Table of Contents

Total Page:16

File Type:pdf, Size:1020Kb

Table of Contents Characterization of caspases from Lepidoptera and their role in apoptosis. Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) Vorgelegtdem Rat der Biologisch-Pharmazeutischen Fakultät der Friedrich-Schiller-Universität Jena von Juliette Courtiade (M. Sc.) geboren am 18. Juni 1980 in Longjumeau; Frankreich Gutachter: Prof. Dr. David G. Heckel, Max Planck for Chemical Ecology, Jena, Germany Prof. Dr. Günter Theiβen, Friedrich Schiller University, Jena, Germany Prof. Dr. Rollie J. Clem, Kansas State University, Kansas, USA Tag des öffentlichen Verteidigung: 15. July 2011 Table of Contents Table of Contents Acknowledgments ............................................................................................ 7 Summary ........................................................................................................... 9 Zusammenfassung .......................................................................................... 11 General Introduction ...................................................................................... 15 Apoptosis versus Necrosis ........................................................................................... 15 Apoptotic pathways ..................................................................................................... 16 Consequences of apoptosis.......................................................................................... 18 Apoptosis and development ....................................................................................... 18 Apoptosis and homeostasis ........................................................................................ 19 Apoptosis and immunity ............................................................................................ 19 Importance of apoptosis in holometabolous insects ................................................... 20 Aims of this work ......................................................................................................... 21 Chapter 1. Characterization of the Caspase gene family in Lepidoptera ..... 23 Introduction ................................................................................................................. 23 Metacaspases and Paracaspases ................................................................................ 23 The True caspases .................................................................................................... 24 Inflammatory caspases .............................................................................................. 25 Apoptotic caspases .................................................................................................... 26 Caspases in Lepidoptera ............................................................................................ 26 Methods ....................................................................................................................... 27 Preparation of cDNA libraries and EST sequencing ...................................................... 27 Database mining for putative caspase sequences ........................................................ 28 Caspase gene amplification and sequencing ................................................................ 28 Sequence alignment and phylogenetic analysis ........................................................... 29 BAC library screening and sequencing ........................................................................ 30 Intron-Exon structure ................................................................................................ 31 Results and discussion ................................................................................................. 31 Lepidopteran caspases cluster into six distinct clades .................................................. 31 Classification of the lepidopteran caspases .................................................................. 34 Alternative splicing of Caspase-3 and -5 in B. mori ...................................................... 36 A noctuid-specific caspase gene arose from duplication of Caspase-1 ........................... 37 Ms-Caspase-4 subfamily has evolved through duplication events .................................. 39 Future directions and conclusions ............................................................................... 40 Supplementary materials ............................................................................................. 41 Chapter 2. Functional analyses of Caspases in Helicoverpa armigera .......... 49 Introduction ................................................................................................................. 49 Materials and methods ................................................................................................ 50 Apoptosis induction ................................................................................................... 50 Feeding experiments, tissue and developmental stages expression .............................. 50 Page3 Table of Contents Real time quantitative RT-PCR ................................................................................... 51 Results ......................................................................................................................... 52 Caspase expression patterns in H. armigera ............................................................... 52 Caspase expression after immune challenge .............................................................. 53 Caspase expression upon induction of apoptosis ........................................................ 55 Discussion .................................................................................................................... 56 Caspase-1 and -2, shared functions? ......................................................................... 56 Caspase-5, the development manager? ..................................................................... 56 Caspase-3 and -6, to serve and protect? .................................................................... 57 Caspase-4, an outcast? ............................................................................................. 