Simulation and Analysis of Ultrasonic Wave Propagation in Pre-Stressed Screws

Total Page:16

File Type:pdf, Size:1020Kb

Simulation and Analysis of Ultrasonic Wave Propagation in Pre-Stressed Screws Simulation and Analysis of Ultrasonic Wave Propagation in Pre-stressed Screws Erik Andrén Engineering Physics and Electrical Engineering, master's level 2019 Luleå University of Technology Department of Computer Science, Electrical and Space Engineering ii ABSTRACT The use of ultrasound to measure preload in screws and bolts has been studied quite frequently the last decades. The technique is based on establishing a relationship between preload and change in time of flight (TOF) for an ultrasonic pulse propagating back and forth through a screw. This technique has huge advantages compared to other methods such as torque and angle tightening, mainly because of its independence of friction. This is of great interest for Atlas Copco since it increases the accuracy and precision of their assembly tools. The purpose of this thesis was to investigate ultrasonic wave propagation in pre-stressed screws using a simulation software, ANSYS, and to analyse the results using signal pro- cessing. The simulations were conducted in order to get an understanding about the wavefront distortion effects that arise. Further, an impulse response of the system was estimated with the purpose of dividing the multiple echoes that occur from secondary propagation paths from one other. The results strengthen the hypothesis that the received echoes are superpositions of reflections taking different propagation paths through the screw. An analytical estimation of the wavefront curvature also shows that the wavefront distortion due to a higher stress near the screw boundaries can be neglected. Additionally, a compressed sensing technique has been used to estimate the impulse response of the screw. The estimated impulse response models the echoes as superpositions of secondary echoes, with significant taps corresponding to the TOF of the shortest path and a mode-converted echo. The method is also shown to be stable in noisy environments. The simulation model gives rise to a slower speed of sound than expected, which most likely is due to the fact that finite element analysis in general overestimates the stiffness of the model. iii PREFACE This thesis has been written with the purpose of completing my Master's degree in En- gineering Physics and Electrical Engineering at Lule˚aUniversity of Technology (LTU). I am very thankful to have been given this opportunity working at Atlas Copco, a company with fantastic co-workers and a great working environment. My supervisors at Atlas Copco have been invaluable during the work; Erik Persson for his wide expertise in all fields, and Johan N˚asellfor his talent in explaining and guiding me through many obstacles on the way. Equally, I would like to thank my supervisor at LTU, Professor Johan Carlson, for sharing his research and ideas in this field, always challenging me in a way where the learning objective and my personal development are in focus. A special thanks goes to Andreas Rydin at ANSYS Sweden AB for his professional support and feedback, which in the end made the simulation results possible at all. Finally, thanks again to Johan Carlson for letting me use his stylish LaTeX template during the writing of this thesis. Enjoy reading! Erik Andr´en 16th June 2019 v CONTENTS Nomenclature ix Chapter 1 { Introduction 1 1.1 Background . .1 1.2 Screw Joints . .2 1.3 Tightening . .3 1.3.1 Torque Tightening . .3 1.3.2 Ultrasonic Measurements . .3 1.4 Objective . .5 1.5 Limitations . .5 1.6 Outline . .5 Chapter 2 { Theory 7 2.1 Solid Mechanics . .7 2.1.1 Hooke's Law . .7 2.1.2 Elastic Deformations . .8 2.2 Finite Element Method (FEM) . 10 2.2.1 Mode Superposition (MSUP) Method . 10 2.2.2 Full Method . 11 2.3 Ultrasonic Wave Propagation . 11 2.3.1 Attenuation . 11 2.3.2 Wave Modes . 12 2.3.3 Reflection and Mode Conversion . 12 2.3.4 Piezoelectric Transducers . 14 2.3.5 Wavefront Distortion . 14 2.4 Acoustoelastic Effect . 17 2.4.1 Small-on-large Theory . 17 2.4.2 The Plane Wave . 18 2.5 Ultrasonic Preload Measurements . 20 2.6 Compressed Sensing . 21 Chapter 3 { Method 25 3.1 Finite Element Analysis . 25 3.1.1 Pre-stress . 26 3.1.2 Transient Analysis . 26 3.1.3 Pre-stressed Transient Analysis . 28 3.2 Post-processing . 29 3.2.1 Wavefront Curvature . 29 3.2.2 Compressed Sensing . 29 Chapter 4 { Results 31 4.1 Wave Propagation . 31 4.2 Secondary Echoes . 31 4.3 Pre-stressed Transient Analysis . 34 4.4 Wavefront Curvature . 36 4.5 Compressed Sensing . 36 Chapter 5 { Discussion & Conclusion 41 5.1 Interpretation of Results . 41 5.2 Simulation Limitations . 42 5.3 Conclusion . 44 5.4 Future Work . 