Improving the Performance of Database-Centric

Total Page:16

File Type:pdf, Size:1020Kb

Improving the Performance of Database-Centric IMPROVING THE PERFORMANCE OF DATABASE-CENTRIC APPLICATIONS THROUGH PROGRAM ANALYSIS by TSE-HSUN CHEN A thesis submitted to the School of Computing in conformity with the requirements for the degree of Doctor of Philosophy Queen’s University Kingston, Ontario, Canada September 2016 Copyright © Tse-Hsun Chen, 2016 Abstract ODERN software applications are becoming more dependent on database management systems (DBMSs). DBMSs are usually used as black M boxes by software developers. For example, Object-Relational Map- ping (ORM) is one of the most popular database abstraction approaches that devel- opers use nowadays. Using ORM, objects in Object-Oriented languages are mapped to records in the database, and object manipulations are automatically translated to SQL queries. As a result of such conceptual abstraction, developers do not need deep knowledge of databases; however, all too often this abstraction leads to in- efficient and incorrect database access code. Thus, this thesis proposes a series of approaches to improve the performance of database-centric software applications that are implemented using ORM. Our approaches focus on troubleshooting and detecting inefficient (i.e., performance problems) database accesses in the source code, and we rank the detected problems based on their severity. We first con- duct an empirical study on the maintenance of ORM code in both open source and industrial applications. We find that ORM performance-related configurations are i rarely tuned in practice, and there is a need for tools that can help improve/tune the performance of ORM-based applications. Thus, we propose approaches along two dimensions to help developers improve the performance of ORM-based appli- cations: 1) helping developers write more performant ORM code; and 2) helping developers configure ORM configurations. To provide tooling support to developers, we first propose static analysis ap- proaches to detect performance anti-patterns in the source code. We automatically rank the detected anti-pattern instances according to their performance impacts. Our study finds that by resolving the detected anti-patterns, the application per- formance can be improved by 34% on average. We then discuss our experience and lessons learned when integrating our anti-pattern detection tool into industrial practice. We hope our experience can help improve the industrial adoption of future research tools. However, as static analysis approaches are prone to false positives and lack runtime information, we also propose dynamic analysis approaches to fur- ther help developers improve the performance of their database access code. We propose automated approaches to detect redundant data access anti-patterns in the database access code, and our study finds that resolving such redundant data access anti-patterns can improve application performance by an average of 17%. Finally, we propose an automated approach to tune performance-related ORM configura- tions using both static and dynamic analysis. Our study shows that our approach can help improve application throughput by 27–138%. Through our case studies on real-world applications, we show that all of our proposed approaches can provide valuable support to developers and help improve application performance significantly. ii Acknowledgments First of all, I would like to thank my supervisor Dr. Ahmed E. Hassan for his contin- uous guidance and support throughout my graduate study. You are the best mentor and supervisor that one can ask for. I am extremely lucky that I have the chance to work under your supervision. Thank you very much for encouraging me to pursue the research topics that I love. Your great guidance has helped me grow not only as a researcher, but also a thinker. Your advice has become my mottos and is priceless to my future career. A sincere appreciation to my supervisory and examination committee members, Dr. Patrick Martin, Dr. Juergen Dingel, Dr. Hossam Hassanein, and Dr. Mark Grechanik for their continued critique and guidance. Many thanks to my examiners for their valuable and insightful feedback on my work. I am very honored to have the chance to work and collaborate with the brightest researchers during my Ph.D. career. I would like to thank all of my labmates and collaborators, Dr. Weiyi Shang, Dr. Zhen Mining Jiang, Dr. Meiyappan Nagappan, Heng Li, Dr. Emad Shihab, Dr. Stephen Thomas, Dr. Hadi Hemmati, and Dr. iii Michael Godfrey for all the fruitful discussions and collaborations. I would like to thank BlackBerry and especially the members of the Performance Engineering team. I cloud not find my thesis topic without the industrial environ- ment and thoughtful feedback provided by the BlackBerry team. I