A Model of Intuitionism Based on Turing Degrees

Total Page:16

File Type:pdf, Size:1020Kb

A Model of Intuitionism Based on Turing Degrees The Pennsylvania State University The Graduate School Department of Mathematics A MODEL OF INTUITIONISM BASED ON TURING DEGREES A Dissertation in Mathematics by Sankha Subhra Basu c 2013 Sankha Subhra Basu Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2013 The dissertation of Sankha S. Basu was reviewed and approved* by the following: Stephen G. Simpson Professor of Mathematics Dissertation Advisor Chair of Committee Jan Reimann Assistant Professor of Mathematics John Roe Professor of Mathematics Sean Hallgren Associate Professor of Computer Science and Engineering Svetlana Katok Professor of Mathematics Director of Graduate Studies *Signatures are on file in the Graduate School. ii Abstract Intuitionism is a constructive approach to mathematics introduced in the early part of the twetieth century by L. E. J. Brouwer and formalized by his student A. Heyting. A. N. Kolmogorov, in 1932, gave a natural but non-rigorous interpretation of intuitionism as a calculus of problems. In this document, we present a rigorous implementation of Kolmogorov's ideas to higher-order intuitionistic logic using sheaves over the poset of Turing degrees with the topology of upward closed sets. This model is aptly named as the Muchnik topos, since the lattice of upward closed subsets of Turing degrees is isomorphic to the lattice of Muchnik degrees which were introduced in 1963 by A. A. Muchnik in an attempt to formalize the notion of a problem in Kolmogorov's calculus of problems. iii Contents Acknowledgements vi 1 Introduction 1 1.1 Overview . 1 1.2 Intuitionistic Logic . 1 1.2.1 History . 1 1.2.2 Brouwer's Intuitionism . 2 1.2.3 The BHK-Interpretation . 4 1.2.4 Other Interpretations for Intuitionistic Propositional and Predicate Logic . 5 1.3 Higher-Order Logics and Sheaf Semantics . 8 1.3.1 Higher-Order Logics . 8 1.3.2 Sheaf Semantics for Higher-Order Intuitionistic Logics . 8 1.4 Recursion Theory . 9 1.4.1 Constructive Recursive Mathematics and the Church-Turing thesis . 9 1.4.2 Unsolvability of the Halting Problem and Turing Degrees . 10 1.4.3 Mass Problems . 10 1.5 Our Contribution . 11 2 Sheaf semantics for higher-order intuitionistic logic 12 2.1 Sheaves over a topological space . 12 2.2 Higher-Order Intuitionistic Logic . 39 2.3 An interpretation of higher-order intuitionistic logic . 41 2.4 Sheaves over poset spaces . 49 2.5 K-sets . 52 3 Number systems and sheaves 57 3.1 The Natural Numbers . 57 3.2 The Baire Space . 62 3.3 The Real Numbers . 65 4 A few principles 67 4.1 The principle of the excluded middle . 67 4.2 The weak law of the excluded middle . 68 4.3 Markov's principle . 69 4.4 The law of trichotomy for real numbers . 74 4.5 The weak law of trichotomy for real numbers . 76 iv 4.6 The axiom of countable choice . 76 5 The Muchnik model 87 5.1 Preliminaries . 87 5.2 The Muchnik topos . 89 5.3 Muchnik Reals . 92 References 108 v Acknowledgements I am grateful to my dissertation adviser Professor Stephen Simpson for his guidance throughout the duration of my graduate study at Penn State. This document would not have been possible without his help, support, and the significant amount of time that he invested in me. I am indebted to Professor Mihir Chakraborty of the University of Calcutta. It was he who in- troduced me to the wonderful world of Logic and Foundations of Mathematics through the courses that he taught at the university and during our meetings and discussions. His continued encour- agement and guidance have been invaluable to me. I thank Professor Wim Ruitenburg of Marquette University. The conversations that I have had with him, during and after my two years as a graduate student at Marquette, helped me sustain my interest in logic. I am thankful to Dr. Michael Warren for explaining the basics of topos theory to me during his visits to Penn State and for sending me his personal notes on sheaf theory. I acknowledge the constant support and inspiration from my parents, my first teachers. They have always urged me to succeed and reach for higher goals. Most of all, they instilled the sense of curiosity, early on in my life, that drives me to learn more. Last, but not the least, I thank my dear wife, who herself embarked on a career in academia to be with me during my years of graduate study. It would have been impossible without her love and support. vi Chapter 1 Introduction 1.1 Overview This thesis connects the concept of Intuitionism or Intuitionistic Logic, as conceived by Luitzen Egbertus Jan Brouwer, and Recursion theory, that ever since Alan Turing's seminal work on com- putability of functions, has been an active field of research. Both of these areas of study originated in the early part of the twentieth century. This connection is motivated by the work of another great mathematician of the twentieth century, Andrey Nikolaevich Kolmogorov, and is laid out via the theory of sheaves over a topological space, an active area of research in geometry. In the following paragraphs, we present a brief history and background of each of these areas along with a description of the contribution of the present document to these areas. 