PROGRAMA FONDECYT

INFORME FINAL

ETAPA 2016

COMISIÓN NACIONAL DE INVESTIGACION CIENTÍFICA Y TECNOLÓGICA

VERSION OFICIAL Nº 2

FECHA: 30/10/2016

Nº PROYECTO : 3140135 DURACIÓN : 3 años AÑO ETAPA : 2016 TÍTULO PROYECTO : MODELING THE PATAGONIAN ICE FIELDS IN A WARMING CLIMATE

DISCIPLINA PRINCIPAL : GEOFISICA GRUPO DE ESTUDIO : CS. DE LA TIERRA INVESTIGADOR(A) RESPONSABLE : MARIUS ROMAN SCHAEFER DIRECCIÓN : COMUNA : CIUDAD : Valdivia REGIÓN : XIV REGION

FONDO NACIONAL DE DESARROLLO CIENTIFICO Y TECNOLOGICO (FONDECYT) Moneda 1375, Santiago de - casilla 297-V, Santiago 21 Telefono: 2435 4350 FAX 2365 4435 Email: [email protected] INFORME FINAL PROYECTO FONDECYT POSTDOCTORADO

OBJETIVOS

Cumplimiento de los Objetivos planteados en la etapa final, o pendientes de cumplir. Recuerde que en esta sección debe referirse a objetivos desarrollados, NO listar actividades desarrolladas. Nº OBJETIVOS CUMPLIMIENTO FUNDAMENTO 1 Generate a reliable data-set of bedrock TOTAL A first bedrock topography of the Patagonian topography for the Patagonian Icefields Icefields was published recently by Carrivick et using the approach of Huss and Farinotti [2012] al.,[2016]. The data of Carrivick were validated and new radar echo sounding against radio echo sounding data at Nef Glacier data [Zamora et al., 2009; Blindow et al., 2011, and it was found that the agreement was 2012]. satisfactory for that specific glacier. However on other glaciers, like for example PioXI glacier, Carrivick et al.,[2016] clearly overestimate the ice thickness and therefore underestimate the bedrock elevation. 2 Identify the best-suited a calving law, which is TOTAL Considering our simulations on Jorge Montt able to predict the calving Glacier, we can state that the water-depth calving behavior of some well monitored example criterion seems to be more adequate to simulate glaciers such as O’Higgins Glacier, the timing of the glacier's tongue. Considering , or Nef surface elevation changes and velocities, Glacier. however, the code developed in Colgan et al.,[2012] is the most successful in reproducing the behavior of Jorge Montt Glacier. 3 Run surface mass balance simulations for the TOTAL Surface mass balance simulations were run with Patagonian Icefields for 2000-2100 under the climate data from two CMIP5-models under two different emission scenarios of the different radiative pathways (RCP2.6 and Intergovernmental Panel on Climate Change RCP8.5). Assessment Report 5 (IPCC-AR5) to predict their surface mass balance under different future climate scenarios. 4 Run a 2d-iceflow code [Colgan, 2011] for both PARCIAL In the end it was decided to use more complex Patagonian Icefields, which is able to repro- models, like ELMER-ice and BISCILES to duce past ice thicknesses and outlines. Run this simulate the ice flow of the Patagonian Icefields. code into the future using the surface mass This is ongoing work which is the reason why the balance data of (3) as input. objective is only partially reached in the moment.

Otro(s) aspecto(s) que Ud. considere importante(s) en la evaluación del cumplimiento de objetivos planteados en la propuesta original o en las modificaciones autorizadas por los Consejos. RESULTS OBTAINED: For each specific goal, describe or summarize the results obtained. Relate each one to work al- ready published and/or manuscripts submitted. In the Annex section include additional information deemed pertinent and relevant to the evaluation process. The specific goals of the project were:

1. Generate a reliable data-set of bedrock topography for the Patagonian Icefields using the approach of Huss and Farinotti [2012] and new radar echo sounding data [Zamora et al., 2009; Blindow et al., 2011, 2012].