would like to thank Mohamed Nasser and Parminder Flora for their continuous support through- out my Ph.D. career. A special thanks to my family, especially my father, mother, and brother. Thank you for all the sacrifices that you have made for me during my study. Your precious and invaluable love have been my greatest support in my life. At the end, I would like to express my greatest appreciation to my beloved wife Jinqiu Yang. Jinqiu, thank you very much for your understanding and continuous support. I dedicate this thesis to you. iv Dedication To my parents, my family, and my special lady, Jinqiu Yang. v Related Publications In all chapters and related publications of the thesis, my contributions are: draft- ing the initial research idea; researching background knowledge and related work; implementing the tools; conducting experiments; and writing and polishing the writing. My co-authors supported me in refining the initial ideas, pointing me to missing related work, providing feedback on earlier drafts, and polishing the writ- ing. Earlier versions of the work in the thesis were published as listed below: 1. Improving the Quality of Large-Scale Database-Centric Software Systems by An- alyzing Database Access Code (Chapter1) Tse-Hsun Chen, 31st International Conference on Data Engineering (ICDE), PhD Symposium, 2015. Seoul, Korea. Pages 245–249. 2. An Empirical Study on the Practice of Maintaining Object-Relational Mapping Code in Java Systems (Chapter4) Tse-Hsun Chen, Weiyi Shang, Jinqiu Yang, Ahmed E. Hassan, Michael W. God- frey, Mohamed Nasser, and Parminder Flora, 13th International Conference on vi Mining Software Repositories (MSR), 2016. Austin, Texas. Pages 165–176. 3. Detecting Performance Anti-patterns for Applications Developed using Object- relational Mapping (Chapter5) Tse-Hsun Chen, Weiyi Shang, Zhen Ming Jiang, Ahmed E. Hassan, Mohamed Nasser, and Parminder Flora, 36th International Conference on Software En- gineering (ICSE), 2014. Hyderabad, India. Pages 1001–1012. 4. Detecting Problems in Database Access Code of Large Scale Systems - An Indus- trial Experience Report (Chapter6) Tse-Hsun Chen, Weiyi Shang, Ahmed E. Hassan, Mohamed Nasser, and Par- minder Flora, 38th International Conference on Software Engineering, Soft- ware Engineering in Practice Track (ICSE-SEIP), 2016. Austin, Texas. Pages 71–80. 5. Finding and Evaluating the Performance Impact of Redundant Data Access for Applications that are Developed Using Object-Relational Mapping Frameworks (Chapter7) Tse-Hsun Chen, Weiyi Shang, Zhen Ming Jiang, Ahmed E. Hassan, Mohamed Nasser, and Parminder Flora, IEEE Transactions on Software Engineering (TSE), 2016. In Press. 6. CacheOptimizer: Helping Developers Configure Caching Frameworks for Hibernate- based Database-centric Web Applications (Chapter8) Tse-Hsun Chen, Weiyi Shang, Ahmed E. Hassan, Mohamed Nasser, and Par- minder Flora, 24th ACM SIGSOFT International Symposium on the Founda- tions of Software Engineering (FSE), 2016. Seattle, WA. Accepted. vii Table of Contents Abstracti Acknowledgments iii Dedicationv Related Publications vi List of Tables xi List of Figures xiii Chapter 1: Introduction............................ 1 1.1 Thesis Statement............................. 2 1.2 Thesis Overview.............................. 3 1.3 Thesis Contributions ........................... 8 Chapter 2: Literature Review......................... 9 2.1 Paper Selection Process.......................... 11 2.2 Program Analysis............................. 11 2.3 Code Transformation........................... 15 2.4 Domain specific languages and APIs................... 17 2.5 Chapter Summary............................. 17 Chapter 3: Background about Object-Relational Mapping . 18 3.1 Background on ORM Frameworks.................... 19 3.2 Translating Objects to SQL Queries ................... 19 3.3 Caching .................................. 22 3.4 Chapter Summary............................. 25 Chapter 4: Maintenance Activities of ORM Code.............. 26 4.1 Introduction................................ 27 viii 4.2 The Main Contributions of this Chapter................. 29 4.3 Related Work ............................... 30 4.4 Preliminary Study............................. 32 4.5 Case Study Results ............................ 34 4.6 Highlights and Implications of our findings............... 52 4.7 Threats to Validity ............................ 54 4.8 Chapter Summary............................. 56 Chapter 5: Statically Detecting ORM Performance Anti-patterns . 58 5.1 Introduction................................ 59 5.2 The Main Contributions of this Chapter................. 60 5.3 Motivating Examples........................... 62 5.4 Our Framework.............................. 64 5.5 Case Study................................. 72 5.6 Discussion................................