44 Appendix A{ ISO Screw Dimensions 45 Appendix B{ Mode-converted Echo 47 viii Nomenclature Acronyms Symbols ∆TOF Difference in time of flight αq Amplitude AWGN Additive white Gaussian noise χ Mapping function ∆x Element size CAD Computer-aided design δ Elongation CS Compressed sensing `1; `2 Norm functions DOF Degrees of freedom κ Bulk modulus FEA Finite element analysis λ, µ Lam´econstants FEM Finite element method Λ Acoustic tensor ISO International Organization for Stan- C; ξi Damping coefficients dardization F Deformation gradient tensor LASSO Least absolute shrinkage and selec- tion operator F Nodal acting forces I Identity matrix LS Least-squares K Global stiffness matrix MSUP Mode superposition M Mass NDT Non-destructive testing m Polarization direction ODE Ordinary differential equation n Propagation direction RR Ridge regression S Nominal stress tensor SNR Signal-to-noise ratio U Convolution matrix TOF Time of flight u Input signal US Ultrasonic u Nodal displacements ix x; X Position vectors f Twice differentiable function y Recorded displacement Fpre Preload µR; γ Regularization parameters H(!); h(t); h Transfer function ν Poission's ratio J Jacobian p ! Frequency j Imaginary unit, −1 φi Mode shapes K Screw stiffness ρ Density k Nut factor σ Tensile load k(!) Complex wave number τ Time delay L Length of screw " Cauchy strain l; m; n Murnaghan constants A cross sectional area P Acoustic pressure A; B; C Third order elastic constants P; p Material points Aii(z) Acoustoelastic constant Q Number of propagation paths aij Acoustoelastic coefficients q Propagation path q cl; cii(z) Longitudinal wave speed R Reflection coefficient cp Phase velocity T Torque cs; cij(z) Transversal wave speed t Time D Nominal diameter W Strain energy E Young's modulus yi Modal amplitudes e(t) Random noise Z Acoustic impedance x CHAPTER 1 Introduction This chapter will give some background and purpose to ultrasonic measurements for determining the preload in screw joints. Thereafter, the objective, limitations and an outline of the thesis will be given. 1.1 Background The industrial company Atlas Copco is a world leading provider of sustainable productivity- enhancing solutions. Their business area in industrial technique is mainly providing power tools and assembly systems [1, 2]. The by far most common method when se- curing parts and components to one other is to use a screw and a nut (or a threaded hole) to clamp the joint members together. The reason for this is its simplicity and cost efficiency. When tightening a screw joint, the force with which it is tightened is known as the preload. The accuracy of the preload is essential for the screw joint to work properly. Some of the factors that affect the accuracy of the preload are: tools, operator, control method, short and long-term relaxation, external loads, and the quality of parts. This thesis will look at improvements of the control method, i.e. measuring the preload. Most tightening techniques are very sensitive to variation in friction in the contact areas of the screw joint, resulting in a poor accuracy. Atlas Copco is therefore investigating the possibility of measuring the preload with ultrasonic pulses, a technique independent of friction. The time of flight (TOF) for an ultrasonic pulse is defined as the time it takes for a sound wave to propagate back and forth through the screw. As the screw is tight- ened the TOF will increase; partially from the fact that it gets longer, but also due to a decrease of sound speed (a phenomena known as the acoustoelastic effect). Thus the preload can be estimated very accurately by measuring the difference in TOF (∆TOF) between an untightened and tightened screw. Previous studies have proven this by fitting a mathematical model to measured data. However, when the clamp length could not be assumed to be much longer than the diameter of the screw the one-dimensional analysis 1 2 Introduction failed [3]. Further, the ultrasonic pulse suffers from distortion, resulting in difficulties in detecting the received pulse and its TOF. Quantization errors will also arise due to a limited sampling rate. Martinsson et al have presented a parametric method for determining the frequency dependent attenuation and phase velocity in dispersive media using ultrasonic pulse-echo measurements [4, 5]. This method is based on finding a parametric model for the fre- quency dependent transfer function of the system. Unlike cross-correlation methods (like TOF measurements) the method is unbiased, and the noise is significantly suppressed compared to non-parametric methods such as Fourier analysis. Continuing with a similar approach, Carlson et al have used a compressed sensing technique to find the impulse response from overlapping ultrasonic echoes when investigating thin materials [6]. This can be compared to the overlapping of echoes that results from sidewall reflections and secondary propagation paths in a screw. 1.2 Screw Joints The screw joint to be considered in this work is depicted in Fig. 1.1, which consists of a screw and a nut, holding two different parts together.
