We Report on the Synthesis, Multifaceted Characterization, And

Total Page:16

File Type:pdf, Size:1020Kb

We Report on the Synthesis, Multifaceted Characterization, And BNL-107893-2015-JA TOC Figure: We report on the synthesis, multifaceted characterization, and electrochemical activity of crystalline, chemically pure 200 nm lithium iron phosphate nanowires, mediated by using a seedless, surfactantless U-tube method. Sentence summary of work: We have developed a novel ambient preparative method for the fabrication of chemically pure, highly crystalline 200 nm lithium iron phosphate nanowires. 2 Ambient Synthesis, Characterization, and Electrochemical Activity of LiFePO4 Nanomaterials derived from Iron Phosphate Intermediates Jonathan M. Patete,1,⊥ Megan E. Scofield,1,⊥ Vyacheslav Volkov,2 Christopher Koenigsmann,1 Yiman Zhang,1 Amy C. Marschilok,1,3 Xiaoya Wang,1,4 Jianming Bai,5 Jinkyu Han,2 Lei Wang,1 Feng Wang,4 Yimei Zhu,2 Jason A. Graetz,4,# and Stanislaus S. Wong1,2,* Email: [email protected]; [email protected] 1Department of Chemistry, State University of New York at Stony Brook, Stony Brook, NY 11794-3400 2Condensed Matter Physics and Materials Sciences Department, Building 480, Brookhaven National Laboratory, Upton, NY 11973 3Department of Materials Science and Engineering, State University of New York at Stony Brook, Stony Brook, NY 11794-2275 4Sustainable Energy Technologies Department, Building 815, Brookhaven National Laboratory, Upton, NY 11973 5National Synchrotron Light Source II, Building 741, Brookhaven National Laboratory, Upton, NY 11973 # Current address: Sensors and Materials Laboratory, HRL Laboratories, LLC, 3011 Malibu Canyon Road, Malibu, CA 90265-4797 ⊥These authors contributed equally to this work. *To whom correspondence should be addressed. 3 Abstract: LiFePO4 materials have become increasingly popular as a cathode material due to the many benefits they possess including thermal stability, durability, low cost, and long life span. Nevertheless, to broaden the general appeal of this material for practical electrochemical applications, it would be useful to develop a relatively mild, reasonably simple synthesis method of this cathode material. Herein, we describe a generalizable, 2-step methodology of sustainably synthesizing LiFePO4 by incorporating a template-based, ambient, surfactantless, seedless, U- tube protocol in order to generate size and morphologically tailored, crystalline, phase-pure nanowires. The purity, composition, crystallinity, and intrinsic quality of these wires were systematically assessed using TEM, HRTEM, SEM, XRD, SAED, EDAX, and high-resolution synchrotron XRD. From these techniques, we were able to determine that there is an absence of defects present in our wires, supporting the viability of our synthetic approach. Electrochemical analysis was also employed to assess their electrochemical activity. Although our nanowires do not contain any noticeable impurities, we attribute their less than optimal electrochemical rigor to differences in the chemical bonding between our LiFePO4 nanowires and their bulk-like counterparts. Specifically, we demonstrate for the first time experimentally that the Fe-O3 chemical bond plays an important role in determining the overall conductivity of the material, an assertion which is further supported by recent first principle calculations. Nonetheless, our ambient, solution-based synthesis technique is capable of generating highly crystalline and phase-pure energy-storage-relevant nanowires that can be tailored so as to fabricate different sized materials of reproducible, reliable morphology. Keywords: ambient synthesis; template synthesis; cathode material; lithium iron phosphate; nanostructures. 4 1. Introduction LiFePO4 materials have become increasingly popular as a cathode material, due to the many benefits they possess including thermal stability, durability, low cost, and long life span. Nevertheless, to broaden the general appeal of this material for practical electrochemical applications, it would be useful to develop a relatively mild, reasonably simple synthesis method 1, 2 of this cathode material. Since the seminal work performed by Goodenough and co-workers, olivine LiFePO4 has attracted the most interest due to its low cost, low toxicity, high thermal stability, and excellent electrochemical properties. Specifically, LiFePO4 exhibits a high, flat voltage profile, good cycle stability, and a high theoretical specific capacity (~170 mAh/g).3, 4 The material