Recommended publications
  • A Program Optimization for Automatic Database Result Caching
    rtifact A Program Optimization for Comp le * A t * te n * te A is W s E * e n l l C o L D C o P * * c u e m s Automatic Database Result Caching O E u e e P n R t v e o d t * y * s E a a l d u e a t Ziv Scully Adam Chlipala Carnegie Mellon University, Pittsburgh, PA, USA Massachusetts Institute of Technology CSAIL, [email protected] Cambridge, MA, USA [email protected] Abstract formance bottleneck, even with the maturity of today’s database Most popular Web applications rely on persistent databases based systems. Several pathologies are common. Database queries may on languages like SQL for declarative specification of data mod- incur significant latency by themselves, on top of the cost of interpro- els and the operations that read and modify them. As applications cess communication and network round trips, exacerbated by high scale up in user base, they often face challenges responding quickly load. Applications may also perform complicated postprocessing of enough to the high volume of requests. A common aid is caching of query results. database results in the application’s memory space, taking advantage One principled mitigation is caching of query results. Today’s of program-specific knowledge of which caching schemes are sound most-used Web applications often include handwritten code to main- and useful, embodied in handwritten modifications that make the tain data structures that cache computations on query results, keyed off of the inputs to those queries. Many frameworks are used widely program less maintainable.
    [Show full text]
  • Managing Cache Consistency to Scale Dynamic Web Systems
    Managing Cache Consistency to Scale Dynamic Web Systems by Chris Wasik A thesis presented to the University of Waterloo in fulfilment of the thesis requirement for the degree of Master of Applied Science in Electrical and Computer Engineering Waterloo, Ontario, Canada, 2007 c Chris Wasik 2007 AUTHORS DECLARATION FOR ELECTRONIC SUBMISSION OF A THESIS I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract Data caching is a technique that can be used by web servers to speed up the response time of client requests. Dynamic websites are becoming more popular, but they pose a problem - it is difficult to cache dynamic content, as each user may receive a different version of a webpage. Caching fragments of content in a distributed way solves this problem, but poses a maintainability challenge: cached fragments may depend on other cached fragments, or on underlying information in a database. When the underlying information is updated, care must be taken to ensure cached information is also invalidated. If new code is added that updates the database, the cache can very easily become inconsistent with the underlying data. The deploy-time dependency analysis method solves this maintainability problem by analyzing web application source code at deploy-time, and statically writing cache dependency information into the deployed application. This allows for the significant performance gains distributed object caching can allow, without any of the maintainability problems that such caching creates.
    [Show full text]
  • A Trigger-Based Middleware Cache for Orms
    A Trigger-Based Middleware Cache for ORMs Priya Guptay, Nickolai Zeldovich, and Samuel Madden MIT CSAIL, yGoogle Abstract. Caching is an important technique in scaling storage for high-traffic web applications. Usually, building caching mechanisms involves significant effort from the application developer to maintain and invalidate data in the cache. In this work we present CacheGenie, a caching middleware which makes it easy for web application developers to use caching mechanisms in their applications. CacheGenie provides high-level caching abstractions for common query patterns in web applications based on Object-Relational Mapping (ORM) frameworks. Using these abstractions, the developer does not have to worry about managing the cache (e.g., insertion and deletion) or maintaining consistency (e.g., invalidation or updates) when writing application code. We design and implement CacheGenie in the popular Django web application framework, with PostgreSQL as the database backend and memcached as the caching layer. To automatically invalidate or update cached data, we use trig- gers inside the database. CacheGenie requires no modifications to PostgreSQL or memcached. To evaluate our prototype, we port several Pinax web applications to use our caching abstractions. Our results show that it takes little effort for applica- tion developers to use CacheGenie, and that CacheGenie improves throughput by 2–2.5× for read-mostly workloads in Pinax. 1 Introduction Developers of popular web applications often struggle with scaling their application to handle many users, even if the application has access to many server machines. For stateless servers (such as HTTP front-ends or application servers), it is easy to spread the overall load across many machines.