Recommended publications
  • Proceedings Of
    46th Annual Review of Progress in Quantitative Nondestructive Evaluation QNDE2019 July 14-19, 2019, Portland, OR, USA QNDE2019-6781 SEMI-ANALYTICAL FINITE ELEMNET BASED GUIDED WAVE MODELLING AND APPLICATIONS IN NDE, SEISMOLOGY AND OIL & GAS Peng Zuo, Zheng Fan1 School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 637798, Singapore surrounding layers[1] (e.g. absorbing layer, boundary element Abstract and perfectly matched layer) were developed to simulate the Guided waves have been widely used in different fields of infinite surrounding media within a finite domain. A six- engineering, such as non-destructive evaluation, seismology dimensional formalism was proposed by Stroh[2] to study and oil & gas. Successful applications of guided waves are Rayleigh wave propagation in anisotropic media, and dependent upon thorough understanding of their modal perturbation theory[3] was commonly used to study the effect of properties. However, the prediction of the behavior of guided prestress on guided wave propagation. However, most of the waves could be challenging for complicated waveguides, for studies mentioned above are only applicable to specific cases, example embedded/immersed waveguides with significant and a comprehensive method still remains to be unachieved. energy leakage, anisotropy waveguides with mode coupling In this paper, a semi-analytical finite element (SAFE) effect and prestressed waveguide with acoustoelastic behavior. based guided wave model is developed in order to study the In this paper, we develop a generalized tool to study the modal modal properties of guided waves under complicated properties of complex waveguides using semi-analytical finite conditions. The model starts with acoustoelastic equations and element (SAFE) method.
    [Show full text]
  • And S-Wave Velocities in Olivine
    UNLV Theses, Dissertations, Professional Papers, and Capstones 12-1-2020 Initial Measurements on the Effect of Stress on P- and S-wave Velocities in Olivine Taryn Traylor Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations Part of the Geophysics and Seismology Commons Repository Citation Traylor, Taryn, "Initial Measurements on the Effect of Stress on P- and S-wave Velocities in Olivine" (2020). UNLV Theses, Dissertations, Professional Papers, and Capstones. 4088. https://digitalscholarship.unlv.edu/thesesdissertations/4088 This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. INITIAL MEASUREMENTS ON THE EFFECT OF STRESS ON P- AND S-WAVE VELOCITIES IN OLIVINE By Taryn Traylor Bachelor of Science – Geology Texas A&M University 2017 A thesis submitted in partial fulfillment of the requirements for the Master of Science – Geoscience Department of Geoscience College of Sciences The Graduate College University of Nevada, Las Vegas December 2020 Thesis Approval The Graduate College The University of Nevada, Las Vegas November 20, 2020 This thesis prepared by Taryn Traylor entitled Initial Measurements on the Effect of Stress on P- and S-Wave Velocities in Olivine is approved in partial fulfillment of the requirements for the degree of Master of Science – Geoscience Department of Geoscience Pamela Burnley, Ph.D.