also possesses a relatively high lithium intercalation voltage of 3.5 V, relative to 3, 5 lithium metal. Moreover, the lifetime of a LiFePO4 battery has been estimated to extend to more than 2,000 cycles, which is key to producing commercial cells with high electrochemical durability and stability. As shown in Equation 1, the discharge of LiFePO4 involves the intercalation of Li+ along with the uptake of an equivalent number of electrons: + - FePO4 + Li + 1e → LiFePO4 E° = 3.5 V (1) The olivine crystal structure of LiFePO4 possesses a slightly distorted hexagonal-close 2+ packed array of oxygen atoms, wherein 50% of the octahedral sites are occupied by Fe and + 6 12.5% are occupied by Li . The FeO6 octahedra are corner shared and the LiO6 octahedra are edge shared with the Li+ ions, forming a continuous chain down the [010] crystallographic direction.6, 7 The olivine phase is uniquely advantageous, because the structural matrix formed by the iron-oxygen octahedral complex in LiFePO4 does not change significantly upon de- 8, 9 lithiation. By contrast, layered structures, such as LiCoO2, undergo significant structural reconfiguration, when the lithium ion content is decreased below a certain amount.10 In essence, 5 the olivine structure is anticipated to be more robust for long-term applications in Li-ion batteries, because the relatively stable structure should promote increased reversibility of the lithiation/de-lithiation process. Improvements to the lithium ion diffusion rate have also been successfully demonstrated by reducing the dimensions of the LiFePO4 material to the nanoscale regime. For instance, a reduction in particle size from the bulk to the nanoscale would minimize the path length for Li+ ion diffusion and facilitate electron transport through the material. It has also been suggested that nanoparticles maintain less mechanical strain, thereby enabling faster lithium ion diffusion into 4, 7 the material upon reversible intercalation, which would allow for improved cycle lifetimes. Nanostructured LiFePO4 also possesses increased surface area-to-volume ratios as compared with their bulk analogues, which facilitates electrochemical performance by increasing the 4, 6, 7 interface between the metal oxide and the electrolyte. As such, there have been extensive 11-19 reports regarding the preparation and characterization of LiFePO4 nanostructures. In particular, one-dimensional (1-D) nanomaterials, such as nanowires, nanotubes, nanorods, and nanoribbons, are expected to play a significant role in advancing LiFePO4 battery performance, due to their uniquely advantageous structural and electronic properties.3, 4, 20-32 For instance, computational analysis has shown that although there are three potential Li+ ion diffusion pathways, the preferred pathway is oriented along the b-axis (0.55 eV), wherein the + 33, 34 Li ions form a continuous chain through the FePO4 matrix. Therefore, an increased rate performance can be achieved in a nanowire system by selectively growing the material such that either the a- or c-axis is oriented along the anisotropic growth direction of the nanowire. Preferential growth along either the a- or c-axis would also enable the selective orientation of the b-axis and the Li+ ion channels along the radial aspect of the nanowire (e.g. parallel to the 6 diameter of the nanowire), which is confined to the nanoscale. This would effectively minimize the Li+ ion diffusion length through the material and also promote better performance at high rates of charge and discharge. Our synthesis method herein forms iron phosphate as the initial product, allowing for direct electrochemical evaluation of the FePO4 moiety. Prior reports have indicated that success in the electrochemical lithiation of iron phosphate materials can be very sensitive to specific structural properties, depending on the crystallinity and the phase of the FePO4 material. For example, a prior report yielded a cycle 2 specific discharge capacity of 76 mAh/g for an amorphous FePO4•2 H2O material, but only 18 mAh/g for a more crystalline hexagonal FePO4 35 material prepared at 500°C. Similarly, carbon nanotube-amorphous FePO4 core–shell nanowires realized a specific capacity of 175 mAh/g in lithium batteries36 and 120 mAh/g in 37 sodium batteries, respectively, but with ultra-thin amorphous coatings of FePO4 comprising only a few nm in thickness. A limitation of these prior studies was a lack of discernible X-ray diffraction patterns in each case. By contrast, herein, through directed control of synthesis properties, we can tailor the aspect ratio and size of FePO4 material, thereby providing for an opportunity to evaluate function with respect to electrochemical lithiation for nanowire FePO4 material relative to bulk-type granular FePO4 material. Recently, there have been a number of successful reports generating 1-D LiFePO4 nanomaterials primarily through hydrothermal and electrospinning-based techniques.3, 4, 21-23 By contrast, template-directed methods represent a conceptually straightforward approach for the synthesis of 1-D nanostructures.38 In general, the template acts as a structural framework for the nucleation and growth of materials