2. Identify the best-suited a calving law, which is able to predict the calving behavior of some well monitored example glaciers such as O’Higgins Glacier, Jorge Montt Glacier, San Rafael Glacier or Nef Glacier.

3. Run surface mass balance simulations for the Patagonian Icefields for 2000-2100 under the different emission scenarios of the Intergovernmental Panel on Climate Change Assessment Report 5 (IPCC-AR5) to predict their surface mass balance under different future climate scenarios.

4. Run a 2d-iceflow code [Colgan, 2011] for both Patagonian Icefields, which is able to repro- duce past ice thicknesses and outlines. Run this code into the future using the surface mass balance data of (3) as input. to 1. A bedrock topography map of the Glaciers of Southern South America was published re- cently (Figure 1, Carrivick et al. [2016]). A perfect plasticity approach was used to model the ice

(a) Measured by Blindow et al. [2012] (b) Modeled by Carrivick et al. [2016] (c) Modeled by Huss and Farinotti [2012]

Figure 2: Comparison of ice thickness estimations at Nef Glacier obtained by different methods. thickness of the most important glaciers in Southern South America. According to these results the bedrock elevation of the Patagonian Icefields varies between -1000 and +2000 m a.s.l.. That is, considerable overdeepenings were obtained at several outlet glaciers of the Patagonian Icefield, which could indicate that further retreat is expected in the near future. However some care has to be taken with these results as they were not validated at many glaciers. For example for Pio XI Glacier, we know that the modelled overdeepening does not exist!

1 In Figure 2 we compare the re- sults of Carrivick et al. [2016] to the measurements of Blin- dow et al. [2012] and the results obtained by Huss and Farinotti [2012]. We can observe that the results of Huss and Farinotti [2012] clearly underestimate the measured ice thickness, whilst Carrivick et al. [2016] slightly overestimate it. But, at least at Nef Glacier, the model of Car- rivick et al. [2016] seems to per- form better than the one of Huss and Farinotti [2012]. To un- derstand this strong disagree- ment, the dataset of Huss and Farinotti [2012] was analyzed in more detail. Mass losses due to calving were not incorporated in the original dataset of Huss and Farinotti [2012], which causes the ice thickness to be zero at the glaciers’ fronts. This has to be modified to improve the per- formance of the model of Huss and Farinotti [2012] to predict the ice thickness of the Patag- Figure 1: Modelled Bedrock topography of the Patagonian Ice- onian Icefields. fields. On the other hand, ice thickness models allow us to estimate the amount of sweet water stored in the glaciers of Southern South America. Table 1 gives an overview over the results by different studies obtained for the Northern Patagonian Icefield (NPI), the Southern Patagonian Icefield (SPI) and glaciers in Southern South America in general. As a summary we can state that the amount of sweet water stored in the Glaciers of Southern South America has the potential to rise the oceans sea-level by approximately 18.4 mm, which equals to a mass of 6651 Gigatons of water!

NPI SPI SouthernSouthAmerica Volume-Area-Scaling: V = cAγ 4.3 mm 17.7 mm > 22mm (This study γ =1.25, c =0.0538km0.5) Carrivick et al. [2016] 3.1±0.6 mm 10.8±2.2 mm 15.1±3.0 mm Huss and Farinotti [2012] - - 16.6±1.3 mm Radic and Hock [2010] - - 20±2mm

Table 1: Ice volume of the Patagonian Icefields and Glaciers in Southern South America in Sea Level Rise equivalent inferred from different studies. to 2. Two calving laws have been tested at Jorge Montt Glacier: the flotation criterion and the

2 empirical water-depth law. Using a code that makes use of the shallow-ice approximation (SIA), we obtained the result that the water depth criterion performed much better in terms of the timing of the retreat (Figure 3).