    [Show full text]
  • Arxiv:2008.00776V1 [Physics.Class-Ph] 3 Aug 2020 Right a Buckled Track
    AN ULTRASONIC MEASUREMENT OF STRESS IN STEEL WITHOUT CALIBRATION: THE ANGLED SHEAR WAVE IDENTITY APREPRINT Guo-Yang Li Artur L. Gower∗ Harvard Medical School and Wellman Center for Photomedicine Department of Mechanical Engineering Massachusetts General Hospital University of Sheffield Boston, MA 02114, USA Sheffield, UK [email protected] [email protected] Michel Destrade School of Mathematics, Statistics and Applied Mathematics NUI Galway Galway, Ireland [email protected] August 4, 2020 ABSTRACT Measuring stress levels in loaded structures is crucial to assess and monitor their health, and to predict the length of their remaining structural life. However, measuring stress non-destructively has proved quite challenging. Many ultrasonic methods are able to accurately predict in-plane stresses in a controlled laboratory environment, but struggle to be robust outside, in a real world setting. That is because they rely either on knowing beforehand the material constants (which are difficult to acquire) or they require significant calibration for each specimen. Here we present a simple ultrasonic method to evaluate the in-plane stress in situ directly, without knowing any material constants. This method only requires measuring the speed of two angled shear waves. It is based on a formula which is exact for incompressible solids, such as soft gels or tissues, and is approximately true for compressible “hard” solids, such as steel and other metals. We validate the formula against virtual experiments using Finite Element simulations, and find it displays excellent accuracy, with a small error of the order of 1%. 1 Background: The need to monitor stress Railroad rails in the real world can degrade greatly because of high levels of built-up mechanical stresses.
    [Show full text]
  • Multiphysics Simulation of Guided Wave Propagation Under Load Condition
    8th International Symposium on NDT in Aerospace, November 3-5, 2016 Multiphysics Simulation of Guided Wave Propagation under Load Condition Lei QIU1,2, Ramanan SRIDARAN VENKAT2, Christian BOLLER2, Shenfang YUAN1 1 Research Center of Structural Health Monitoring and Prognosis, State Key Lab of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics; Nanjing, China E-mail: [email protected], [email protected] 2 Chair of Non-Destructive Testing and Quality Assurance (LZfPQ), Saarland University; Saarbrücken, Germany; [email protected], [email protected] http://www.ndt.net/?id=20587 Abstract A multiphysics simulation method of Guided Wave (GW) propagation under load condition is proposed. With this method, two key mechanisms of load influence on GW propagation are considered and coupled with each other. The first key mechanism is the acoustoelastic effect which is the main reason of GW phase change. The second key mechanism is the load influence on piezoelectric materials, which results in a change of the GW amplitude. Based on COMSOL multiphysics, a finite element model of GW propagation on an aluminium plate under load condition has been established. The simulation model includes two physical phenomena to be considered represented by simulation modules. The first module is called solid mechanics, which is used to More info about this article: simulate the acoustoelastic effect being combined with the hyperelastic material property. The second module is called electrostatics, which considers the simulation of the piezoelectric effect for GW excitation and response. To simulate the load influence on piezoelectric materials, a non-linear numerical model of the relationship between load and piezoelectric constant d31 is built.
    [Show full text]
  • Comprehensive Observation and Modeling of Earthquake and Temperature-Related Seismic Velocity Changes in Northern Chile with Passive Image Interferometry
    Originally published as: Richter, T., Sens-Schönfelder, C., Kind, R., Asch, G. (2014): Comprehensive observation and modeling of earthquake and temperature-related seismic velocity changes in northern Chile with passive image interferometry. - Journal of Geophysical Research, 119, 6, p. 4747-4765. DOI: http://doi.org/10.1002/2013JB010695 JournalofGeophysicalResearch: SolidEarth RESEARCH ARTICLE Comprehensive observation and modeling of earthquake and 10.1002/2013JB010695 temperature-related seismic velocity changes in northern Key Points: Chile with passive image interferometry • Superior sensitivity of velocity to stress and acceleration at Salar Tom Richter1,2, Christoph Sens-Schönfelder2, Rainer Kind1,2, and Günter Asch1,2 Grande • Linear correlation between velocity 1FR Geophysik, Malteserstraße, Freie Universität Berlin, Berlin, Germany, 2Deutsches GeoForschungsZentrum GFZ, decrease and PGA at single station Telegrafenberg, Potsdam, Germany • Observation and modeling of velocity changes caused by thermal stresses Abstract We report on earthquake and temperature-related velocity changes in high-frequency Supporting Information: autocorrelations of ambient noise data from seismic stations of the Integrated Plate Boundary Observatory • Readme Chile project in northern Chile. Daily autocorrelation functions are analyzed over a period of 5 years with • Figure S1 • Figure S2 passive image interferometry. A short-term velocity drop recovering after several days to weeks is observed for the Mw 7.7 Tocopilla earthquake at most stations. At the two stations PB05 and PATCX, we observe a long-term velocity decrease recovering over the course of around 2 years. While station PB05 is located in Correspondence to: T. Richter, the rupture area of the Tocopilla earthquake, this is not the case for station PATCX. Station PATCX is situated [email protected] in an area influenced by salt sediment in the vicinity of Salar Grande and presents a superior sensitivity to ground acceleration and periodic surface-induced changes.