Recommended publications
  • Lithium Isotope Effects Upon Electrochemical Release from Lithium Manganese Oxide
    Available online at www.sciencedirect.com ScienceDirect Energy Procedia 71 ( 2015 ) 140 – 148 The Fourth International Symposium on Innovative Nuclear Energy Systems, INES-4 Lithium isotope effects upon electrochemical release from lithium manganese oxide Koji OKANOa, Yuta TAKAMIa, Satoshi YANASEa, Takao OIa,* a Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyodaku, Tokyo, 102-8554 Japan Abstract Lithium was electrochemically released from lithium manganese oxide (LiMn2O4) to an electrolyte solution, a 1:2 v/v mixed solution of ethylene carbonate (EC) and ethylmethyl carbonate (EMC) containing 1 M lithium perchlorate or sodium perchlorate (EC/EMC/LiClO4 or EC/EMC/NaClO4) to observe the lithium isotope effects that accompanied the lithium release. The lighter isotope of lithium, 6Li, was preferentially fractionated to the electrolyte solution phase, with the value of the lithium isotope separation factor ranging from 0.989 to 0.971 at 25 ºC. The degree of the lithium isotope fractionation was slightly smaller in the LiMn2O4-EC/EMC/NaClO4 system than in the LiMn2O4-EC/EMC/LiClO4 system. The present systems are in great contrast with the lithium cobalt oxide (LiCoO2)-the electrolyte solution systems concerning the direction and magnitude of the lithium isotope effects, which seems mostly ascribable to the structural difference between LiMn2O4 and LiCoO2ࠋ © 20152014 TheThe Authors. Authors. Published Published by Elsevierby Elsevier Ltd. Ltd.This is an open access article under the CC BY-NC-ND license Selection(http://creativecommons.org/licenses/by-nc-nd/3.0/ and peer-review under responsibility). of the Tokyo Institute of Technology. Selection and peer-review under responsibility of the Tokyo Institute of Technology Keywords: lithium isotopes; isotope effects; lithium manganese oxide; separation factor; lithium ion secondary batteries; ethylene carbonate 1.
    [Show full text]
  • A Study of Lithium Precursors on Nanoparticle Quality
    Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2021 Electronic Supplementary Information Elucidating the role of precursors in synthesizing single crystalline lithium niobate nanomaterials: A study of lithium precursors on nanoparticle quality Rana Faryad Ali, Byron D. Gates* Department of Chemistry and 4D LABS, Simon Fraser University, 8888 University Drive Burnaby, BC, V5A 1S6, Canada * E-mail: [email protected] This work was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC; Grant No. RGPIN-2020-06522), and through the Collaborative Health Research Projects (CHRP) Partnership Program supported in part by the Canadian Institutes of Health Research (Grant No. 134742) and the Natural Science Engineering Research Council of Canada (Grant No. CHRP 462260), the Canada Research Chairs Program (B.D. Gates, Grant No. 950-215846), CMC Microsystems (MNT Grant No. 6345), and a Graduate Fellowship (Rana Faryad Ali) from Simon Fraser University. This work made use of 4D LABS (www.4dlabs.com) and the Center for Soft Materials shared facilities supported by the Canada Foundation for Innovation (CFI), British Columbia Knowledge Development Fund (BCKDF), Western Economic Diversification Canada, and Simon Fraser University. S1 Experimental Materials and supplies All chemicals were of analytical grade and were used as received without further purification. Niobium ethoxide [Nb(OC2H5)5, >90%] was obtained from Gelest Inc., and benzyl alcohol (C7H7OH, 99%) and triethylamine [N(C2H5)3, 99.0%] were purchased from Acros Organics and Anachemia, respectively. Lithium chloride (LiCl, ~99.0%) was obtained from BDH Chemicals, and lithium bromide (LiBr, ≥99.0%), lithium fluoride (LiF, ~99.9%), and lithium iodide (LiI, 99.0%) were purchased from Sigma Aldrich.