59 Conclusion and further directions ............................................................................... 59 Chapter 3. Comparative proteomic analysis of Helicoverpa armigera cells undergoing apoptosis ..................................................................................... 61 Introduction................................................................................................................. 61 Material and Methods .................................................................................................. 62 Cell culture, apoptosis induction and extraction of protein samples. ............................. 62 Two-dimensional Differential Fluorescence Gel Electrophoresis (DIGE)......................... 63 Protein identification by mass spectrometry. .............................................................. 64 Heterologous expression of Ha-Caspase-1.................................................................. 65 Caspase activity assays. ............................................................................................ 65 RNA isolation and quantitative real-time PCR. ............................................................ 66 Results and Discussion ................................................................................................ 67 Comparative analysis and protein identification. ......................................................... 67 Functional characterization of Ha-Caspase-1. ............................................................. 70 Actin. ....................................................................................................................... 73 Voltage dependent anion channel. ............................................................................. 73 Glyceraldehyde 3-phosphate dehydrogenase. ............................................................. 74 Annexin IX. .............................................................................................................. 74 Aldo-keto reductase. ................................................................................................. 75 Receptor for activated protein kinase C 1. .................................................................. 75 Chaperone proteins. ................................................................................................. 76 Seryl tRNA synthetase (SerRS). ................................................................................. 77 Conclusion ............................................................................................................... 78 Supplementary materials ............................................................................................ 79 General discussion .......................................................................................... 82 References ...................................................................................................... 85 Selbständigkeitserklärung ............................................................................. 96 Curriculum vitae ............................................................................................. 97 Page4 Acknowledgments Acknowledgments First of all I would like to thank all the teachers, professors, supervisors,and scientists
Recommended publications
  • Manner Via Caspase-8 in an RIP3
    Cutting Edge: FAS (CD95) Mediates Noncanonical IL-1 β and IL-18 Maturation via Caspase-8 in an RIP3-Independent Manner This information is current as of October 2, 2021. Lukas Bossaller, Ping-I Chiang, Christian Schmidt-Lauber, Sandhya Ganesan, William J. Kaiser, Vijay A. K. Rathinam, Edward S. Mocarski, Deepa Subramanian, Douglas R. Green, Neal Silverman, Katherine A. Fitzgerald, Ann Marshak-Rothstein and Eicke Latz Downloaded from J Immunol 2012; 189:5508-5512; Prepublished online 9 November 2012; doi: 10.4049/jimmunol.1202121 http://www.jimmunol.org/content/189/12/5508 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2012/11/12/jimmunol.120212 Material 1.DC1 References This article cites 30 articles, 9 of which you can access for free at: http://www.jimmunol.org/content/189/12/5508.full#ref-list-1 by guest on October 2, 2021 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved.
    [Show full text]
  • The Role of Cyclooxygenase-2 in Cell Proliferation and Cell Death in Human Malignancies
    Hindawi Publishing Corporation International Journal of Cell Biology Volume 2010, Article ID 215158, 21 pages doi:10.1155/2010/215158 Review Article TheRoleofCyclooxygenase-2inCellProliferationandCell Death in Human Malignancies Cyril Sobolewski,1 Claudia Cerella,1 Mario Dicato,1 Lina Ghibelli,2 and Marc Diederich1 1 LaboratoiredeBiologieMol´eculaire et Cellulaire du Cancer, Hopitalˆ Kirchberg, 9 rue Edward Steichen, 2540 Luxembourg, Luxembourg 2 Dipartimento di Biologia, Universita` di Roma di Roma Tor Vergata, Via Ricerca Scientifica snc, 00133 Rome, Italy Correspondence should be addressed to Marc Diederich, [email protected] Received 16 July 2009; Accepted 18 December 2009 Academic Editor: Simone Fulda Copyright © 2010 Cyril Sobolewski et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. It is well admitted that the link between chronic inflammation and cancer involves cytokines and mediators of inflammatory pathways, which act during the different steps of tumorigenesis. The cyclooxygenases (COXs) are a family of enzymes, which catalyze the rate-limiting step of prostaglandin biosynthesis. This family contains three members: ubiquitously expressed COX- 1, which is involved in homeostasis; the inducible COX-2 isoform, which is upregulated during both inflammation and cancer; and COX-3, expressed in brain and spinal cord, whose functions remain to be elucidated. COX-2 was described to modulate cell proliferation and apoptosis mainly in solid tumors, that is, colorectal, breast, and prostate cancers, and, more recently, in hematological malignancies. These findings prompt us to analyze here the effects of a combination of COX-2 inhibitors together with different clinically used therapeutic strategies in order to further improve the efficiency of future anticancer treatments.
