Ai and the Singularity a Fallacy Or a Great Opportunity?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(C) 1978 by Random House, Inc. Introduction: "The Dean of Science
A Del Rey Book - Published by Ballantine Books Copyright (c) 1978 by Random House, Inc. Introduction: "The Dean of Science Fiction" Copyright (c) 1978 by J. J. Pierce All rights reserved under International and Pan-American Copyright Conventions. Published in the United States by Ballantine Books, a division of Random House, Inc., New York, and simultaneously in Canada by Ballantine Books of Canada, Ltd., Toronto, Canada. Library of Congress Catalog Card Number: 78-52210 ISBN 0-345-25800-2 Manufactured in the United States of America First Edition: April 1978 Cover art by H. R. Van Dongen ACKNOWLEDGMENTS "Sidewise in Time," copyright (c) 1934 by Street & Smith Publications, Inc., for Astounding Stories, June 1934. "Proxima Centauri," co~yright (c) 1935 by Street & Smith Pub.. lications, Inc., for Astounding Stories, March 1935. - "The Fourth-dimensional Demonstrator," copyright (c) 1935 by Street & Smith Publications, Inc., for Astounding Stories, December 1935. "First Contact," copyright (c) 1945 by Street & Smith Publications, Inc., for Astounding Science Fiction, May 1945. "The Ethical Equations," copyright (c) 1945 by Street & Smith Publications, Inc., for Astounding Science Fiction, June 1945. "Pipeline to Pluto," copyright (c) 1945 by Street & Smith Publications, Inc., for Astounding Science Fiction, August 1945. "The Power," copyright (c) 1945 by Street & Smith Publications, Inc., for Astounding Science Fiction, September 1945. "A Logic Named Joe," copyright (c) 1946 by Street & Smith Publications, Inc., for Astounding Science Fiction, March 1946. "Symbiosis," copyright (c) 1947 for Collier's Magazine, January 1947. "The Strange Case of John Kingman," copyright (c) 1948 by Street & Smith Publications, Inc., for Astounding Science Fiction, May 1948. -
Artificial Intelligence: with Great Power Comes Great Responsibility
ARTIFICIAL INTELLIGENCE: WITH GREAT POWER COMES GREAT RESPONSIBILITY JOINT HEARING BEFORE THE SUBCOMMITTEE ON RESEARCH AND TECHNOLOGY & SUBCOMMITTEE ON ENERGY COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HOUSE OF REPRESENTATIVES ONE HUNDRED FIFTEENTH CONGRESS SECOND SESSION JUNE 26, 2018 Serial No. 115–67 Printed for the use of the Committee on Science, Space, and Technology ( Available via the World Wide Web: http://science.house.gov U.S. GOVERNMENT PUBLISHING OFFICE 30–877PDF WASHINGTON : 2018 COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HON. LAMAR S. SMITH, Texas, Chair FRANK D. LUCAS, Oklahoma EDDIE BERNICE JOHNSON, Texas DANA ROHRABACHER, California ZOE LOFGREN, California MO BROOKS, Alabama DANIEL LIPINSKI, Illinois RANDY HULTGREN, Illinois SUZANNE BONAMICI, Oregon BILL POSEY, Florida AMI BERA, California THOMAS MASSIE, Kentucky ELIZABETH H. ESTY, Connecticut RANDY K. WEBER, Texas MARC A. VEASEY, Texas STEPHEN KNIGHT, California DONALD S. BEYER, JR., Virginia BRIAN BABIN, Texas JACKY ROSEN, Nevada BARBARA COMSTOCK, Virginia CONOR LAMB, Pennsylvania BARRY LOUDERMILK, Georgia JERRY MCNERNEY, California RALPH LEE ABRAHAM, Louisiana ED PERLMUTTER, Colorado GARY PALMER, Alabama PAUL TONKO, New York DANIEL WEBSTER, Florida BILL FOSTER, Illinois ANDY BIGGS, Arizona MARK TAKANO, California ROGER W. MARSHALL, Kansas COLLEEN HANABUSA, Hawaii NEAL P. DUNN, Florida CHARLIE CRIST, Florida CLAY HIGGINS, Louisiana RALPH NORMAN, South Carolina DEBBIE LESKO, Arizona SUBCOMMITTEE ON RESEARCH AND TECHNOLOGY HON. BARBARA COMSTOCK, Virginia, Chair FRANK D. LUCAS, Oklahoma DANIEL LIPINSKI, Illinois RANDY HULTGREN, Illinois ELIZABETH H. ESTY, Connecticut STEPHEN KNIGHT, California JACKY ROSEN, Nevada BARRY LOUDERMILK, Georgia SUZANNE BONAMICI, Oregon DANIEL WEBSTER, Florida AMI BERA, California ROGER W. MARSHALL, Kansas DONALD S. BEYER, JR., Virginia DEBBIE LESKO, Arizona EDDIE BERNICE JOHNSON, Texas LAMAR S. -
Avoiding the Conjunction Fallacy: Who Can Take a Hint?