    [Show full text]
  • Synthesis, Reactivity, and Catalysis of Group 3 and Lanthanide Alkyl Complexes
    Synthesis, Reactivity, and Catalysis of Group 3 and Lanthanide Alkyl Complexes By Daniel Steven Levine A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemistry in the Graduate Division of the University of California, Berkeley Committee in charge: Professor T. Don Tilley, Co-Chair Professor Richard A. Andersen, Co-Chair Professor Alexis T. Bell Summer 2016 Abstract Synthesis, Reactivity, and Catalysis of Group 3 and Lanthanide Alkyl Complexes by Daniel Steven Levine Doctor of Philosophy in Chemistry University of California, Berkeley Professor T. Don Tilley, Co-Chair Professor Richard A. Andersen, Co-Chair Chapter 1. A series of scandium dialkyl complexes, (PNP)ScR2 (R = neopentyl, trimethylsilylmethyl), supported by the monoanionic, chelating PNP ligand (2,5- bis(dialkylphosphinomethyl)pyrrolide; alkyl = cyclohexyl, tert-butyl) was synthesized and the reactivities of these complexes toward simple hydrocarbons was investigated. The scandium– carbon bonds undergo σ-bond metathesis reactions with hydrogen and these complexes are catalysts for the hydrogenation of alkenes. Reactions with primary amines led to formation of amido complexes that undergo cyclometalation via σ-bond metathesis, without involvement of an imido complex intermediate. A variety of carbon-hydrogen bonds are also activated, including sp-, sp2-, and sp3-C–H bonds (intramolecularly in the latter case). Levine, D. S.; Tilley, T. D.; Andersen, R. A. Organometallics 2015, 34 (19), 4647. Chapter 2. Terminal group 3 methylidene complexes are generated by thermolysis of monoanionic PNP-supported scandium and yttrium dialkyl complexes. The reaction mechanism has been probed by deuterium-labeling experiments and DFT calculations. Abstraction of a γ- hydrogen from one alkyl group by the other affords a metallacyclobutane that undergoes [2+2] cycloreversion, analogous to a key step in the olefin metathesis reaction, to generate a methylidene complex and isobutene.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9.209,487 B2 Scanlon, Jr
    US0092094.87B2 (12) United States Patent (10) Patent No.: US 9.209,487 B2 Scanlon, Jr. et al. (45) Date of Patent: Dec. 8, 2015 (54) SOLD-STATE ELECTROLYTES FOR HO1 M 4/134 (2010.01) RECHARGEABLE LITHIUM BATTERIES HOIM 4/40 (2006.01) (52) U.S. C. (71) Applicant: The United States of America, as CPC ............ H0IM 10/0564 (2013.01); H01 M 4/60 Represented by the Secretary of the (2013.01); H0 IM 4/62 (2013.01); H0IM Air Force, Washington, DC (US) 10/0525 (2013.01); H01 M 4/134 (2013.01); H01 M 4/405 (2013.01); HOIM 2300/0065 (72) Inventors: Lawrence G Scanlon, Jr., Fairborn, OH (2013.01); HOIM 2300/0091 (2013.01); Y02E (US); Joseph P Fellner, Kettering, OH 60/122 (2013.01) (US); William A. Feld, Beavercreek, OH (58) Field of Classification Search (US); Leah R. Lucente, Beavercreek, None OH (US); Jacob W. Lawson, See application file for complete search history. Springfield, OH (US); Andrew M. Beauchamp, Lancaster, CA (US) (56) References Cited U.S. PATENT DOCUMENTS (73) Assignee: The United States of America as represented by the Secretary of the Air 5,932,133 A 8/1999 Scanlon, Jr. Force, Washington, DC (US) 6,010,805 A 1/2000 Scanlon, Jr. et al. 6,541,161 B1 4/2003 Scanlon, Jr. (*) Notice: Subject to any disclaimer, the term of this 2013/0309561 A1 11/2013 Chen et al. patent is extended or adjusted under 35 (Continued) U.S.C. 154(b) by 0 days. OTHER PUBLICATIONS (21) Appl. No.: 14/333,836 L.