1.2 Intuitionistic Logic 1.2.1 History Intuitionism is a constructive approach to mathematics proposed by Brouwer. The philosophical basis of this approach was present in Brouwer's thesis, titled \On the foundations of mathematics", published in 1907. The mathematical consequences were in his later papers, published between 1912-1928. This was a time, when the world of logic was largely dominated by David Hilbert's proposal for an axiomatic foundation of mathematics (1905) and Georg Ferdinand Ludwig Philipp Cantor's set theory (1874). Intuitionism falls under the broad purview of constructivism. Constructivists were among the leading critics of Hilbert's approach and Cantorian set theory. There were however considerable differences among the various constructivist schools. Some of the other constructivist approaches of the time were Finitism, proposed by Thoralf Skolem in 1923; Predicativism, pro- posed by Herman Weyl in 1918; Bishop's Constructive Mathematics, proposed by Errett Bishop in 1967; Constructive Recursive Mathematics, proposed by Andrei Markov in 1950, to name a few. There were many prominent mathematicians of that time among the constructivists, includ- ing Leopold Kronecker (1823-1891), who is sometimes regarded as \the first constructivist", Ren´e Louis Baire (1874-1932), Emile Borel (1871-1956), Nikolai Nikolaevich Lusin (1883-1950) and Jules Henri Poincar´e(1854-1913). To read more about the different schools of constructivism and for a brief history, see [31][Volume I, Chapter 1], [28]. Constructivism and Intuitionism will be treated as synonymous henceforth. 1 1.2.2 Brouwer's Intuitionism The following is quoted from [31][Volume I, Chapter 1, page 4]. \The basic tenets of Brouwer's intuitionism, are as follows. (a) Mathematics deals with mental constructions, which are immediately grasped by the the mind; mathematics does not consist in the formal manipulation of symbols, and the use of mathematical language is a secondary phenomenon, induced by our limitations (when compared with an ideal mathematician with unlimited memory and perfect recall), and the wish to communicate our mathematical constructions with others. (b) It does not make sense to think of truth and falsity of a mathematical statement independently of our knowledge concerning the statement. A statement is true if we have a proof of it, and false if we can show that the assumption that there is a proof for the statement leads to a contradiction. For an arbitrary statement we can therefore not assert that it is either true or false. (c) Mathematics is a free creation: it is not a matter of mentally reconstructing, or grasping the truth about mathematical objects existing independently of us. It follows from (b) that it is necessary to adopt a different interpretation of statements of the form \there exists an x such that A(x) holds" and \A or B holds". In particular, \ A or not A" does not generally hold on the intuitionistic reading of \or" and \not". In agreement with, but not necessarily following from (c), intuitionism permits consideration of unfinishable processes: the ideal mathematician may construct longer and longer initial segments α(0); : : : ; α(n) of an infinite sequence of natural numbers α where α is not a priori determined by some fixed process of producing values, so the construction of α is never finished.” This brings us to the following question. Which objects can be said to exist as (mental) constructions? \Natural numbers are usually regarded as unproblematic from a constructive point of view; they correspond to very simple mental constructions: start thinking of an abstract unit, think of an- other unit distinct from the first one and consider the combination (\think them together"). The indefinite repetition of this process generates the collection N of natural numbers. Once having accepted the natural numbers, there is also no objection to accepting pairs of natural numbers, pairs of pairs etc. as constructive objects; and this permits us to define Z (the integers) and Q (the rationals)in the usual way as pairs of natural numbers and pairs of integers respectively, each modulo suitable equivalence relations. Infinite sequences of natural numbers, integers or rationals may be constructively given by some process enabling us to determine the n th term (value for n) for each natural number n; in particular, one may think of sequences given by a law (or recipe) for determining all its values (terms).