    [Show full text]
  • Acoustoelasticity in 7075-T651 Aluminum and Dependence of Third Order Elastic Constants on Fatigue Damage
    Acoustoelasticity in 7075-T651 Aluminum and Dependence of Third Order Elastic Constants on Fatigue Damage A Thesis Presented to The Academic Faculty by David M. Stobbe In Partial Ful¯llment of the Requirements for the Degree Masters of Science School of Mechanical Engineering Georgia Institute of Technology August 2005 Acoustoelasticity in 7075-T651 Aluminum and Dependence of Third Order Elastic Constants on Fatigue Damage Approved by: Professor Thomas E. Michaels, Adviser School of Mechnical Engineering Georgia Insitute of Technology Professor Jianmin Qu School of Mechanical Engineering Georgia Institute of Technology Professor Laurence J. Jacobs School of Civil Engineering Georgia Institute of Technology Date Approved: July 11, 2005 ACKNOWLEDGEMENTS First, I would like to thank my advisor Dr. Thomas Michaels for his guidance and patience. I thank Dr. Michaels for his patience with my brazenness while still embracing and fueling my enthusiasm. From common sense adages to complex mathematics Dr. Michaels has provided a cornucopia of knowledge. I would also like to thank my committee and research professors Dr. Jennifer Michaels, Dr. Jianmin Qu, Dr. Laurence Jacobs, Dr. Jin-Yeon Kim, and Dr. Bao Mi. All of you have always been more than willing to help me with my own research, when in fact it is I who was hired to help you with your research. I hope that I have taught or helped you even 1/100 of what you have done for me. I would like to thank my research lab colleagues Adam Cobb, Bo Marr, Yinghui Lu, and Dr. Bao Mi. All of you put up with so much of my lab hijinks, that you each deserve a ¯eld medal.
    [Show full text]
  • Study of Stress-Induced Velocity Variation in Concrete Under Direct
    Study of stress-induced velocity variation in concrete under direct tensile force and monitoring of the damage level by using thermally-compensated Coda Wave Interferometry Yuxiang Zhang, Odile Abraham, Frédéric Grondin, Ahmed Loukili, Vincent Tournat, Alain Le Duff, Bertrand Lascoup, Olivier Durand To cite this version: Yuxiang Zhang, Odile Abraham, Frédéric Grondin, Ahmed Loukili, Vincent Tournat, et al.. Study of stress-induced velocity variation in concrete under direct tensile force and monitoring of the damage level by using thermally-compensated Coda Wave Interferometry. Ultrasonics, Elsevier, 2012, 52 (8), pp.1038-1045. 10.1016/j.ultras.2012.08.011. hal-01007343 HAL Id: hal-01007343 https://hal.archives-ouvertes.fr/hal-01007343 Submitted on 3 Mar 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Study of stress-induced velocity variation in concrete under direct tensile force and monitoring of the damage level by using thermally-compensated Coda Wave Interferometry Yuxiang Zhang a, Odile Abraham a, Frédéric Grondin b, Ahmed Loukili b, Vincent Tournat c, Alain Le Duff d, Bertrand Lascoup e, Olivier Durand a a LUNAM Université, IFSTTAR, MACS, CS4, F-44344 Bouguenais Cedex, France b GeM, CNRS 6183, Ecole Centrale de Nantes, 1 rue de la Noë, 44321 Nantes, France c LAUM, CNRS 6613, Université du Maine, Avenue O.