    [Show full text]
  • Oxygen Reduction Via Iodide Redox Mediation in Li-O2 Batteries
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/308004421 Implications of 4 e- Oxygen Reduction via Iodide Redox Mediation in Li-O2 Batteries Article in ACS Energy Letters · September 2016 DOI: 10.1021/acsenergylett.6b00328 CITATIONS READS 3 206 7 authors, including: Vincent Giordani Dan Addison Liox Power, Inc. Independent Researcher 30 PUBLICATIONS 769 CITATIONS 30 PUBLICATIONS 400 CITATIONS SEE PROFILE SEE PROFILE Linda F. Nazar Bryan Mccloskey University of Waterloo University of California, Berkeley 264 PUBLICATIONS 19,366 CITATIONS 66 PUBLICATIONS 4,941 CITATIONS SEE PROFILE SEE PROFILE All content following this page was uploaded by Vincent Giordani on 15 September 2016. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. Letter http://pubs.acs.org/journal/aelccp Implications of 4 e− Oxygen Reduction via − Iodide Redox Mediation in Li O2 Batteries Colin M. Burke,†,‡,# Robert Black,§,∥,# Ivan R. Kochetkov,§,∥ Vincent Giordani,⊥ Dan Addison,*,⊥ Linda F. Nazar,*,§,∥ and Bryan D. McCloskey*,†,‡ † Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States ‡ Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States § University of Waterloo, Department of Chemistry, Waterloo, Ontario N2L 3G1, Canada ∥ Waterloo Institute for Nanotechnology, Waterloo, Ontario N2L 3G1, Canada ⊥ Liox Power Inc., 129 North Hill Avenue, Pasadena, California 91106, United States *S Supporting Information − − ABSTRACT: The nonaqueous lithium oxygen (Li O2) electrochemistry has garnered significant attention because of its high theoretical specific energy compared to the state-of-the-art lithium-ion battery.
    [Show full text]
  • Physical and Electrochemical Investigations of Various
    PHYSICAL AND ELECTROCHEMICAL INVESTIGATIONS OF VARIOUS DINITRILE PLASTICIZERS IN HIGHLY CONDUCTIVE POLYMER ELECTROLYTE MEMBRANES FOR LITHIUM ION BATTERY APPLICATIONS A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Chenrun Feng May, 2017 i PHYSICAL AND ELECTROCHEMICAL INVESTIGATIONS OF VARIOUS DINITRILE PLASTICIZERS IN HIGHLY CONDUCTIVE POLYMER ELECTROLYTE MEMBRANES FOR LITHIUM ION BATTERY APPLICATIONS Chenrun Feng Thesis Approved: Accepted: Advisor: Department Chair Dr. Thein Kyu Dr. Sadhan C. Jana Committee Member Dean of the College Dr. Xiong Gong Dr. Eric J. Amis Committee Member Dean of the Graduate School Dr. Zhenmeng Peng Dr. Chand Midha Date ii ABSTRACT To investigate physical and electrochemical properties of polymer electrolyte membranes (PEMs) containing various dinitriles such as succinonitrile (SCN), glutaronitrile (GLN) and adiponitrile (ADN), binary and ternary phase diagrams of poly(ethylene glycol) diacrylate (PEGDA), GLN and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) blends were firstly established in this thesis. The binary phase diagram of PEGDA/GLN system was self-consistently solved based on the combined free energies of Flory-Huggins theory for liquid-liquid demixing and phase field theory for crystal solidification. Computed liquidus and solidus lines were compared with crystal melting temperatures of the binary pairs, obtained by differential scanning calorimetry (DSC) measurement. The binary phase diagram of LiTFSI/GLN system was drawn according to crystal melting temperatures of the binary pairs determined by DSC measurement. Then coexistence regions of each binary phase diagram were verified by polarized optical microscopy. Subsequently, the ternary phase diagram of PEGDA/GLN/LiTFSI at 25 oC were established.
    [Show full text]
  • Suppressing Lithium Dendrite Growth with a Single-Component Coating
    Research Article www.acsami.org Suppressing Lithium Dendrite Growth with a Single-Component Coating Haodong Liu, Hongyao Zhou, Byoung-Sun Lee, Xing Xing, Matthew Gonzalez, and Ping Liu* Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States *S Supporting Information ABSTRACT: A single-component coating was formed on lithium (Li) metal in a lithium iodide/organic carbonate [dimethyl carbonate (DMC) and ethylene carbonate (EC)] electrolyte. LiI chemically reacts with DMC to form lithium methyl carbonate (LMC), which precipitates and forms the chemically homogeneous coating layer on the Li surface. This coating layer is shown to enable dendrite-free Li cycling in a symmetric Li∥Li cell even at a current density of 3 mA cm−2. Adding EC to DMC modulates the formation of LMC, resulting in a stable coating layer that is essential for long-term Li cycling stability. Furthermore, the coating can enable dendrite- free cycling after being transferred to common LiPF6/carbonate electrolytes, which are compatible with metal oxide cathodes. KEYWORDS: single-component coating, lithium-metal anode, dendrite-free, lithium methyl carbonate, LiI, chemically homogeneous coating 1. INTRODUCTION intrinsically affects the Li+ transportation at the Li/electrolyte fi Lithium (Li) metal is being intensively studied as an anode interface, likely resulting in an inhomogeneous electric- eld 1 distribution, which promotes nonuniform Li deposition and replacement for graphite in Li-ion batteries. A Li-metal anode 10 possesses an extremely high theoretical specific capacity of 3860 stripping. Common SEIs are not mechanically strong enough mAh g−1 and the lowest electrochemical potential (−3.040 V vs to accommodate the rapid and large volume changes of the SHE) and enables the use of a non-Li-containing cathode, such underlying Li during Li plating/stripping.