    [Show full text]
  • Biochemical Society Focused Meetings Proteases A
    ORE Open Research Exeter TITLE Proteases and caspase-like activity in the yeast Saccharomyces cerevisiae. AUTHORS Wilkinson, D; Ramsdale, M JOURNAL Biochemical Society Transactions DEPOSITED IN ORE 18 November 2013 This version available at http://hdl.handle.net/10871/13957 COPYRIGHT AND REUSE Open Research Exeter makes this work available in accordance with publisher policies. A NOTE ON VERSIONS The version presented here may differ from the published version. If citing, you are advised to consult the published version for pagination, volume/issue and date of publication Biochemical Society Transactions (2011) XX, (XX-XX) (Printed in Great Britain) Biochemical Society Focused Meetings Proteases and caspase-like activity in the yeast Saccharomyces cerevisiae Derek Wilkinson and Mark Ramsdale1 Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD Key words: Programmed cell death, apoptosis, necrosis, proteases, caspases, Saccharomyces cerevisiae. Abbreviations used: PCD, programmed cell death; ROS, reactive oxygen species; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; ER, endoplasmic reticulum; MS, mass spectrometry. 1email [email protected] Abstract A variety of proteases have been implicated in yeast PCD including the metacaspase, Mca1 and the separase Esp1, the HtrA-like serine protease Nma111, the cathepsin-like serine carboxypeptideases and a range of vacuolar proteases. Proteasomal activity is also shown to have an important role in determining cell fate, with both pro- and anti-apoptotic roles. Caspase-3, -6- and -8 like activities are detected upon stimulation of yeast PCD, but not all of this activity is associated with Mca1, implicating other proteases with caspase-like activity in the yeast cell death response.
    [Show full text]
  • Apoptotic Threshold Is Lowered by P53 Transactivation of Caspase-6
    Apoptotic threshold is lowered by p53 transactivation of caspase-6 Timothy K. MacLachlan*† and Wafik S. El-Deiry*‡§¶ʈ** *Laboratory of Molecular Oncology and Cell Cycle Regulation, Howard Hughes Medical Institute, and Departments of ‡Medicine, §Genetics, ¶Pharmacology, and ࿣Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 Communicated by Britton Chance, University of Pennsylvania School of Medicine, Philadelphia, PA, April 23, 2002 (received for review January 11, 2002) Little is known about how a cell’s apoptotic threshold is controlled Inhibition of the enzyme reduces the sensitivity conferred by after exposure to chemotherapy, although the p53 tumor suppres- overexpression of p53. These results identify a pathway by which sor has been implicated. We identified executioner caspase-6 as a p53 is able to accelerate the apoptosis cascade by loading the cell transcriptional target of p53. The mechanism involves DNA binding with cell death proteases so that when an apoptotic signal is by p53 to the third intron of the caspase-6 gene and transactiva- received, programmed cell death occurs rapidly. tion. A p53-dependent increase in procaspase-6 protein level al- lows for an increase in caspase-6 activity and caspase-6-specific Materials and Methods Lamin A cleavage in response to Adriamycin exposure. Specific Western Blotting and Antibodies. Immunoblotting was carried out by inhibition of caspase-6 blocks cell death in a manner that correlates using mouse anti-human p53 monoclonal (PAb1801; Oncogene), with caspase-6 mRNA induction by p53 and enhances long-term rabbit anti-human caspase-3 (Cell Signaling, Beverly, MA), mouse survival in response to a p53-mediated apoptotic signal.