2000 obs. ice elev. 1975 2000 2500 obs. ice elev. 2000 obs. ice elev. 1975 bed glacier bed obs. ice elev. 2000 interpolated smoothed bed 1500 ELA glacier bed 2000 ice elevation input sea level 1500 ELA ice elevation 1975 evolution ice elev. model sea level ice elevation 2000 evolution of ice elev. model 1500 sea surface 1000 simulated ice elevations 1000

1000 500 elevation in m 500 elevation in m elevation in m 500

0 0 0

-500 -500 -500 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 distance along the flowline in m 4 0 10 20 30 40 50 60 70 80 x 10 4 distance along the flowline in m x 10 distance along the flowline in km (a) SIA: flotation calving criterion (b) SIA: water-depth calving crite- (c) Full conservation of momentum rion

Figure 3: Comparison of three simulations of the retreat of Jorge Montt Glacier between the years 1975 (red profile) and 2000 (green profile) using a code the employs SIA with flotation calving criterion (a) with the water-depth calving criterion (b) and the code of William Colgan (c). Model ice elevation profiles are plotted every five years.

This result confirms earlier results of Nick et al. [2007], using a similar code. The evolution of ice elevations and velocities however were not reproduced very well by the code with none of the calving criteria, which is probably due to the application of the shallow-ice approximation, which neglects longitudinal stresses. These stresses seem to be of importance to be able to explain the observed evolution of the ice elevations. The code of William Colgan [Colgan et al., 2012], which approximately resolves the equation of conservation of momentum in the downstream direction, and herewith considers longitudinal stresses, showed clearly better performance in reproducing the observed changes in ice elevation (Figure 3). to 3. The future surface mass balance (SMB) of the Southern Patagonian Icefield was simulated using different climate data as input that were generated as follows: the output of the CMIP5 Global Circulations Models (GCMs) EC-EARTH and MPI-ESM-LR was used to drive the Rossby Centre regional atmospheric model (RCA4) under different emission scenarios. The resolution of this regional climate simulations was of approximately 50 km. These climate data were used to drive the future SMB simulations of the Southern Patagonian Icefield. The results are presented in Figure 4. The difference of the simulated mean specific SMB of SPI using the two CMIP5- GCMs as drivers is striking. When using EC-EARTH model the simulated mean specific SMB is approximately 2 mweq. lower, which makes a difference in the annual mass budget of 26 Gigatons. Analyzing the reasons for this strong difference, we found that the EC-EARTH model is producing both lower values of accumulation and higher values of melt over the SPI. Comparing both model results to the SMB data obtained when using the meteorological dataset which was examined in detail by Schaefer et al. [2013], we can state that the EC-EARTH model is strongly underestimating the precipitation in Patagonia and slightly overestimating the ablation. MPI-ESM-LR seems to slightly underestimate ablation due to slight bias in temperature towards colder temperatures which was detected when comparing these data to meteorological measurements in the region. In Table 2 we resume the projected SLR contribution of SPI in the 21st century using the SMB

3 5 MPI 8.5 MPI 2.6 4 EC-EARTH 8.5 EC-EARTH 2.6 3 ECHAM5 A1B 2

1

0

-1

-2

-3

-4 mean annual specific surface mass balance in mweq. -5 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 Year Figure 4: Time evolution of the annual mean specific surface mass balance of SPI projected for the 21st century using different climate data input. data obtained by the simulations driven by the MPI-ESM-LR data and the meteorological dataset generated in Schaefer et al. [2013], since the results obtained using EC-EARTH model as driver seem to be unrealistic. Here we assumed that the annual calving losses of SPI during the 21st century will be 48 Gt, similar to the ones inferred for the recent past [Schaefer et al., 2015], and that the surface extension of SPI is not changing considerably during the 21st century. Both as-

Model(radiative pathway) projected SLR in mm MPI (8.4) 7.8 MPI (2.6) 4.7 ECHAM5 (A1B), Schaefer et al. [2013] 3.6