Avoiding the conjunction fallacy: Who can take a hint? Simon Klein Spring 2017 Master’s thesis, 30 ECTS Master’s programme in Cognitive Science, 120 ECTS Supervisor: Linnea Karlsson Wirebring Acknowledgments: The author would like to thank the participants for enduring the test session with challenging questions and thereby making the study possible, his supervisor Linnea Karlsson Wirebring for invaluable guidance and good questions during the thesis work, and his fiancée Amanda Arnö for much needed mental support during the entire process. 2 AVOIDING THE CONJUNCTION FALLACY: WHO CAN TAKE A HINT? Simon Klein Humans repeatedly commit the so called “conjunction fallacy”, erroneously judging the probability of two events occurring together as higher than the probability of one of the events. Certain hints have been shown to mitigate this tendency. The present thesis investigated the relations between three psychological factors and performance on conjunction tasks after reading such a hint. The factors represent the understanding of probability and statistics (statistical numeracy), the ability to resist intuitive but incorrect conclusions (cognitive reflection), and the willingness to engage in, and enjoyment of, analytical thinking (need-for-cognition). Participants (n = 50) answered 30 short conjunction tasks and three psychological scales. A bimodal response distribution motivated dichotomization of performance scores. Need-for-cognition was significantly, positively correlated with performance, while numeracy and cognitive reflection were not. The results suggest that the willingness to engage in, and enjoyment of, analytical thinking plays an important role for the capacity to avoid the conjunction fallacy after taking a hint. The hint further seems to neutralize differences in performance otherwise predicted by statistical numeracy and cognitive reflection. -
Cognitive Bias Mitigation: How to Make Decision-Making More Rational?
Cognitive Bias Mitigation: How to make decision-making more rational? Abstract Cognitive biases distort judgement and adversely impact decision-making, which results in economic inefficiencies. Initial attempts to mitigate these biases met with little success. However, recent studies which used computer games and educational videos to train people to avoid biases (Clegg et al., 2014; Morewedge et al., 2015) showed that this form of training reduced selected cognitive biases by 30 %. In this work I report results of an experiment which investigated the debiasing effects of training on confirmation bias. The debiasing training took the form of a short video which contained information about confirmation bias, its impact on judgement, and mitigation strategies. The results show that participants exhibited confirmation bias both in the selection and processing of information, and that debiasing training effectively decreased the level of confirmation bias by 33 % at the 5% significance level. Key words: Behavioural economics, cognitive bias, confirmation bias, cognitive bias mitigation, confirmation bias mitigation, debiasing JEL classification: D03, D81, Y80 1 Introduction Empirical research has documented a panoply of cognitive biases which impair human judgement and make people depart systematically from models of rational behaviour (Gilovich et al., 2002; Kahneman, 2011; Kahneman & Tversky, 1979; Pohl, 2004). Besides distorted decision-making and judgement in the areas of medicine, law, and military (Nickerson, 1998), cognitive biases can also lead to economic inefficiencies. Slovic et al. (1977) point out how they distort insurance purchases, Hyman Minsky (1982) partly blames psychological factors for economic cycles. Shefrin (2010) argues that confirmation bias and some other cognitive biases were among the significant factors leading to the global financial crisis which broke out in 2008. -
A Survey of Top-Level Ontologies to Inform the Ontological Choices for a Foundation Data Model