    [Show full text]
  • Calpain Inhibitors Prevent Nitric Oxide-Triggered Excitotoxic Apoptosis
    Calpain inhibitors prevent nitric oxide- triggered excitotoxic apoptosis Christiane Volbracht,1,2 Eugenio Fava,1,3 Marcel Leist1,4 and Pierluigi Nicotera1,3,CA 1Molecular Toxicology, University of Konstanz, Konstanz, Germany; 2Institute of Molecular and Cell Biology, Singapore 117609, Singapore; 3MRC Toxicology Unit, University of Leicester, PO Box 138, Lancaster Road, Leicester LE1 9HN; 4Department of Neurobiology, H. Lundbeck A/S, 2500 Valby, Denmark CACorresponding Author The pathogenesis of some neurodegenerative disorders has potential, chromatin breakdown, and subsequent death of been linked to excitotoxicity, excess generation of nitric oxide cerebellar granule neurons exposed to NO donors (S-nitroso- (NO) and apoptosis. Here, we used a model of NO-triggered L-glutathione, S-nitroso-N-acetyl-D,L-penicillamine, and diethy- neuronal apoptosis that was strictly dependent on autocrine lamino-diazenolate-2-oxide). Since inhibitors did not interfere 2 NMDA receptor (NMDA-R) activation and intracellular Ca with NMDA-R activation, we suggest that block of calpains increase. We investigated the ef®ciency and potentially bene- blunts NO-triggered neuronal apoptosis by stopping the ®cial effects of calpain inhibition. Three calpain inhibitors that cascade downstream of primary autocrine excitotoxic events. prevented intracellular fodrin proteolysis also blocked apopto- NeuroReport 12:3645±3648 & 2001 Lippincott Williams & tic features such as decrease in mitochondrial membrane Wilkins. Key words: Apoptosis; Calpains; Excitotoxicity; Mitochondria; Nitric oxide INTRODUCTION MATERIALS AND METHODS Massive generation of the pleiotropic messenger molecule Cell culture: Murine CGC were isolated from 8-day-old nitric oxide (NO) has been implicated in many neuro- speci®c pathogen free BALB/e mice obtained from the pathological conditions including ischemia [1].
    [Show full text]
  • Production of Circularly Permuted Caspase-2 for Affinity Fusion-Tag
    biomolecules Article Production of Circularly Permuted Caspase-2 for Affinity Fusion-Tag Removal: Cloning, Expression in Escherichia coli, Purification, and Characterization 1,2, 1,2, , 1,3 1,3 Monika Cserjan-Puschmann y , Nico Lingg * y , Petra Engele , Christina Kröß , Julian Loibl 1, Andreas Fischer 1, Florian Bacher 1, Anna-Carina Frank 1,2, Christoph Öhlknecht 1,4,Cécile Brocard 5, Chris Oostenbrink 1,4 , Matthias Berkemeyer 5, Rainer Schneider 1,3, Gerald Striedner 1,2 and Alois Jungbauer 1,2,* 1 ACIB-Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria; [email protected] (M.C.-P.); [email protected] (P.E.); [email protected] (C.K.); [email protected] (J.L.); andreas.fi[email protected] (A.F.); fl[email protected] (F.B.); [email protected] (A.-C.F.); [email protected] (C.Ö.); [email protected] (C.O.); [email protected] (R.S.); [email protected] (G.S.) 2 Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria 3 Institute of Biochemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria 4 Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria 5 Biopharma Process Science Austria, Boehringer Ingelheim RCV GmbH & Co KG, Dr. Boehringer-Gasse 5-11, 1121 Vienna, Austria; [email protected] (C.B.); [email protected] (M.B.) * Correspondence: [email protected] (N.L.); [email protected] (A.J.) These authors have contributed equally to the manuscript.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • The Role of Caspase-2 in Regulating Cell Fate
    cells Review The Role of Caspase-2 in Regulating Cell Fate Vasanthy Vigneswara and Zubair Ahmed * Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK; [email protected] * Correspondence: [email protected] Received: 15 April 2020; Accepted: 12 May 2020; Published: 19 May 2020 Abstract: Caspase-2 is the most evolutionarily conserved member of the mammalian caspase family and has been implicated in both apoptotic and non-apoptotic signaling pathways, including tumor suppression, cell cycle regulation, and DNA repair. A myriad of signaling molecules is associated with the tight regulation of caspase-2 to mediate multiple cellular processes far beyond apoptotic cell death. This review provides a comprehensive overview of the literature pertaining to possible sophisticated molecular mechanisms underlying the multifaceted process of caspase-2 activation and to highlight its interplay between factors that promote or suppress apoptosis in a complicated regulatory network that determines the fate of a cell from its birth and throughout its life. Keywords: caspase-2; procaspase; apoptosis; splice variants; activation; intrinsic; extrinsic; neurons 1. Introduction Apoptosis, or programmed cell death (PCD), plays a pivotal role during embryonic development through to adulthood in multi-cellular organisms to eliminate excessive and potentially compromised cells under physiological conditions to maintain cellular homeostasis [1]. However, dysregulation of the apoptotic signaling pathway is implicated in a variety of pathological conditions. For example, excessive apoptosis can lead to neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease, whilst insufficient apoptosis results in cancer and autoimmune disorders [2,3]. Apoptosis is mediated by two well-known classical signaling pathways, namely the extrinsic or death receptor-dependent pathway and the intrinsic or mitochondria-dependent pathway.