Recommended publications
  • On the Graph of Divisibility of an Integral Domain
    ON THE GRAPH OF DIVISIBILITY OF AN INTEGRAL DOMAIN JASON GREENE BOYNTON AND JIM COYKENDALL Abstract. It is well-known that the factorization properties of a domain are reflected in the structure of its group of divisibility. The main theme of this paper is to introduce a topological/graph-theoretic point of view to the cur- rent understanding of factorization in integral domains. We also show that connectedness properties in the graph and topological space give rise to a generalization of atomicity. 1. Introduction Let D be an integral domain with field of fractions K. Then, the group of divisibility G(D) is defined to be the partially ordered additive group of principal fractional ideals with aD 6 bD if and only if aD ⊇ bD. If K× is the multiplicative group of K and if U(D) is the group of units of D, then G(D) is order isomorphic to the quotient group K×/U(D) with the ordering aU(D) 6 bU(D) if and only if b a ∈ D. It is well-known that the factorization properties of a domain are reflected in the structure of its group of divisibility. For example, an integral domain is a unique factorization domain if and only if its group of divisibility is a direct sum of copies of Z equipped with the usual product order. It is also true that the group of divisibility reflects more than just factorization properties of a domain. Indeed, it is not hard to check that a domain is a valuation domain if and only if its group of divisibility is totally ordered.
    [Show full text]
  • Persistent Homology of Morse Decompositions in Combinatorial Dynamics
    PERSISTENT HOMOLOGY OF MORSE DECOMPOSITIONS IN COMBINATORIAL DYNAMICS TAMAL K. DEY, MATEUSZ JUDA, TOMASZ KAPELA, JACEK KUBICA, MICHALLIPI NSKI,´ AND MARIAN MROZEK Abstract. We investigate combinatorial dynamical systems on simplicial complexes con- sidered as finite topological spaces. Such systems arise in a natural way from sampling dynamics and may be used to reconstruct some features of the dynamics directly from the sample. We study the homological persistence of Morse decompositions of such systems as a tool for validating the reconstruction. Our approach may be viewed as a step toward applying the classical persistence theory to data collected from a dynamical system. We present experimental results on two numerical examples. 1. Introduction The aim of this research is to provide a tool for studying the topology of Morse de- compositions of sampled dynamics, that is dynamics known only from a sample. Morse decomposition of the phase space of a dynamical system consists of a finite collection of isolated invariant sets, called Morse sets, such that the dynamics outside the Morse sets is gradient-like. This fundamental concept introduced in 1978 by Conley [11] generalizes clas- sical Morse theory to non-gradient dynamics. It has become an important tool in the study of the asymptotic behavior of flows, semi-flows and multivalued flows (see [7, 12, 31] and the references therein). Morse decompositions and the associated Conley-Morse graphs [3, 8] provide a global descriptor of dynamics. This makes them an excellent object for studying the dynamics of concrete systems. In particular, they have been recently applied in such areas as mathematical epidemiology [20], mathematical ecology [3, 8, 19] or visualization [32, 33].
