of Arts and Sciences University Utara Malaysia 06010 UUM Sintok i Abstrak Bees Algorithm (BA), satu prosedur pengoptimuman heuristik, merupakan salah satu teknik carian asas yang berdasarkan kepada aktiviti pencarian makanan lebah. -
AI, Robots, and Swarms: Issues, Questions, and Recommended Studies
AI, Robots, and Swarms Issues, Questions, and Recommended Studies Andrew Ilachinski January 2017 Approved for Public Release; Distribution Unlimited. This document contains the best opinion of CNA at the time of issue. It does not necessarily represent the opinion of the sponsor. Distribution Approved for Public Release; Distribution Unlimited. Specific authority: N00014-11-D-0323. Copies of this document can be obtained through the Defense Technical Information Center at www.dtic.mil or contact CNA Document Control and Distribution Section at 703-824-2123. Photography Credits: http://www.darpa.mil/DDM_Gallery/Small_Gremlins_Web.jpg; http://4810-presscdn-0-38.pagely.netdna-cdn.com/wp-content/uploads/2015/01/ Robotics.jpg; http://i.kinja-img.com/gawker-edia/image/upload/18kxb5jw3e01ujpg.jpg Approved by: January 2017 Dr. David A. Broyles Special Activities and Innovation Operations Evaluation Group Copyright © 2017 CNA Abstract The military is on the cusp of a major technological revolution, in which warfare is conducted by unmanned and increasingly autonomous weapon systems. However, unlike the last “sea change,” during the Cold War, when advanced technologies were developed primarily by the Department of Defense (DoD), the key technology enablers today are being developed mostly in the commercial world. This study looks at the state-of-the-art of AI, machine-learning, and robot technologies, and their potential future military implications for autonomous (and semi-autonomous) weapon systems. While no one can predict how AI will evolve or predict its impact on the development of military autonomous systems, it is possible to anticipate many of the conceptual, technical, and operational challenges that DoD will face as it increasingly turns to AI-based technologies. -
Genetic Algorithm
A More “Realistic” Genetic Algorithm -----CGA A thesis submitted to the Cardiff University For the degree of Master of Philosophy in Engineering By Hui Chen February 2013 1 Acknowledgements I am heartily thankful to my supervisors Professor John Miles and Dr Alan Kwan for giving me the opportunity to carry out this study and encouraging me a lot during these years. Then, I offer my regards and blessings to all of those who helped and supported me in any respect during the completion of the project; Dr Haijiang Li, my parents Jianying Yang and Xueping Chen and all my friends. Last but not least, I also wish to thank Dr Michael Packianather, Dr Shuqi Pan and all the staffs in the research office for their patience and support. Hui Chen 2013 2 Abstract Genetic Algorithms (GAs) are loosely based on the concept of the natural cycle of reproduction with selective pressures favouring the individuals which are best suited to their environment (i.e. fitness function). However, there are many features of natural reproduction which are not replicated in GAs, such as population members taking some time to reach puberty. This thesis describes a programme of research which set out to investigate what would be the impact on the performance of a GA of introducing additional features which more closely replicate real life processes. The motivation for the work was curiosity. The approach has been tested using various standard test functions. The results are interesting and show that when compared with a Canonical GA, introducing various features such as the need to reach puberty before reproduction can occur and risk of illness can enhance the effectiveness of GAs in terms of the overall effort needed to find a solution. -
Randomized Derivative-Free Optimization Institute of Theoretical Computer Science Swiss Institute of Bioinformatics
