cells Review Molecular Evolution, Neurodevelopmental Roles and Clinical Significance of HECT-Type UBE3 E3 Ubiquitin Ligases Mateusz C. Ambrozkiewicz 1,* , Katherine J. Cuthill 1, Dermot Harnett 2, Hiroshi Kawabe 3 and Victor Tarabykin 1,4,* 1 Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany;
[email protected] 2 The Integrative Research Institute for the Life Sciences, Institute of Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany;
[email protected] 3 Department of Pharmacology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan;
[email protected] 4 Institute of Neuroscience, Lobachevsky University of Nizhny Novgorod, pr. Gagarina 24, 603950 Nizhny Novgorod, Russia * Correspondence:
[email protected] (M.C.A.);
[email protected] (V.T.) Received: 14 October 2020; Accepted: 7 November 2020; Published: 10 November 2020 Abstract: Protein ubiquitination belongs to the best characterized pathways of protein degradation in the cell; however, our current knowledge on its physiological consequences is just the tip of an iceberg. The divergence of enzymatic executors of ubiquitination led to some 600–700 E3 ubiquitin ligases embedded in the human genome. Notably, mutations in around 13% of these genes are causative of severe neurological diseases. Despite this, molecular and cellular context of ubiquitination remains poorly characterized, especially in the developing brain. In this review article, we summarize recent findings on brain-expressed HECT-type E3 UBE3 ligases and their murine orthologues, comprising Angelman syndrome UBE3A, Kaufman oculocerebrofacial syndrome UBE3B and autism spectrum disorder-associated UBE3C.