Table 2: Ice loss from the Southern Patagonian Icefield projected for the 21st century using differ- ent models and different future radiative pathways expressed in potential sea level rise. sumptions are probably not very realistic especially considering that for the radiative pathway 8.4 the data generated with the MPI-ESM-LR data as drivers, the mass loss of SPI is of similar order of magnitude than the total ice volume estimated by Carrivick et al. [2016]. At this point it becomes evident that a parametrization of the retreat of the glaciers and a better estimates of future calving losses are necessary in order to get more reliable projections of the contribution of Patagonia’s glaciers to sea level rise in the 21st century. to 4. I am currently involved in different efforts of 2d and 3d ice-flow modeling on the Patagonian Icefields: 1. the efforts of PhD candidate Gabriela Collao at the University of Grenoble: Gabriela is using the 3D full stokes model Elmer-Ice to reproduce the flow of ice of San Rafael Glacier on the Northern Patagonian Icefield. 2. the work of PhD candidate Claire Donnelly at University of Bristol: Claire is using the ad- vanced ice-flow models BISICLES [Cornford et al., 2013] to model the flow behavior of sev- eral glaciers of the Patagonian Icefields. Here I am forming part of the supervisory team. Both efforts are ongoing PhD thesis which are supervised by international expert teams and are promising to deliver new knowledge about dynamic of ice flow on the Patagonian Icefields.

4 References

Blindow, N., C. Salat, V. Gundelach, and W. Kahnt, Performance and Calibration of the Helicoper GPR Sys- tem BGR-P30, in Proceedings of the 6th International Workshop on Advanced Ground Penetrating Radar (IWAGPR), 2011.

Blindow, N., C. Salat, and G. Casassa, Airborne GPR sounding of deep temperate glaciers - examples from the Northern Patagonian Icefield, in Proceedings of the 14th International Conference on Ground Penetrating Radar (GPR2012), Tongji University, Shanghai, China, June 4-8, 2012.

Carrivick, J. L., B. J. Davies, W. H. James, D. J. Quincey, and N. F. Glasser, Distributed ice thickness and glacier volume in southern South America, Global and Planetary Change, 146, 122–132, 2016.

Colgan, W., Investigating the influence of surface meltwater on the ice dynamics of the Greenland Ice Sheet, Ph.D. thesis, University of Colorado, 2011.

Colgan, W., W. Pfeffer, H. Rajaram, W. Abdalati, and J. Balog, Monte Carlo ice flow modeling projects a new stable configuration for Columbia Glacier, Alaska, c. 2020, The Cryosphere, 6, 1395–1409, 2012.

Cornford, S. L., D. F. Martin, D. T. Graves, D. F. Ranken, A. M. L. Brocq, R. M. Gladstone, A. J. Payne, E. G. Ng, and W. H. Lipscomb, Adaptive mesh, finite volume modeling of marine ice sheets, Journal of Computational Physics, 2013.

Huss, M., and F. Farinotti, Distributed ice thickness and volume of all glaciers around the globe, Journal of Geophysical Research, 117, F04,010, 2012.

Nick, F. M., J. van der Kwast, and J. Oerlemans, Simulation of the evolution of Breidamerkurjokull in the late Holocene, Journal of Geophysical Research - Solid Earth, 112(B1), doi:10.1029/2006JB004358, 2007.

Radic, V., and R. Hock, Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data, Journal of Geophyscial Research-Earth Surface, 115, doi:10.1029/2009JF001373, 2010.

Schaefer, M., H. Machguth, M. Falvey, and G. Casassa, Modeling past and future surface mass balance of the Northern Patagonian Icefield, Journal of Geophysical Research Earth Surface, 118, 571–588, doi: 10.1002/jgrf.20038, 2013.

Schaefer, M., H. Machguth, M. Falvey, G. Casassa, and E. Rignot, Quantifying mass balance processes on the southern patagonia icefield, The Cryosphere, 9(1), 25–35, doi:10.5194/tc-9-25-2015, 2015.