    [Show full text]
  • Light-Assisted Delithiation of Lithium Iron Phosphate Nanocrystals Towards Photo-Rechargeable Lithium Ion Batteries
    ARTICLE Received 7 Nov 2016 | Accepted 17 Jan 2017 | Published 10 Apr 2017 DOI: 10.1038/ncomms14643 OPEN Light-assisted delithiation of lithium iron phosphate nanocrystals towards photo-rechargeable lithium ion batteries Andrea Paolella1,2, Cyril Faure1, Giovanni Bertoni3, Sergio Marras4, Abdelbast Guerfi1, Ali Darwiche1, Pierre Hovington1, Basile Commarieu1, Zhuoran Wang2, Mirko Prato4, Massimo Colombo4, Simone Monaco4, Wen Zhu1, Zimin Feng1, Ashok Vijh1, Chandramohan George5, George P. Demopoulos2, Michel Armand6 & Karim Zaghib1 Recently, intensive efforts are dedicated to convert and store the solar energy in a single device. Herein, dye-synthesized solar cell technology is combined with lithium-ion materials to investigate light-assisted battery charging. In particular we report the direct photo- oxidation of lithium iron phosphate nanocrystals in the presence of a dye as a hybrid photo-cathode in a two-electrode system, with lithium metal as anode and lithium hexafluorophosphate in carbonate-based electrolyte; a configuration corresponding to lithium ion battery charging. Dye-sensitization generates electron–hole pairs with the holes aiding the delithiation of lithium iron phosphate at the cathode and electrons utilized in the formation of a solid electrolyte interface at the anode via oxygen reduction. Lithium iron phosphate acts effectively as a reversible redox agent for the regeneration of the dye. Our findings provide possibilities in advancing the design principles for photo-rechargeable lithium ion batteries. 1 Institute de Recherche d-Hydro-Que´bec (IREQ), 1800 Boulevard Lionel Boulet, Varennes, Quebec, Canada J3X 1S1. 2 Department of Mining and Materials Engineering, McGill University, Wong Building, 3610 University Street, Montreal, Quebec, Canada H3A OC5. 3 IMEM-CNR, Parco Area delle Scienze 37/A, 43124 Parma, Italy.
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • Ionic Transport and FTIR Properties of Lithium Iodide Doped Biodegradable Rice Starch Based Polymer Electrolytes
    Int. J. Electrochem. Sci., 8 (2013) 9977 - 9991 International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org Ionic Transport and FTIR Properties of Lithium Iodide Doped Biodegradable Rice Starch Based Polymer Electrolytes M. H. Khanmirzaei, S. Ramesh* Centre for Ionics University of Malaya, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia. *E-mail: [email protected] Received: 29 April 2013 / Accepted: 14 June 2013 / Published: 1 July 2013 Biodegradable polymer electrolyte systems of Rice Starch-Lithium Iodide (RS-LiI) films were prepared using solution casting method. At room temperature, RS:LiI film with ratio of 65 wt.%:35 wt.% demonstrates the highest ionic conductivity of 4.68×10−5 S cm−1. Temperature-dependence ionic conductivity study follows Arrhenius model and using related plot, activation energy for highest conducting composition is 0.41 eV. The ac conductivity of each film is increased with increase in LiI content. Dielectric properties of mobility, diffusion coefficient, number density of mobile ions (Li+) and number of transitions per unit time were determined using Rice and Roth model. At higher conductivity, dielectric parameters were increased due to more mobile ions. The structure of polymer electrolytes was characterized by FTIR spectroscopy. Infrared spectra of compositions exhibited band shifts at different salt ratios. These shifts confirm complexation between host and salt. Keywords: Polymer electrolyte; Ionic conductivity; Biodegradable Rice starch; Electric mobility; FTIR. 1. INTRODUCTION Biodegradable polymers have economic and environmental benefits due to cheap in cost and biodegradability. Utilizing environmental friendly polymers in polymer electrolytes and electronics field can be good replacement for some harmful existing materials and admirable category for green energy applications such as solar cells, specifically, dye sensitized solar cells, super capacitors, batteries, etc.