    [Show full text]
  • (P -Value<0.05, Fold Change≥1.4), 4 Vs. 0 Gy Irradiation
    Table S1: Significant differentially expressed genes (P -Value<0.05, Fold Change≥1.4), 4 vs. 0 Gy irradiation Genbank Fold Change P -Value Gene Symbol Description Accession Q9F8M7_CARHY (Q9F8M7) DTDP-glucose 4,6-dehydratase (Fragment), partial (9%) 6.70 0.017399678 THC2699065 [THC2719287] 5.53 0.003379195 BC013657 BC013657 Homo sapiens cDNA clone IMAGE:4152983, partial cds. [BC013657] 5.10 0.024641735 THC2750781 Ciliary dynein heavy chain 5 (Axonemal beta dynein heavy chain 5) (HL1). 4.07 0.04353262 DNAH5 [Source:Uniprot/SWISSPROT;Acc:Q8TE73] [ENST00000382416] 3.81 0.002855909 NM_145263 SPATA18 Homo sapiens spermatogenesis associated 18 homolog (rat) (SPATA18), mRNA [NM_145263] AA418814 zw01a02.s1 Soares_NhHMPu_S1 Homo sapiens cDNA clone IMAGE:767978 3', 3.69 0.03203913 AA418814 AA418814 mRNA sequence [AA418814] AL356953 leucine-rich repeat-containing G protein-coupled receptor 6 {Homo sapiens} (exp=0; 3.63 0.0277936 THC2705989 wgp=1; cg=0), partial (4%) [THC2752981] AA484677 ne64a07.s1 NCI_CGAP_Alv1 Homo sapiens cDNA clone IMAGE:909012, mRNA 3.63 0.027098073 AA484677 AA484677 sequence [AA484677] oe06h09.s1 NCI_CGAP_Ov2 Homo sapiens cDNA clone IMAGE:1385153, mRNA sequence 3.48 0.04468495 AA837799 AA837799 [AA837799] Homo sapiens hypothetical protein LOC340109, mRNA (cDNA clone IMAGE:5578073), partial 3.27 0.031178378 BC039509 LOC643401 cds. [BC039509] Homo sapiens Fas (TNF receptor superfamily, member 6) (FAS), transcript variant 1, mRNA 3.24 0.022156298 NM_000043 FAS [NM_000043] 3.20 0.021043295 A_32_P125056 BF803942 CM2-CI0135-021100-477-g08 CI0135 Homo sapiens cDNA, mRNA sequence 3.04 0.043389246 BF803942 BF803942 [BF803942] 3.03 0.002430239 NM_015920 RPS27L Homo sapiens ribosomal protein S27-like (RPS27L), mRNA [NM_015920] Homo sapiens tumor necrosis factor receptor superfamily, member 10c, decoy without an 2.98 0.021202829 NM_003841 TNFRSF10C intracellular domain (TNFRSF10C), mRNA [NM_003841] 2.97 0.03243901 AB002384 C6orf32 Homo sapiens mRNA for KIAA0386 gene, partial cds.