    [Show full text]
  • Tuning Websphere Application Server Cluster with Caching Ii Tuning Websphere Application Server Cluster with Caching Contents
    Tuning WebSphere Application Server Cluster with Caching ii Tuning WebSphere Application Server Cluster with Caching Contents Tuning WebSphere Application Server Data replication service .........20 Cluster with Caching .........1 Setting up and configuring caching in the test Introduction to tuning the WebSphere Application environment ..............22 Server cluster with caching .........1 Caching proxy server setup ........23 Summary for the WebSphere Application Server Dynamic caching with Trade and WebSphere . 23 cluster with caching tests ..........1 Enabling WebSphere Application Server Benefits of using z/VM..........2 DynaCache .............25 Hardware equipment and software environment . 3 CPU utilization charts explained ......26 Host hardware.............3 Test case scenarios and results ........27 Network setup.............4 Test case scenarios ...........27 Storage server setup ...........4 Baseline definition parameters and results . 29 Client hardware ............4 Vary caching mode ...........31 Software (host and client) .........4 Vary garbage collection policy .......36 Overview of the Caching Proxy Component ....5 Vary caching policy...........37 WebSphere Edge Components Caching Proxy . 5 Vary proxy system in the DMZ .......42 WebSphere Proxy Server .........6 Scaling the size of the DynaCache ......45 Configuration and test environment ......6 Scaling the update part of the Trade workload. 47 z/VM guest configuration .........6 Enabling DynaCache disk offload ......50 Test environment ............7 Comparison between
    [Show full text]
  • Database Performance Tuning Guide
    Oracle® Database Database Performance Tuning Guide 21c F32091-03 August 2021 Oracle Database Database Performance Tuning Guide, 21c F32091-03 Copyright © 2007, 2021, Oracle and/or its affiliates. Contributing Authors: Glenn Maxey, Rajesh Bhatiya, Immanuel Chan, Lance Ashdown Contributors: Hermann Baer, Deba Chatterjee, Maria Colgan, Mikael Fries, Prabhaker Gongloor, Kevin Jernigan, Sue K. Lee, William Lee, David McDermid, Uri Shaft, Oscar Suro, Trung Tran, Sriram Vrinda, Yujun Wang This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable: U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial computer software" or "commercial computer software documentation" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations.
    [Show full text]
  • Application-Level Caching with Transactional Consistency by Dan R
    Application-Level Caching with Transactional Consistency by Dan R. K. Ports M.Eng., Massachusetts Institute of Technology (2007) S.B., S.B., Massachusetts Institute of Technology (2005) Submitted to the Department of Electrical Engineering and Computer Science in partial fulllment of the requirements for the degree of Doctor of Philosophy in Computer Science at the MASSACHUSETTSINSTITUTEOFTECHNOLOGY June 2012 © Massachusetts Institute of Technology 2012. All rights reserved. Author...................................................... Department of Electrical Engineering and Computer Science May 23, 2012 Certied by . Barbara H. Liskov Institute Professor esis Supervisor Accepted by . Leslie A. Kolodziejski Chair, Department Committee on Graduate eses 2 Application-Level Caching with Transactional Consistency by Dan R. K. Ports Submitted to the Department of Electrical Engineering and Computer Science on May 23, 2012, in partial fulllment of the requirements for the degree of Doctor of Philosophy in Computer Science abstract Distributed in-memory application data caches like memcached are a popular solution for scaling database-driven web sites. ese systems increase performance signicantly by reducing load on both the database and application servers. Unfortunately, such caches present two challenges for application developers. First, they cannot ensure that the application sees a consistent view of the data within a transaction, violating the isolation properties of the underlying database. Second, they leave the application responsible for locating data in the cache and keeping it up to date, a frequent source of application complexity and programming errors. is thesis addresses both of these problems in a new cache called TxCache. TxCache is a transactional cache: it ensures that any data seen within a transaction, whether from the cache or the database, reects a slightly stale but consistent snap- shot of the database.
    [Show full text]
  • A Program Optimization for Automatic Database Result Caching
    A program optimization for automatic database result caching The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Scully, Ziv, and Adam Chlipala. “A Program Optimization for Automatic Database Result Caching.” 44th ACM SIGPLAN Symposium on Principles of Programming Languages, Paris, France 15-21 January, 2017. ACM Press, 2017. 271–284. As Published http://dx.doi.org/10.1145/3009837.3009891 Publisher Association for Computing Machinery (ACM) Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/110807 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ rtifact A Program Optimization for Comp le * A t * te n * te A is W s E * e n l l C o L D C o P * * c u e m s Automatic Database Result Caching O E u e e P n R t v e o d t * y * s E a a l d u e a t Ziv Scully Adam Chlipala Carnegie Mellon University, Pittsburgh, PA, USA Massachusetts Institute of Technology CSAIL, [email protected] Cambridge, MA, USA [email protected] Abstract formance bottleneck, even with the maturity of today’s database Most popular Web applications rely on persistent databases based systems. Several pathologies are common. Database queries may on languages like SQL for declarative specification of data mod- incur significant latency by themselves, on top of the cost of interpro- els and the operations that read and modify them. As applications cess communication and network round trips, exacerbated by high scale up in user base, they often face challenges responding quickly load.