Zamora, R., D. Ulloa, G. Garcia, R. Mella, J. Uribe, J. Wendt, A. Rivera, G. Gacitua, and G. Casassa, Airborne radar sounder for temperate ice: initial results from Patagonia, Journal of Glaciology, 55(191), 507–512, 2009.

5 ACHIEVEMENTS OF THE PROJECT (Nov. 2015 - Oct. 2016):

A. Science: • December 2015: visit of the AGU Fall Meeting in San Francisco, Unites Sates of America.

• December 2015: Adjudication of the international collaboration research project: “Glacial Hazards in Chile: Processes, Assessment, Mitigation, and Risk Management Strategies”, Newton-Piquarte fund, director of the Chilean part.

• January/February 2016: Scientific leader of the international expedition to with participation of:

– Austral University: Dr Marius Schaefer + several students – University of Magallanes: Dra Guisella Gacitua + students – University of Hokkaido: Dr Shin Sugiyama + student – University of Erlangen: Dr Tobias Sauter + student

• July 2016: visit of collaborators at the University of Bristol, UK. Invited talk: “Glaciology in Chile - Challenges and Opportunities” for the members of the glaciology group at the University of Bristol. B. Capacity building: • “Modelacion´ de glaciares que producen tempanos”,´ Tesis de Juan Pablo Tolosa Sanzana para optar al t´ıtulo profesional de geof´ısico que otorga la Carrera Ciencias F´ısicas y Astronomicas´ de la Universidad de Concepcion,´ Guiding Professor. C. Outreach: • February 2016: Informative talk about general concepts in glaciology and activities at Grey Glacier for personal of CONAF and Bigfoot Patagonia company in the Torres del Paine National Park.

• April 2016: “Glaciares en Chile y el mundo - un pequeno viaje por los hielos”, at Campus Patagonia UACH and one middle-school in Coyhaique en the frame of the CONICYT explora “D´ıa internacional de la Tierra”.

• September 2016: “Glaciares en Chile y el mundo - un pequeno viaje por los hielos”, in- vited talk at opening ceremony of the escuela de talentos ALTA UACH 2016 in Coyhaique, Chile.

• October 2016: “Glaciares en Chile y el mundo - un pequeno viaje por los hielos”, talk at the Escuela Mexico, Valdivia for the CONICYT explora program: 1000C/1000A. INFORME DE EVALUACION DEL (DE LA) INVESTIGADOR(A) PATROCINANTE

NOMBRE: __Dr_Humberto González ______

Mediante este informe se evalúa el trabajo científico del Dr Marius Schaefer en el proyecto “Modeling the Patagonian Icefields in a warming climate” Proyecto Postdoctoral No. 3140135.

En el último año de ejecución Dr. Schaefer ha avanzado considerablemente en todos los objetivos del proyecto: Ha realizado avances significativos sobre la estimación del monto total de agua dulce almacenada en los Glaciares de la Patagonia. También pudo comparar y validar los diferentes métodos que se han usados para determinar el lecho de glaciares en la Patagonia. El Dr. Schaefer examinó diferentes proyecciones climatológicas para la Patagonia y contrastó como estas proyecciones influirían el comportamiento de los glaciares. Esto en conjunto con sus avances en la modelación del movimiento del hielo provee información muy valiosa que nos permitirá planificar mejor el manejo de estos recursos hídricos importantes en el sur de nuestro país.

Dejo constancia que el Dr. Schaefer ha sido una persona con la que se puede trabajar armónicamente en equipo. Por un lado trabaja de manera muy independiente, pero por otro lado también busca el dialogo y el intercambio con otros científicos, por lo que ha sido una grata experiencia el haber sido su profesor patrocinante. Su alto entusiasmo y dedicación a su estudio explica las buenas conexiones nacionales e internacionales que tiene el Dr. Schaefer, que le ha permitido exponer su trabajo en grupos líderes de su ámbito de trabajo y también colaborar en diferentes esfuerzos de modelación de glaciares en la Patagonia.