    [Show full text]
  • INSTITUTE of MATHEMATICS of the Polish Academy of Sciences Ul
    INSTITUTE OF MATHEMATICS of the Polish Academy of Sciences ul. Sniadeckich´ 8, P.O.B. 21, 00-956 Warszawa 10, Poland http://www.impan.pl IM PAN Preprint 720 (2010) Tomasz Maszczyk Distributive Lattices and Cohomology Presented by Piotr M. Hajac Published as manuscript Received 05 May 2010 Mathematische Zeitschrift manuscript No. (will be inserted by the editor) Distributive lattices and cohomology Tomasz Maszczyk Received: date / Accepted: date Abstract A resolution of the intersection of a finite number of subgroups of an abelian group by means of their sums is constructed, provided the lattice generated by these subgroups is distributive. This is used for detecting singularities of modules over Dedekind rings. A generalized Chinese remainder theorem is derived as a consequence of the above resolution. The Gelfand-Naimark duality between finite closed coverings of compact Hausdorff spaces and the generalized Chinese remainder theorem is clarified. Keywords Distributive lattice · Cohomology · Chinese Remainder Theorem Mathematics Subject Classification (2000) 06D99, 46L52, 13D07, 13F05, 16E60. 1 Introduction The Gelfand-Naimark duality identifies lattices of closed subsets in compact Hausdorff spaces with lattices opposite to surjective systems of quotients of unital commutative C*-algebras. Therefore, given a finite collection I0,...,In of closed *-ideals in a C*- algebra A = C(X) of continuous functions on a compact Hausdorff space X, it identifies coequalizers in the category of compact Hausdorff spaces (V (I) ⊂ X is the zero locus of the ideal I ⊂ A = C(X)) n n n [ a a V (Iα) ← V (Iα) ⇔ V (Iα) ∩ V (Iβ) (1) α=0 α=0 α,β=0 with equalizers in the category of unital commutative C*-algebras n n n \ Y Y A/ Iα → A/Iα ⇒ A/Iα + Iβ.
    [Show full text]
  • Algebraic and Topological Aspects of Rough Set Theory
    Algebraic and Topological Aspects of Rough Set Theory Milan Vlach Kyoto College of Graduate Studies for Informatics 7 Monzen-cho, Tanaka, Sakyo-ku, Kyoto, 606-8225 Japan m [email protected] Charles University, School of Mathematics and Physics Malostranske´ nam´ estˇ ´ı 25, 118 00 Praha 1, Czech Republic [email protected] Abstract—The main purpose of this talk is to show how some can expect that various notions and results of rough set theory widely known and well established algebraic and topological have their counterparts in other well established and more notions are closely related to notions and results introduced and developed areas of mathematics. Discovering and studying rediscovered in the rough set literature. relationships between the rough set theory and another field cannot do any harm and often may be useful because such I. INTRODUCTION relationships can enrich both fields and may help to identify Let V be a real vector space, that is, V is a nonempty set some underlying fundamental concepts and results. on which we have a structure consisting of two operations, The main purpose of this talk is to show how some widely addition of elements of V and multiplication of elements from known and well established algebraic and topological notions V by real numbers. The properties of these two operations are closely related to notions and results introduced and make it possible to define various classes of subsets of V. For rediscovered in the rough set literature. example, a set A in V is said to be convex when it has the following property: If x 2 A; y 2 A and 0 < α < 1, then II.
    [Show full text]
  • Part II Topological Dualities
    Part II Top ological dualities Chapter Top ology and armative predicates In the rst part of this monograph we considered predicates to be subsets of an abstract set of states If we think of the states as the denotations of results of computations of programs then predicates b ecome computationally mean ingful in the sense that we can use partial information ab out a computation to tell whether or not a predicate holds for that computation A predicate for which only nite information ab out a computation is needed to arm whether it holds is called an armative predicate The set of armative predicates is closed under nite intersections and ar bitrary unions Hence armative predicates can be identied with the op en sets of a top ological space The idea that op en sets are observable predi cates was prop osed by Smyth in although it is also brie y mentioned in Smyth interprets op en sets as semidecidable prop erties in some eectively given top ological space More generally op en sets can be inter preted as nitely observable predicates Alp ern and Schneider and Kwiatkowska use op en sets as nite liveness predicates and closed sets as safety predicates to formalize the informal characterization of liveness and safety prop erties of Lamp ort The name armative predicates has b een intro duced by Vickers for denoting the abstract op en sets of a frame Armative predicates are also called veriable predicates by Rewitzky who uses the term observable for predicates which are b oth armative and refutative Bonsangue In this chapter we intro