    [Show full text]
  • A Finite Element Model to Study the Effect of Tissue Anisotropy on Ex-Vivo Arterial Shear Wave Elastography Measurements
    Running head: ARTERIAL SHEAR WAVE ELASTOGRAPHY MODELLING 1 A finite element model to study the effect of tissue anisotropy on ex-vivo arterial shear wave elastography measurements DA Shcherbakova1, N Debusschere1, A Caenen1, F Iannaccone1, M 2 1 1 Pernot , A Swillens and P Segers 1IBiTech-bioMMeda, Ghent University, Ghent, Belgium 2Institut Langevin, ESPCI ParisTech, CNRS UMR7587, INSERM U979, Paris, France E-mail: [email protected] Abstract. Shear wave elastography (SWE) is an ultrasound (US) diagnostic method for measuring the stiffness of soft tissues based on generated shear waves (SWs). SWE has been applied to bulk tissues, but in arteries it is still under investigation. Previously performed studies in arteries or arterial phantoms demonstrated the potential of SWE to measure arterial wall stiffness – a relevant marker in prediction of cardiovascular diseases. This study is focused on numerical modelling of SWs in ex vivo equine aortic tissue, yet based on experimental SWE measurements with the tissue dynamically loaded while rotating the US probe to investigate the sensitivity of SWE to the anisotropic structure. A good match with experimental shear wave group speed results was obtained. SWs were sensitive to the orthotropy and nonlinearity of the material. The model also allowed to study the nature of the SWs by performing 2D FFT-based and analytical phase analyses. A good match between numerical group velocities derived using the time-of-flight algorithm and derived from the dispersion curves was found in the cross-sectional and axial arterial views. The complexity of solving analytical equations for nonlinear orthotropic stressed plates was discussed. Keywords: arterial shear wave elastography, stressed orthotropic plate, analytical dispersion curves, 2D FFT-based phase analysis 1.
    [Show full text]
  • Ultrasound Echo Is Related to Stress and Strain in Tendon
    Journal of Biomechanics 44 (2011) 424–429 Contents lists available at ScienceDirect Journal of Biomechanics journal homepage: www.elsevier.com/locate/jbiomech www.JBiomech.com Ultrasound echo is related to stress and strain in tendon Sarah Duenwald a, Hirohito Kobayashi b, Kayt Frisch a, Roderic Lakes a,c, Ray Vanderby Jr.a,b,n a Department of Biomedical Engineering, University of Wisconsin—Madison, 1550 Engineering Drive, Madison, WI 53706, USA b Department of Orthopedics, University of Wisconsin—Madison, 600 Highland Avenue, Madison, WI 53792, USA c Department of Engineering Physics, University of Wisconsin—Madison, 1500 Engineering Drive, Madison, WI 53706, USA article info abstract Article history: The mechanical behavior of tendons has been well studied in vitro. A noninvasive method to acquire Accepted 30 September 2010 mechanical data would be highly beneficial. Elastography has been a promising method of gathering in vivo tissue mechanical behavior, but it has inherent limitations. This study presents acoustoelasticity as Keywords: an alternative ultrasound-based method of measuring tendon stress and strain by reporting a relationship Tendon between ultrasonic echo intensity (B-mode ultrasound image brightness) and mechanical behavior of Ultrasound tendon in vitro. Porcine digital flexor tendons were cyclically loaded in a mechanical testing system while Echo intensity an ultrasonic echo response was recorded. We report that echo intensity closely follows the applied cyclic Acoustoelasticity strain pattern in time with higher strain protocols resulting in larger echo intensity changes. We also report that echo intensity is related nonlinearly to stress and nearly linearly to strain. This indicates that ultrasonic echo intensity is related to the mechanical behavior in a loaded tissue by an acoustoelastic response, as previously described in homogeneous, nearly incompressible materials.