    [Show full text]
  • Middle-Tier Database Caching for E-Business *
    Middle-Tier Database Caching for e-Business * Qiong Luo # Sailesh Krishnamurthy ÷ C. Mohan ~ Hamid Pirahesh ~ Honguk Woo ° Bruce G. Lindsay ~ Jeffrey F. Naughton # • Work done at IBM Almaden Research Center #Computer Sciences Dept, University of Wisconsin, Madison, WI 53706 • Department of EECS, UC Berkeley, Berkeley, CA 94720 5IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120 °Department of Computer Sciences, University of Texas-Austin, Austin, TX 78712 Contact email: {[email protected], [email protected]} ABSTRACT usually at the application server, of a multi-tier web site infrastructure. Example commercial products include the While scaling up to the enormous and growing Internet Database Cache of Oracle 9i Internet Application Server [19] and population with unpredictable usage patterns, E-commerce TimesTen's Front-Tier [22]. applications face severe challenges in cost and manageability, especially for database servers that are deployed as those applications' backends in a multi-tier configuration. Middle-tier database caching is one solution to this problem. In this paper, we present a simple extension to the existing federated features in I-WIP DB2 UDB, which enables a regular DB2 instance to become a DBCache without any application modification. On deployment Figure 1: Middle-Tier Databas Caching of a DBCache at an application server, arbitrary SQL statements generated from the unchanged application that are intended for a In a multi-tier e-Business infrastructure, middle-tier database backend database server, can be answered: at the cache, at the caching is attractive because of improvements to the following backend database server, or at both locations in a distributed attributes: manner.
    [Show full text]
  • Performance Analysis of a Database Caching System in a Grid Environment
    FACULTY OF ENGINEERING OF THE UNIVERSITY OF PORTO Performance Analysis of a Database Caching System In a Grid Environment Luis Albino Nogueira Ramos Graduated in Informatics and Computing Engineering By the Faculty of Engineering of the University of Porto Dissertation submitted in partial fulfillment of the requirements for the degree of Master of Informatics Engineering Dissertation prepared under the supervision of Dr. Gabriel de Sousa Torcato David from the Department of Electrical and Computer Engineering of the Faculty of Engineering of the University of Porto Porto, September 2007 to little birds who are the secrets of living Resumo O CERN é o maior centro de investigação em física de partículas do mundo onde milhares de físicos estudam os constituintes fundamentais da matéria. O maior projecto do CERN é o Large Hadron Collider (LHC), um acelerador de partículas constituído por vários detectores que observam e registam as colisões de partículas que acontecem no LHC. A LHC Computing Grid (LCG) fornece à comunidade de físicos uma infra-estrutura de computação distribuída para armazenamento, distribuição e análise dos 15 PB de dados produzidos por ano pelo LHC. A LCG fornece serviços e infra-estruturas para a replicação e acesso distribuído a dados em ficheiros. Dado que parte dos dados são armazenados em bases de dados, serviços e infra-estruturas similares são necessários para esses dados. O projecto Distributed Deployment of Databases (LCG3D) fornece a infra-estrutura de distribuição de bases de dados da LCG e é responsável pela investigação de técnicas de distribuição de bases de dados a usar na LCG. As técnicas de distribuição de bases de dados usadas são: a solução comercial para replicação de bases de dados Oracle Streams, e o sistema de cache de bases de dados FroNtier.