A survey of Top-Level Ontologies To inform the ontological choices for a Foundation Data Model Version 1 Contents 1 Introduction and Purpose 3 F.13 FrameNet 92 2 Approach and contents 4 F.14 GFO – General Formal Ontology 94 2.1 Collect candidate top-level ontologies 4 F.15 gist 95 2.2 Develop assessment framework 4 F.16 HQDM – High Quality Data Models 97 2.3 Assessment of candidate top-level ontologies F.17 IDEAS – International Defence Enterprise against the framework 5 Architecture Specification 99 2.4 Terminological note 5 F.18 IEC 62541 100 3 Assessment framework – development basis 6 F.19 IEC 63088 100 3.1 General ontological requirements 6 F.20 ISO 12006-3 101 3.2 Overarching ontological architecture F.21 ISO 15926-2 102 framework 8 F.22 KKO: KBpedia Knowledge Ontology 103 4 Ontological commitment overview 11 F.23 KR Ontology – Knowledge Representation 4.1 General choices 11 Ontology 105 4.2 Formal structure – horizontal and vertical 14 F.24 MarineTLO: A Top-Level 4.3 Universal commitments 33 Ontology for the Marine Domain 106 5 Assessment Framework Results 37 F. 25 MIMOSA CCOM – (Common Conceptual 5.1 General choices 37 Object Model) 108 5.2 Formal structure: vertical aspects 38 F.26 OWL – Web Ontology Language 110 5.3 Formal structure: horizontal aspects 42 F.27 ProtOn – PROTo ONtology 111 5.4 Universal commitments 44 F.28 Schema.org 112 6 Summary 46 F.29 SENSUS 113 Appendix A F.30 SKOS 113 Pathway requirements for a Foundation Data F.31 SUMO 115 Model 48 F.32 TMRM/TMDM – Topic Map Reference/Data Appendix B Models 116 ISO IEC 21838-1:2019 -
Artificial Consciousness and the Consciousness-Attention Dissociation
Consciousness and Cognition 45 (2016) 210–225 Contents lists available at ScienceDirect Consciousness and Cognition journal homepage: www.elsevier.com/locate/concog Review article Artificial consciousness and the consciousness-attention dissociation ⇑ Harry Haroutioun Haladjian a, , Carlos Montemayor b a Laboratoire Psychologie de la Perception, CNRS (UMR 8242), Université Paris Descartes, Centre Biomédical des Saints-Pères, 45 rue des Saints-Pères, 75006 Paris, France b San Francisco State University, Philosophy Department, 1600 Holloway Avenue, San Francisco, CA 94132 USA article info abstract Article history: Artificial Intelligence is at a turning point, with a substantial increase in projects aiming to Received 6 July 2016 implement sophisticated forms of human intelligence in machines. This research attempts Accepted 12 August 2016 to model specific forms of intelligence through brute-force search heuristics and also reproduce features of human perception and cognition, including emotions. Such goals have implications for artificial consciousness, with some arguing that it will be achievable Keywords: once we overcome short-term engineering challenges. We believe, however, that phenom- Artificial intelligence enal consciousness cannot be implemented in machines. This becomes clear when consid- Artificial consciousness ering emotions and examining the dissociation between consciousness and attention in Consciousness Visual attention humans. While we may be able to program ethical behavior based on rules and machine Phenomenology learning, we will never be able to reproduce emotions or empathy by programming such Emotions control systems—these will be merely simulations. Arguments in favor of this claim include Empathy considerations about evolution, the neuropsychological aspects of emotions, and the disso- ciation between attention and consciousness found in humans. -
The Being of Analogy Noah Roderick Noah Roderick the Being of Analogy
Noah Roderick The Being of Analogy Noah Roderick Noah Roderick The Being of Analogy The Being of Modern physics replaced the dualism of matter and form with a new distinction between matter and force. In this way form was marginalized, and with it the related notion of the object. Noah Roderick’s book is a refreshing effort to reverse the consequences of this now banal mainstream materialism. Ranging from physics through literature to linguistics, spanning philosophy from East to West, and weaving it all together in remarkably lucid prose, Roderick intro- duces a new concept of analogy that sheds unfamiliar light on such thinkers as Marx, Deleuze, Goodman, Sellars, and Foucault. More than a literary device, analogy teaches us something about being itself. OPEN HUMANITIES PRESS Cover design by Katherine Gillieson · Illustration by Tammy Lu The Being of Analogy New Metaphysics Series Editors: Graham Harman and Bruno Latour The world is due for a resurgence of original speculative metaphysics. The New Metaphys- ics series aims to provide a safe house for such thinking amidst the demoralizing caution and prudence of professional academic philosophy. We do not aim to bridge the analytic- continental divide, since we are equally impatient with nail-filing analytic critique and the continental reverence for dusty textual monuments. We favor instead the spirit of the intel- lectual gambler, and wish to discover and promote authors who meet this description. Like an emergent recording company, what we seek are traces of a new metaphysical ‘sound’ from any nation of the world. The editors are open to translations of neglected metaphysical classics, and will consider secondary works of especial force and daring. -