En el año trascurrido destaca la adjudicación de un proyecto de colaboración internacional titulado: “Glacial Hazards In Chile: Processes, Assessment, Mitigation And Risk Management Strategies”, proyecto de gran impacto para el país en el cuál el Dr. Schaefer actúa como director del equipo Chileno. Y por otro lado también destaca el liderazgo de Dr. Schaefer de una expedición científica internacional al Glaciar Grey.

En resumen, calificaría el trabajo científico del Dr. Marius Schaefer como sobresaliente.

______Fecha: 28 de Octubre de 2016 Dr. Humberto Gonzàlez (Investigador Patrocinante) PRODUCTOS

ARTÍCULOS Para trabajos en Prensa/ Aceptados/Enviados adjunte copia de carta de aceptación o de recepción.

Nº : 1 Autor (a)(es/as) : Schaefer M Nombre Completo de la Revista : Canadian Geotechnical Journal Título (Idioma original) : Shear and normal stresses measured on the SLF Snow Chute Indexación : ISI ISSN : 1208-6010 Año : Vol. : Nº : Páginas : Estado de la publicación a la fecha : Aceptada Otras Fuentes de financiamiento, si las hay : Swiss National Science Foundation

Envía documento en papel : no Archivo(s) Asociado(s) al artículo :

measured-stresses-revised.pdf http://sial.fondecyt.cl/index.php/investigador/f4_articulos/descarga/14741832/3140135/2016/87511/2/

Nº : 2 Autor (a)(es/as) : Schaefer,M.;Machguth.H;Falvey,M.;Casassa,G.;Rignot,E.; Nombre Completo de la Revista : The Cryosphere Título (Idioma original) : Quantifying mass balance processes on the Southern Patagonia Icefield Indexación : ISI ISSN : Año : 2015 Vol. : 9 Nº : Páginas : 25-35 Estado de la publicación a la fecha : Publicada Otras Fuentes de financiamiento, si las hay :

Envía documento en papel : no Archivo(s) Asociado(s) al artículo : Schaefer2015TC.pdf http://sial.fondecyt.cl/index.php/investigador/f4_articulos/descarga/14741832/3140135/2016/87512/1/ Nº : 3 Autor (a)(es/as) : M. Schaefer, H. Machguth, M. Falvey, G. Casassa and E. Rignot7 Nombre Completo de la Revista : The Cryosphere Título (Idioma original) : Quantifying mass balance processes on the Southern Patagonia Icefield Indexación : ISI ISSN : Año : Vol. : Nº : Páginas : Estado de la publicación a la fecha : Enviada Otras Fuentes de financiamiento, si las hay : Ice2Sea

Envía documento en papel : no Archivo(s) Asociado(s) al artículo : discussion-paper.pdf http://sial.fondecyt.cl/index.php/investigador/f4_articulos/descarga/14741832/3140135/2016/87513/1/

Nº : 4 Autor (a)(es/as) : Schaefer M; Rodriguez JL; Scheiter M; Casassa G Nombre Completo de la Revista : Journal of Glaciology Título (Idioma original) : Climate and Surface Mass Balance of Mocho Glacier, 2 Chilean Lake District, 40 ◦ S Indexación : ISI ISSN : Año : Vol. : Nº : Páginas : Estado de la publicación a la fecha : Aceptada Otras Fuentes de financiamiento, si las hay : Proyecto interno UACH: DID 2015-72

Envía documento en papel : no Archivo(s) Asociado(s) al artículo : mocho-second-revision.pdf http://sial.fondecyt.cl/index.php/investigador/f4_articulos/descarga/14741832/3140135/2016/87519/1/

acceptJOG.pdf http://sial.fondecyt.cl/index.php/investigador/f4_articulos/descarga/14741832/3140135/2016/87519/2/

OTRAS PUBLICACIONES / PRODUCTOS Sin información ingresada.