    [Show full text]
  • Product Safety Data Sheet
    Page 1 of 5 Lithium Iron Disulfide Batteries January 2017 PRODUCT SAFETY DATA SHEET PRODUCT NAME: Energizer Battery Type No.: L91 (AA), L92 (AAA) Volts: 1.5 TRADE NAMES: ULTIMATE Approximate Weight: 7.6 g. (L92) – 15 g. (L91) CHEMICAL SYSTEM: Lithium Iron Disulfide Designed for Recharge: No Document Number: 12003-A Energizer has prepared copyrighted Product Safety Datasheets to provide information on the different Eveready/Energizer battery systems. Batteries are articles as defined under the GHS and exempt from GHS classification criteria (Section 1.3.2.1.1 of the GHS). The information and recommendations set forth herein are made in good faith, for information only, and are believed to be accurate as of the date of preparation. However, ENERGIZER BATTERY MANUFACTURING, INC. MAKES NO WARRANTY, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS INFORMATION AND DISCLAIMS ALL LIABILITY FROM REFERENCE ON IT. SECTION 1- MANUFACTURER INFORMATION Energizer Battery Manufacturing, Inc. Telephone Number for Information: 25225 Detroit Rd. 800-383-7323 (USA / CANADA) Westlake, OH 44145 Date Prepared: January 2017 SECTION 2 – HAZARDS IDENTIFICATION GHS classification: N/A Signal Word: N/A Hazard Classification: N/A Under normal conditions of use, the battery is hermetically sealed. Ingestion: Swallowing a battery can be harmful. Inhalation: Contents of an open battery can cause respiratory irritation. Skin Contact: Contents of an open battery can cause skin irritation. Eye Contact: Contents of an open battery can cause severe irritation. SECTION 3 - INGREDIENTS IMPORTANT NOTE: The battery should not be opened or burned. Exposure to the ingredients contained within or their combustion products could be harmful.
    [Show full text]
  • United States Patent [19] [11] Patent Number: 5,677,543 Weiss Et Al
    United States Patent [19] [11] Patent Number: 5,677,543 Weiss et al. [45] Date of Patent: Oct. 14, 1997 [54] DISSOLVED METHYLLITHIUM- FOREIGN PATENT DOCUMENTS FOR USE IN 0285374 10/1988 European Pat. 01f. - Primary Examiner—Edward A. Miller [75] Inv?ntors: g?zgeygiusfélgg?fléstzlmzl, Attorney, Agent, or Fimz-—Fe1fe 8c Lynch Frankfurt am Main, all of Germany [57] ABSTRACT [73] Assignae: Metaugeseuschaft AG’ Frankfurt am Disclosed is a dissolved methyllithium-containing compo Main, Germany sition for use in synthesis reactions (synthesis composition) and processes of preparing the composition. In the sythesis composition the methyllithium is contained in a solvent of [21] Appl. No.: 499,547 the general formula (I) [22] Filed: Jul. 7, 1995 R1 on3 (I) [30] Foreign Application Priority Data \C/ Jul. 9, 1994 6 [D E] Germany ........................ .. 44 24 222.0 Rz/ \0R4 [2;] ................................... wherein independently R1 and R2 are a hydrogen, methyl or [ 1 _' ‘ ' """""""""""""""""" “ ’ ‘ ethyl residue and R3 and R4 are a methyl or ethyl residue. To Of Search ........................... .- 182-3, prepare the me?lyllithium_containing Synthesis composition . of the invention lithium powder or granular lithium is [56] Refemnces Cited dispersed in a solvent having the general formula 1, methyl U_S_ PATENT DOCUMENTS halide is added at a controlled rate, the reaction temperature 4976 886 12,1990 M _ tal 252/1823 is maintained in the range of from 0° to 60° C., and the , , ornson e . .................. .. - - - - - - ' 5,095,129 3/1992 Ottow et a1. ...... .. 552/510 :gi?i?g hthmm hahde ‘5 Sepmwd from the methym?uum 5,100,575 3/1992 Hatch et al.
    [Show full text]