    [Show full text]
  • A Trigger-Based Middleware Cache for Orms
    A Trigger-Based Middleware Cache for ORMs Priya Gupta, Nickolai Zeldovich, and Samuel Madden MIT CSAIL Abstract. Caching is an important technique in scaling storage for high-traffic web applications. Usually, building caching mechanisms involves significant ef- fort from the application developer to maintain and invalidate data in the cache. In this work we present CacheGenie, a caching middleware which makes it easy for web application developers to use caching mechanisms in their applications. CacheGenie provides high-level caching abstractions for common query patterns in web applications based on Object-Relational Mapping (ORM) frameworks. Us- ing these abstractions, the developer does not have to worry about managing the cache (e.g., insertion and deletion) or maintaining consistency (e.g., invalidation or updates) when writing application code. We design and implement CacheGenie in the popular Django web applica- tion framework, with PostgreSQL as the database backend and memcached as the caching layer. To automatically invalidate or update cached data, we use trig- gers inside the database. CacheGenie requires no modifications to PostgreSQL or memcached. To evaluate our prototype, we port several Pinax web applications to use our caching abstractions. Our results show that it takes little effort for appli- cation developers to use CacheGenie, and that CacheGenie improves throughput by 2–2.5× for read-mostly workloads in Pinax. 1 Introduction Developers of popular web applications often struggle with scaling their application to handle many users, even if the application has access to many server machines. For stateless servers (such as HTTP front-ends or application servers), it is easy to spread the overall load across many machines.
    [Show full text]
  • Apollo: Learning Query Correlations for Predictive Caching in Geo-Distributed Systems
    Apollo: Learning Query Correlations for Predictive Caching in Geo-Distributed Systems Brad Glasbergen Michael Abebe Khuzaima Daudjee University of Waterloo University of Waterloo University of Waterloo [email protected] [email protected] [email protected] Scott Foggo Anil Pacaci University of Waterloo University of Waterloo [email protected] [email protected] ABSTRACT The performance of modern geo-distributed database applications is increasingly dependent on remote access latencies. Systems that cache query results to bring data closer to clients are gaining popularity but they do not dynamically learn and exploit access patterns in client workloads. We present a novel prediction frame- work that identifies and makes use of workload characteristics obtained from data access patterns to exploit query relationships (a) Datacenter Locations (b) Edge Node Locations within an application’s database workload. We have designed and implemented this framework as Apollo, a system that learns query Figure 1: Google’s datacenter and edge node locations [21]. patterns and adaptively uses them to predict future queries and cache their results. Through extensive experimentation with two different benchmarks, we show that Apollo provides significant 1. SELECT C_ID FROM CUSTOMER WHERE performance gains over popular caching solutions through reduced C_UNAME = @C_UN and C_PASSWD = @C_PAS query response time. Our experiments demonstrate Apollo’s ro- bustness to workload changes and its scalability as a predictive cache for geo-distributed database applications. 2. SELECT MAX(O_ID) FROM ORDERS WHERE O_C_ID = @C_ID 1 INTRODUCTION Modern distributed database systems and applications frequently 3. SELECT ... FROM ORDER_LINE, ITEM have to handle large query processing latencies resulting from the WHERE OL_I_ID = I_ID and OL_O_ID = @O_ID geo-distribution of data [11, 13, 41].
    [Show full text]
  • SQL Query Cache for the Mysql Database System
    Masaryk University Faculty}w¡¢£¤¥¦§¨ of Informatics !"#$%&'()+,-./012345<yA| SQL query cache for the MySQL database system Master Thesis Brno, April 2002 Martin Klemsa Hereby I state that this thesis is my genuine copyrighted work which I elaborated all by myself. All sources and literature that I used or consulted are properly cited and their complete reference is given. Acknowledgements I would like to thank Jan Pazdziora, the advisor of my thesis, for his help throughout the work. I am very grateful for his advice and valuable discussions. I would also like to thank Michael “Monty” Widenius – the MySQL chief developer – for a never- -ending stream of suggestions. Another thanks go to my family and my friends for their support during the period of time when I was working on this thesis. i Abstract MySQL is a free open source database server. For the purpose of increasing its performance, this paper presents an SQL query cache enhancement for the server. This new feature aims at increasing the server response speed, reducing its load and saving its resources by storing results of evaluated selection queries and retriev- ing them in case of their repeated occurrance. Reviews of previous work done on related subjects are given. System overview of the developed SQL query cache is presented together with a discussion of the problems encountered during its design and implementation. The comparison with the newly released version of the MySQL which contains a built-in query cache is also brought. Benchmarks shown to prove the performance increase of the modified server with repeated selection queries and a discussion about further enhancement and refinement possibilities conclude this paper.
    [Show full text]