CONGRESOS

Nº : 1 Autor (a)(es/as) : Marius Schaefer, Horst Machguth, Gino Casassa Título (Idioma original) : Modeling the Patagonian Icefields Nombre del Congreso : International Symposium on Glaciers and Ice Sheets Contribution to Sea-Level Change País : FRANCIA Ciudad : Chamonix Fecha Inicio : 25/05/2014 Fecha Término : 30/10/2014 Nombre Publicación : Año : Vol. : Nº : Páginas : Envía documento en papel : no Archivo Asociado : poster-IGS.pdf http://sial.fondecyt.cl/index.php/investigador/f4_congresos/descarga/14741832/3140135/2016/140249/1/

Nº : 2 Autor (a)(es/as) : Schaefer M Título (Idioma original) : Quantifying mass balance processes on the Patagonian Icefields by means of a multi-model surface mass balance reconstruction and remote sensing data Nombre del Congreso : Special session: 30 years of Japanese glaciological research in Patagonia País : JAPON Ciudad : Sapporo Fecha Inicio : 18/11/2015 Fecha Término : 19/11/2015 Nombre Publicación : Año : Vol. : Nº : Páginas : Envía documento en papel : no Archivo Asociado : sapporo.pdf http://sial.fondecyt.cl/index.php/investigador/f4_congresos/descarga/14741832/3140135/2016/140250/1/ Nº : 3 Autor (a)(es/as) : Marius Schaefer;Jose Luis Rodriguez;Matthias Scheiter;Gino Casassa Título (Idioma original) : Mass Balance of Mocho Glacier, 40 S Chile Nombre del Congreso : AGU Fall Meeting 2015 País : ESTADOS UNIDOS DE AMERICA Ciudad : San Francisco Fecha Inicio : 07/12/2015 Fecha Término : 11/12/2015 Nombre Publicación : Poster Año : Vol. : Nº : Páginas : Envía documento en papel : no Archivo Asociado : posterAGU.pdf http://sial.fondecyt.cl/index.php/investigador/f4_congresos/descarga/14741832/3140135/2016/140252/1/

Nº : 4 Autor (a)(es/as) : Collao-Barrios, G. 1 ; Gillet-Chaulet, F. ; Favier, V. ; Casassa, G. ; Gourlet, P. ; Mouginot, J. ; Rignot, E. ; Schaefer, M. Título (Idioma original) : Using a 3D full Stokes ice flow model to constrain the surface mass balance and ice discharge of San Rafael Glacier, northern Patagonia Nombre del Congreso : International Symposium on The Cryosphere in a Changing Climate País : NUEVA ZELANDIA Ciudad : Wellington Fecha Inicio : 12/02/2017 Fecha Término : 17/02/2017 Nombre Publicación : Abstract Año : Vol. : Nº : Páginas : Envía documento en papel : no Archivo Asociado : abstract_gabriela.pdf http://sial.fondecyt.cl/index.php/investigador/f4_congresos/descarga/14741832/3140135/2016/140253/1/

Nº : 5 Autor (a)(es/as) : Shin Sugiyama; Masahiro Minowa;Marius Schaefer Título (Idioma original) : Calving front of Grey Glacier in Patagonia is sticking out to the lake under the water surface Nombre del Congreso : JSSI & JSSE Joint Conference - 2016 País : JAPON Ciudad : Nagoya Fecha Inicio : 28/09/2016 Fecha Término : 02/10/2016 Nombre Publicación : Abstract Año : Vol. : Nº : Páginas : Envía documento en papel : no Archivo Asociado : AbstractShinSep2016.pdf http://sial.fondecyt.cl/index.php/investigador/f4_congresos/descarga/14741832/3140135/2016/140255/1/

ANEXOS

A continuación se detallan los anexos físicos/papel que no se incluyen en el informe en formato PDF.