    [Show full text]
  • The Role of Serratiopeptidase in the Resolution of Inflammation
    ARTICLE IN PRESS asian journal of pharmaceutical sciences ■■ (2017) ■■– ■■ Available online at www.sciencedirect.com ScienceDirect journal homepage: www.elsevier.com/locate/ajps Review The role of serratiopeptidase in the resolution of inflammation Manju Tiwari * Department of Biochemistry and Genetics, Barkatullah University, Bhopal, Madhya Pradesh, India ARTICLE INFO ABSTRACT Article history: Inflammation remains a key event during most of the diseases and physiological imbal- Received 26 October 2016 ance. Acute inflammation is an essential physiological event by immune system for a protective Received in revised form 9 measure to remove cause of inflammation and failure of resolution lead to chronic inflam- December 2016 mation. Over a period of time, a number of drugs mostly chemical have been deployed to Accepted 16 January 2017 combat acute and chronic inflammation. Recently, enzyme based anti-inflammatory drugs Available online became popular over conventional chemical based drugs. Serratiopeptidase, a proteolytic enzyme from trypsin family, possesses tremendous scope in combating inflammation. Serine Keywords: protease possesses a higher affinity for cyclooxygenase (COX-I and COX-II), a key enzyme Inflammation associated with production of different inflammatory mediators including interleukins (IL), Cyclooxygenase prostaglandins (PGs) and thromboxane (TXs) etc. Currently, arthritis, sinusitis, bronchitis, NSAIDs fibrocystic breast disease, and carpal tunnel syndrome, etc. are the leading inflammatory Serratiopeptidase disorders that affected the entire the globe. In order to conquer inflammation, both acute Steroids and chronic world, physician mostly relies on conventional drugs. The most common drugs Enzyme therapeutics to combat acute inflammation are Nonsteroidal anti-inflammatory drugs (NSAIDs) alone and or in combination with other drugs. However, during chronic inflammation, NSAIDs are often used with steroidal drugs such as autoimmune disorders.
    [Show full text]
  • Regulation of Caspase-9 by Natural and Synthetic Inhibitors Kristen L
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Open Access Dissertations 5-2012 Regulation of Caspase-9 by Natural and Synthetic Inhibitors Kristen L. Huber University of Massachusetts Amherst, [email protected] Follow this and additional works at: https://scholarworks.umass.edu/open_access_dissertations Part of the Chemistry Commons Recommended Citation Huber, Kristen L., "Regulation of Caspase-9 by Natural and Synthetic Inhibitors" (2012). Open Access Dissertations. 554. https://doi.org/10.7275/jr9n-gz79 https://scholarworks.umass.edu/open_access_dissertations/554 This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. REGULATION OF CASPASE-9 BY NATURAL AND SYNTHETIC INHIBITORS A Dissertation Presented by KRISTEN L. HUBER Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY MAY 2012 Chemistry © Copyright by Kristen L. Huber 2012 All Rights Reserved REGULATION OF CASPASE-9 BY NATURAL AND SYNTHETIC INHIBITORS A Dissertation Presented by KRISTEN L. HUBER Approved as to style and content by: _________________________________________ Jeanne A. Hardy, Chair _________________________________________ Lila M. Gierasch, Member _________________________________________ Robert M. Weis,
    [Show full text]
  • Proteases to Die For
    Downloaded from genesdev.cshlp.org on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Proteases to die for Vincent Cryns1 and Junying Yuan2,3 1Center for Endocrinology, Metabolism and Molecular Medicine, Northwestern University School of Medicine, Chicago, Illinois 60611 USA; 2Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115 USA Apoptosis or programmed cell death (PCD) is a geneti- have identified two genes (ced-3 and ced-4) that are each cally regulated, cellular suicide mechanism that plays a required for the execution of cell death and one (ced-9) crucial role in development and in the defense of homeo- that inhibits cell death (Hengartner et al. 1992; Yuan and stasis. Cells respond to a variety of disparate signals by Horvitz 1992; Yuan et al. 1993). Mutational analyses of committing suicide through a series of dramatic but re- these genes in C. elegans have defined a sequential cell markably uniform events. Morphologically, cells under- death pathway. Inactivating mutations of ced-9 result in going apoptosis demonstrate nuclear/cytoplasmic con- inappropriate cell deaths, but only if both ced-3 and densation and membrane protrusions. These initial ced-4 are functional (Hengartner et al. 1992). Targeted changes are followed by fragmentation of the nuclear overexpression of either ced-4 or ced-3 induces cell contents and subsequent encapsulation of these frag- death, these cell deaths are inhibited by ced-9. In trans- ments into ‘‘apoptotic bodies’’ that are quickly and un- genic worms, maximal cell death induced by ced-4 over- obtrusively consumed by adjacent cells, thereby leaving expression requires ced-3, whereas ced-3-mediated cell little trace of the apoptotic cell’s prior existence (Kerr et death is independent of ced-4.
    [Show full text]