Sebastian U. Stich MADALGO & CTIC Summer School 2011 [email protected] Randomized Derivative-Free Optimization Institute of Theoretical Computer Science Swiss Institute of Bioinformatics Standard Approaches Evolution Strategies Explained The Right Metric Other Methods Pure Random Search [1a] • (1 + 1)-ES described already in 1968 [2a] Step-size adaptation of ES [2c] f H • sample points uniformly in space For quadratic: Hit and Run [7a] • basis of more complex methods like CMA-ES 1 • exponential running time y∗ ∗ ∗ ∗ • draw a random direction and on the segment • convergence of (1+1)-ES linear on quadratic functions [2b] f(x) = f(x ) + (x − x )H(x − x ) K • Pure adaptive random search (PAS) [1b]: 2 contained in the convex body uniformly the 2 ∗ next iterate sample sequence of points, all new points y • theoretical convergence results only known for very simple H = ∇ f(x ) z uniformly among those with better function functions • originally proposed as sampling method to y value → not possible to do ∗ generate uniform samples from convex x∗ Generic (µ + λ)-Evolution Strategy (ES) gradient direction −∇f(x) body [7b] P • PAS analogous to randomized version of method of centers −1 1: for k = 0 to N do Newton direction −H ∇f(x) • fast mixing times (in special settings, e.g. log-convave functions) proven by Lovász [7c] and Dyer [7d] 2: Xk ←(λ new points, based on Mk−1) DIRECT [1c] • introduced as optimization algorithm by Bertsimas [7a] 3: EvaluateFunction (Xk) • iteratively evaluate function at grid • if H ≈ In first order information is sufficient -
Transactions on Machine Learning and Artificial Inteligence
Volume 7 No 6 Artificial God Optimization – A Creation 1Satish Gajawada, 2Hassan M.H. Mustafa 1Independent Inventor and Scientist Founder and Father of Artificial Human Optimization Field Alumnus, Indian Institute of Technology Roorkee 2Faculty of Specified Education, Dept. of Educational Technology, Banha University, Egypt Grand Father of Artificial Human Optimization Field [email protected]; [email protected] ABSTRACT Nature Inspired Optimization Algorithms have become popular for solving complex Optimization problems. Two most popular Global Optimization Algorithms are Genetic Algorithms (GA) and Particle Swarm Optimization (PSO). Of the two, PSO is very simple and many Research Scientists have used PSO to solve complex Optimization Problems. Hence PSO is chosen in this work. The primary focus of this paper is on imitating God who created the nature. Hence the term "Artificial God Optimization (AGO)" is coined in this paper. AGO is a new field which is invented in this work. A new Algorithm titled "God Particle Swarm Optimization (GoPSO)" is created and applied on various benchmark functions. The World's first Hybrid PSO Algorithm based on Artificial Gods is created in this work. GoPSO is a hybrid Algorithm which comes under AGO Field as well as PSO Field. Results obtained by PSO are compared with created GoPSO algorithm. A list of opportunities that are available in AGO field for Artificial Intelligence field experts are shown in this work. Keywords: Artificial Gods, Artificial God Optimization, Artificial God Computing, Computational Intelligence, Evolutionary Computing, Particle Swarm Optimization, Genetic Algorithms, Artificial Human Optimization, Bio-Inspired Computing, Nature Inspired Computing, Machine Learning, Artificial Intelligence. -
Title: a Memory-Integrated Artificial Bee Algorithm for Heuristic Optimisation
Title: A memory-integrated artificial bee algorithm for heuristic optimisation Name: T. Bayraktar This is a digitised version of a dissertation submitted to the University of Bedfordshire. It is available to view only. This item is subject to copyright. A MEMORY-INTEGRATED ARTIFICIAL BEE ALGORITHM FOR HEURISTIC OPTIMISATION T. BAYRAKTAR MSc. by Research 2014 UNIVERSITY OF BEDFORDSHIRE 1 A MEMORY-INTEGRATED ARTIFICIAL BEE ALGORITHM FOR HEURISTIC OPTIMISATION by T. BAYRAKTAR A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirements for the degree of Master of Science by Research February 2014 2 A MEMORY-INTEGRATED ARTIFICIAL BEE ALGORITHM FOR HEURISTIC OPTIMISATION T. BAYRAKTAR ABSTRACT According to studies about bee swarms, they use special techniques for foraging and they are always able to find notified food sources with exact coordinates. In order to succeed in food source exploration, the information about food sources is transferred between employed bees and onlooker bees via waggle dance. In this study, bee colony behaviours are imitated for further search in one of the common real world problems. Traditional solution techniques from literature may not obtain sufficient results; therefore other techniques have become essential for food source exploration. In this study, artificial bee colony (ABC) algorithm is used as a base to fulfil this purpose. When employed and onlooker bees are searching for better food sources, they just memorize the current sources and if they find better one, they erase the all information about the previous best food source. In this case, worker bees may visit same food source repeatedly and this circumstance causes a hill climbing in search.