    [Show full text]
  • The Lattice of Intuitionistic Fuzzy Topologies Generated by Intuitionistic Fuzzy Relations
    Available at Applications and Applied http://pvamu.edu/aam Mathematics: Appl. Appl. Math. An International Journal ISSN: 1932-9466 (AAM) Vol. 15, Issue 2 (December 2020), pp. 942 – 956 The Lattice of Intuitionistic Fuzzy Topologies Generated by Intuitionistic Fuzzy Relations Soheyb Milles Department of Mathematics Laboratory of Pure and Applied Mathematics University of Msila Msila, Algeria [email protected] Received: July 16, 2020; Accepted: November 8, 2020 Abstract We generalize the notion of fuzzy topology generated by fuzzy relation given by Mishra and Sri- vastava to the setting of intuitionistic fuzzy sets. Some fundamental properties and necessary exam- ples are given. More specifically, we provide the lattice structure to a family of intuitionistic fuzzy topologies generated by intuitionistic fuzzy relations. To that end, we study necessary structural characteristics such as distributivity, modularity and complementary of this lattice. Keywords: Fuzzy set; Atanassov’s intuitionistic fuzzy set; Lattice of topologies; Binary relation MSC 2010 No.: 06B30, 03E72, 03F55 1. Introduction Topology generated by binary relation is one of the famous classes of general topology and play a prominent role in pure and applied mathematics. They apply in different fields especially in preference representation theorems (Bridges and Mehta (1995)) and they appear to provide the notion of nearness or proximity between two elements of an arbitrary set without using any distance function on it (Knoblauch (2009)). They are also useful for obtaining continuous representability of binary relations, which is an important optimization tool (Chateauneuf (1987), Debreu (1964)) and are used in important applications such as computing topologies (Zhao and Tsang (2008)), 942 AAM: Intern.
    [Show full text]
  • Application of Induced Preorderings in Score Function-Based Method for Solving Decision-Making with Interval-Valued Fuzzy Soft Information
    mathematics Article Application of Induced Preorderings in Score Function-Based Method for Solving Decision-Making with Interval-Valued Fuzzy Soft Information Mabruka Ali 1, Adem Kiliçman 1,2,* and Azadeh Zahedi Khameneh 2 1 Department of Mathematics, Universiti Putra Malaysia, Serdang UPM 43400, Malaysia; [email protected] 2 Institute for Mathematical Research, Universiti Putra Malaysia, Serdang UPM 43400, Malaysia; [email protected] * Correspondence:[email protected] Abstract: Ranking interval-valued fuzzy soft sets is an increasingly important research issue in decision making, and provides support for decision makers in order to select the optimal alternative under an uncertain environment. Currently, there are three interval-valued fuzzy soft set-based decision-making algorithms in the literature. However, these algorithms are not able to overcome the issue of comparable alternatives and, in fact, might be ignored due to the lack of a comprehensive priority approach. In order to provide a partial solution to this problem, we present a group decision- making solution which is based on a preference relationship of interval-valued fuzzy soft information. Further, corresponding to each parameter, two crisp topological spaces, namely, lower topology and upper topology, are introduced based on the interval-valued fuzzy soft topology. Then, using the preorder relation on a topological space, a score function-based ranking system is also defined to Citation: Ali, M.; Kılıçman, A.; design an adjustable multi-steps algorithm. Finally, some illustrative examples are given to compare Zahedi Khameneh, A. Application of the effectiveness of the present approach with some existing methods. Induced Preorderings in Score Function-Based Method for Solving Keywords: interval-valued fuzzy soft sets; interval-valued fuzzy soft topology; preference relation- Decision-Making with ship; decision-making Interval-Valued Fuzzy Soft Information.