Artificial Intelligence
BROAD AI now and later Michael Witbrock, PhD University of Auckland Broad AI Lab @witbrock Aristotle (384–322 BCE) Organon ROOTS OF AI ROOTS OF AI Santiago Ramón y Cajal (1852 -1934) Cerebral Cortex WHAT’S AI • OLD definition: AI is everything we don’t yet know how program • Now some things that people can’t do: • unique capabilities (e.g. Style transfer) • superhuman performance (some areas of speech, vision, games, some QA, etc) • Current AI Systems can be divided by their kind of capability: • Skilled (Image recognition, Game Playing (Chess, Atari, Go, DoTA), Driving) • Attentive (Trading: Aidyia; Senior Care: CareMedia, Driving) • Knowledgeable, (Google Now, Siri, Watson, Cortana) • High IQ (Cyc, Soar, Wolfram Alpha) GOFAI • Thought is symbol manipulation • Large numbers of precisely defined symbols (terms) • Based on mathematical logic (implies (and (isa ?INST1 LegalAgreement) (agreeingAgents ?INST1 ?INST2)) (isa ?INST2 LegalAgent)) • Problems solved by searching for transformations of symbolic representations that lead to a solution Slow Development Thinking Quickly Thinking Slowly (System I) (System II) Human Superpower c.f. other Done well by animals and people animals Massively parallel algorithms Serial and slow Done poorly until now by computers Done poorly by most people Not impressive to ordinary people Impressive (prizes, high pay) "Sir, an animal’s reasoning is like a dog's walking on his hind legs. It is not done well; but you are surprised to find it done at all.“ - apologies to Samuel Johnson Achieved on computers by high- Fundamental design principle of power, low density, slow computers simulation of vastly different Computer superpower c.f. neural hardware human Recurrent Deep Learning & Deep Reasoning MACHINE LEARNING • Meaning is implicit in the data • Thought is the transformation of learned representations http://karpathy.github.io/2015/05/21/rnn- effectiveness/ . -
Computability and Complexity
Computability and Complexity Lecture Notes Herbert Jaeger, Jacobs University Bremen Version history Jan 30, 2018: created as copy of CC lecture notes of Spring 2017 Feb 16, 2018: cleaned up font conversion hickups up to Section 5 Feb 23, 2018: cleaned up font conversion hickups up to Section 6 Mar 15, 2018: cleaned up font conversion hickups up to Section 7 Apr 5, 2018: cleaned up font conversion hickups up to the end of these lecture notes 1 1 Introduction 1.1 Motivation This lecture will introduce you to the theory of computation and the theory of computational complexity. The theory of computation offers full answers to the questions, • what problems can in principle be solved by computer programs? • what functions can in principle be computed by computer programs? • what formal languages can in principle be decided by computer programs? Full answers to these questions have been found in the last 70 years or so, and we will learn about them. (And it turns out that these questions are all the same question). The theory of computation is well-established, transparent, and basically simple (you might disagree at first). The theory of complexity offers many insights to questions like • for a given problem / function / language that has to be solved / computed / decided by a computer program, how long does the fastest program actually run? • how much memory space has to be used at least? • can you speed up computations by using different computer architectures or different programming approaches? The theory of complexity is historically younger than the theory of computation – the first surge of results came in the 60ties of last century. -
Future of Research on Catastrophic and Existential Risk
ORE Open Research Exeter TITLE Working together to face humanity's greatest threats: Introduction to The Future of Research in Catastrophic and Existential Risk AUTHORS Currie, AM; Ó hÉigeartaigh, S JOURNAL Futures DEPOSITED IN ORE 06 February 2019 This version available at http://hdl.handle.net/10871/35764 COPYRIGHT AND REUSE Open Research Exeter makes this work available in accordance with publisher policies. A NOTE ON VERSIONS The version presented here may differ from the published version. If citing, you are advised to consult the published version for pagination, volume/issue and date of publication Working together to face humanity’s greatest threats: Introduction to The Future of Research on Catastrophic and Existential Risk. Adrian Currie & Seán Ó hÉigeartaigh Penultimate Version, forthcoming in Futures Acknowledgements We would like to thank the authors of the papers in the