    [Show full text]
  • Topological Spaces and Observation Frames
    Theoretical Computer Science ELSEVIER Theoretical Computer Science 151 (1995) 79-124 Duality beyond sober spaces: Topological spaces and observation frames Marcello M. Bonsangue a,*, Bart Jacobs b, Joost N. Kok” a Department of Computer Science, Vrge Universiteit Amsterdam, De Boelelaan 1081a, 1081 HV Amsterdam. Netherlands b Centrum voor Wiskunde en Informatica, P.O. Box 94079, 1090 GB Amsterdam, Netherlands c Department of Computer Science, Utrecht University, P.O. Box 80089, 3508 TB Utrecht, Netherlands Abstract We introduce observation frames as an extension of ordinary frames. The aim is to give an abstract representation of a mapping from observable predicates to all predicates of a specific system. A full subcategory of the category of observation frames is shown to be dual to the category of F! topological spaces. The notions we use generalize those in the adjunction between frames and topological spaces in the sense that we generalize finite meets to infinite ones. We also give a predicate logic of observation frames with both infinite conjunctions and disjunctions, just like there is a geometric logic for (ordinary) frames with infinite disjunctions but only finite conjunctions. This theory is then applied to two situations: firstly to upper power spaces, and secondly we restrict the adjunction between the categories of topological spaces and of observation frames in order to obtain dualities for various subcategories of .Fo spaces. These involve nonsober spaces. 1. Introduction A topological duality is a correspondence between two mathematical structures in- volving points and predicates such that isomorphic structures can be identified. Stone [31] first found such a duality between topology and logic.
    [Show full text]
  • Topology on Words
    Theoretical Computer Science 410 (2009) 2323–2335 Contents lists available at ScienceDirect Theoretical Computer Science journal homepage: www.elsevier.com/locate/tcs Topology on words Cristian S. Calude a, Helmut Jürgensen b, Ludwig Staiger c a The University of Auckland, New Zealand b The University of Western Ontario, London, Canada c Martin-Luther-Universität Halle-Wittenberg, Germany article info abstract Keywords: We investigate properties of topologies on sets of finite and infinite words over a finite Formal languages alphabet. The guiding example is the topology generated by the prefix relation on the Combinatorics on words set of finite words, considered as a partial order. This partial order extends naturally to Topology on words ω-languages the set of infinite words; hence it generates a topology on the union of the sets of finite Order-based topologies and infinite words. We consider several partial orders which have similar properties and identify general principles according to which the transition from finite to infinite words is natural. We provide a uniform topological framework for the set of finite and infinite words to handle limits in a general fashion. © 2009 Elsevier B.V. All rights reserved. 1. Introduction and preliminary considerations We investigate properties of various topologies on sets of words over a finite alphabet. When X is a finite alphabet, one considers the set X of finite words over X, the set X ω of (right-)infinite words over X and the set X X X ω of all words ∗ ∞ = ∗ ∪ over X. On the set X ∞ concatenation (in the usual sense) is a partial binary operation defined on X ∗ X ∞.
    [Show full text]
  • The Alexandrov Topology in Sublorentzian Geometry
    The Alexandrov Topology in Sublorentzian Geometry Stephan Wojtowytsch June 6, 2012 Contents 1 Introduction 2 2 Basic Concepts 4 2.1 Lorentzian Geometry . 4 2.2 The Sub-setting . 7 3 Reachable Sets, Causality and the Alexandrov Topology 13 3.1 Reachable Sets . 13 3.2 The Alexandrov Topology . 17 3.3 Links to Causality . 18 3.4 The Time-Separation Topology . 21 3.5 The Alexandrov Topology in Sublorentzian Geometry . 23 3.6 Precausal Subspacetimes . 26 4 Geodesic Completeness and Connectedness 29 5 A Lorentzian Hopf-Rinow Theorem 31 6 Appendix 32 6.1 Notation . 32 6.2 Open Problems . 32 7 References 33 8 Addenda 34 1 2 Introduction 1 Introduction The main subject of the present work is SemiRiemannian (or PseudoRiemannian) manifolds, that are C1-smooth manifolds M equipped with a non-degenerate symmetric tensor g. The tensor defines a scalar product on the tangent space at each point. The quadratic form corresponding to the scalar product can have different number of negative eigenvalues. If the quadratic form is positively definite everywhere, the manifold is usually called the Riemannian one. The special case of one negative eigenvalue received the name the Lorentzian manifold. The Riemannian geometry is the oldest discipline, and it was motivated both by pure geometrical interests, as well as classical mechanics, where the positively definite quadratic form represents the kinetic energy. The Lorentzian geometry is the second most important instance of SemiRiemannian geometry, because it is the mathematical language of general relativity. It has its own deep and important results diffes it from the Riemannian geometry, such as, for instance, singularity theorems proved by Hawking and Penrose.