special issue, as well as the referees who provided such constructive and useful feedback. We are grateful to the team at the Centre for the Study of Existential Risk who organized the first Cambridge Conference on Catastrophic Risk where many of the papers collected here were originally presented, and whose multi-disciplinary expertise was invaluable for making this special issue a reality. We’d like to thank Emma Bates, Simon Beard and Haydn Belfield for feedback on drafts. Ted Fuller, Futures’ Editor-in-Chief also provided invaluable guidance throughout. The Conference, and a number of the publications in this issue, were made possible through the support of a grant from the Templeton World Charity Foundation (TWCF); the conference was also supported by a supplementary grant from the Future of Life Institute. -
New Action Thriller by Alex Schuler Takes on the Controversial And
FOR IMMEDIATE RELEASE Publication Date: 8/17/2021 Alyssia Gonzalez Trade Paper ISBN: 9781933769844 ($18.95) Book Publicist eBook ISBN: 9781933769851 ($9.99) [email protected] New Action Thriller by Alex Schuler Takes on the Controversial and Dramatic History of Self-Driving Cars Level 4 Press presents a fictionalized retelling of how the autonomous car came to be. JAMUL, CA (FEB 2020) — Author Alex Schuler captures intense determination and a clash of egos in his new action thriller, Faster. It follows a fictional engineer and computer scientist who helped pioneer the self-driving car industry while navigating their own tumultuous relationship. Their drive to take on Detroit and become leaders in this technological revolution leaves the reader in awe of what humanity can accomplish, and just how much sacrifice it takes to change the world. Autonomous car breakthroughs spiked during the DARPA challenges between 2004 and 2013, giving names to eccentric computer scientists and engineers drawn to innovation. These remarkable individuals often find themselves embroiled in controversy as they forge new paths. Robotics wonderkid Sebastian Thrun is regularly in the news for his “internet freedom” crusades. Elon Musk is legendary for breaking norms, such as the Tesla autopilot feature rushed to market in 2015. Autonomous vehicle guru Anthony Levandowski took on Google, then found himself sentenced to jail, only to be pardoned by former president Donald Trump. These pioneers dedicated their lives to technological progress. But what’s behind their drive—self-interest or a desire to improve society? Or some of both? Alex Schuler fictionalizes the autonomous car industry’s past, exploring the motivations of these innovators and asking what we can expect for the future. -
The Transhumanist Reader Is an Important, Provocative Compendium Critically Exploring the History, Philosophy, and Ethics of Transhumanism
TH “We are in the process of upgrading the human species, so we might as well do it E Classical and Contemporary with deliberation and foresight. A good first step is this book, which collects the smartest thinking available concerning the inevitable conflicts, challenges and opportunities arising as we re-invent ourselves. It’s a core text for anyone making TRA Essays on the Science, the future.” —Kevin Kelly, Senior Maverick for Wired Technology, and Philosophy “Transhumanism has moved from a fringe concern to a mainstream academic movement with real intellectual credibility. This is a great taster of some of the best N of the Human Future emerging work. In the last 10 years, transhumanism has spread not as a religion but as a creative rational endeavor.” SHU —Julian Savulescu, Uehiro Chair in Practical Ethics, University of Oxford “The Transhumanist Reader is an important, provocative compendium critically exploring the history, philosophy, and ethics of transhumanism. The contributors anticipate crucial biopolitical, ecological and planetary implications of a radically technologically enhanced population.” M —Edward Keller, Director, Center for Transformative Media, Parsons The New School for Design A “This important book contains essays by many of the top thinkers in the field of transhumanism. It’s a must-read for anyone interested in the future of humankind.” N —Sonia Arrison, Best-selling author of 100 Plus: How The Coming Age of Longevity Will Change Everything IS The rapid pace of emerging technologies is playing an increasingly important role in T overcoming fundamental human limitations. The Transhumanist Reader presents the first authoritative and comprehensive survey of the origins and current state of transhumanist Re thinking regarding technology’s impact on the future of humanity.