    [Show full text]
  • Order and Topology
    Topology from order Order from topology Interval topology Applications Order and Topology Andrew Craig BOATS Meeting Birmingham 20 April 2010 Andrew Craig Order and Topology Topology from order Order from topology Interval topology Applications Ordered sets A partially ordered set (X ; 6) is a set X with a relation 6 satisfying (P1) x 6 x (reexivity) (P2) x 6 y, y 6 z =) x 6 z (transitivity) (P3) x 6 y, y 6 x =) x = y (anti-symmetry) Also called ordered sets or posets. Pre-orders require only (P1) and (P2). Examples (}(X ); ⊆) (R; 6) (a linear order, or chain) n R with product order: (x1;:::; xn) 6 (y1;:::; yn) () 8i; xi 6 yi X R with point-wise order: f 6 g () 8x 2 X ; f (x) 6 g(x) Andrew Craig Order and Topology Topology from order Order from topology Interval topology Applications Morphisms A map f :(X ; 6X ) −! (Y ; 6Y ) is order-preserving if whenever a 6 b in X , then f (a) 6 f (b) in Y . Up-sets and down-sets For A ⊆ X , "A = f x 2 X : 9y 2 A; y 6 x g #A = f x 2 X : 9y 2 A; x 6 y g A is an up-set if A = "A, a down-set if A = #A. Complements of up-sets are down-sets and vice-versa. We have the principal up-sets "x = f y : x 6 y g and principal down-sets #x = f y : y 6 x g for x 2 X . Andrew Craig Order and Topology Topology from order Order from topology Interval topology Applications Order topologies Alexandrov topology - A = f U : U = "U g Upper topology - υ subbasic opens of the form X n#x Lower topology - ! subbasic opens of the form X n"x Interval topology - ι = υ _ ! Also Scott topology - σ U 2 σ () U an up-set, for every D ⊆ X directed, if W D 2 U, then U \ D 6= ; Lawson topology - λ = σ _ ! Scott topology important on dcpo's and in domain theory.
    [Show full text]
  • Alexandrov Fuzzy Topologies and Fuzzy Preorders
    Mathematica Aeterna, Vol. 4, 2014, no. 3, 245 - 256 Alexandrov fuzzy topologies and fuzzy preorders Yong Chan Kim Department of Mathematics, Gangneung-Wonju National University, Gangneung, Gangwondo 210-702, Korea [email protected] Abstract In this paper, we investigate the properties of Alexandrov fuzzy topologies and upper approximation operators. We study fuzzy pre- order, Alexandrov topologies upper approximation operators induced by Alexandrov fuzzy topologies. We give their examples. Mathematics Subject Classification: 03E72, 03G10, 06A15, 54F05 Keywords: Complete residuated lattices, fuzzy preorder, upper approximation opera- tors, Alexandrov (fuzzy) topologies 1 Introduction H´ajek [2] introduced a complete residuated lattice which is an algebraic struc- ture for many valued logic. H¨ohle [3] introduced L-fuzzy topologies and L-fuzzy interior operators on complete residuated lattices. Pawlak [8,9] introduced rough set theory as a formal tool to deal with imprecision and uncertainty in data analysis. Radzikowska [10] developed fuzzy rough sets in complete residuated lattice. Bˇelohl´avek [1] investigated information systems and deci- sion rules in complete residuated lattices. Zhang [6,7] introduced Alexandrov L-topologies induced by fuzzy rough sets. Kim [5] investigated the properties of Alexandrov topologies in complete residuated lattices. In this paper, we investigate the properties of Alexandrov fuzzy topologies and upper approximation operators in a sense as H¨ohle [3]. We study fuzzy preorder, Alexandrov topologies upper approximation operators induced by Alexandrov fuzzy topologies. We give their examples. 246 Yong Chan Kim 2 Preliminaries Definition 2.1. [1-3] A structure (L, ∨, ∧, ⊙, →, ⊥, ⊤) is called a complete residuated lattice iff it satisfies the following properties: (L1) (L, ∨, ∧, ⊥, ⊤) is a complete lattice where ⊥ is the bottom element and ⊤ is the top element; (L2) (L, ⊙, ⊤) is a monoid; (L3) It has an adjointness,i.e.
    [Show full text]