    [Show full text]
  • Steady State Deformation and Ultrasonics: a Study on the Elasticity of Polycrystalline Olivine
    Steady State Deformation and Ultrasonics: A Study on the Elasticity of Polycrystalline Olivine Taryn Traylor1, Pamela C. Burnley1, Matthew L. Whitaker2 1Dept. of Geoscience, University of Nevada, Las Vegas, NV 2Mineral Physics Institute, Stony Brook University, Stony Brook, NY It is well known that elasticity is a key physical property in the determination of the structure and composition of the Earth and provides critical information for the interpretation of seismic data. This study investigates the stress-induced variation in elastic wave velocities, known as the acoustoelastic effect, in San Carlos olivine, which has not been previously investigated. The newly developed experimental ultrasonic acoustic system, the DIASCoPE, is incorporated into the D-DIA multi-anvil apparatus at the COMPRES supported 6BMB beamline to obtain in-situ compressional and shear elastic wave velocities. To facilitate the use of the DIASCoPE, a hybrid sample assembly is required that includes aspects of an ultrasonics experiment and a deformation experiment. Using this cell, two suites of low strain experiments were conducted on polycrystalline San Carlos olivine. Each sample was isostatically hot-pressed at 1150°C and 295.5 MPa for 8 hours, cored to produce a right cylinder and polished to ¼ µm to produce parallel ends. Each sample is in series with a fully dense sintered alumina piston in the center of the assembly with gold foils on the interfaces, and an alumina buffer rod is placed below the sample. We measured diffraction of the sample and alumina buffer rod at 12 minute intervals, and collected compressional and shear wave scans and radiographic images at 6 minute intervals.
    [Show full text]
  • Determination of 5052 Aluminum Alloy Acoustoelastic Coefficients
    Proceedings of COBEM 2005 18th International Congress of Mechanical Engineering Copyright © 2005 by ABCM November 6-11, 2005, Ouro Preto, MG DETERMINATION OF 5052 ALUMINUM ALLOY ACOUSTOELASTIC COEFFICIENTS Marcilio Haddad Andrino Universidade Estadual de Campinas Laboratório de Acustoelástica – FEAGRI - UNICAMP Cidade Universitária Zeferino Vaz - Cx. P. 6011 - Campinas - SP - Brasil - CEP: 13083-875 Phone: 55 19 37881050 – Fax: 55 19 37881010 [email protected] Auteliano Antunes dos Santos Júnior Universidade Estadual de Campinas Departamento de Projeto Mecanico - FEM - UNICAMP Rua Medeleiev, s/n - Cx. P. 6122 - Campinas - SP - Brasil - CEP: 13083-970 Phone: 55 19 37883179 – Fax: 55 19 32893722 [email protected] Sidney Felix Caetano Universidade Estadual de Campinas Laboratório de Acustoelástica – FEAGRI - UNICAMP Cidade Universitária Zeferino Vaz - Cx. P. 6011 - Campinas - SP - Brasil - CEP: 13083-875 Phone: 55 19 37881050 – Fax: 55 19 37881010 [email protected] Raquel Gonçalves Universidade Estadual de Campinas Laboratório de Acustoelástica – FEAGRI - UNICAMP Cidade Universitária Zeferino Vaz - Cx. P. 6011 - Campinas - SP - Brasil - CEP: 13083-875 Phone: 55 19 37881050 – Fax: 55 19 37881010 [email protected] Abstract. The process of making parts using the 5052 aluminum alloys can use welding to joint different components or parts. Processes of welding normally introduce residual stresses in the welded components. One of the most promising methods to evaluate these residuals is the ultrasonic method. Several types of waves can be used with this method, but the most sensitive is the longitudinal critically refracted waves (Lcr). Acoustoelasticity is the study of the ultrasonic waves behavior, mainly their propagation speed, and the relation with mechanical stresses.
    [Show full text]
  • The Acoustoelastic Effect: EMAT Excitation and Reception of Lamb Waves in Pre-Stressed Metal Sheets
    Excerpt from the Proceedings of the COMSOL Conference 2009 Milan The Acoustoelastic Effect: EMAT Excitation and Reception of Lamb Waves in Pre-Stressed Metal Sheets Riccardo M.G. Ferrari*1 1Danieli Automation S.p.A. *Corresponding author: Via Stringher 4, 33040 Buttrio, ITALY, [email protected] Abstract: The acoustoelastic effect relates the change in the speed of an acoustic wave travelling in a solid, to the pre-stress of the propagation medium. In this work the possibility of assessing nondestructively the stress status in metal sheets, by using the acoustoelastic effect, is investigated. As the effect turns out to be very small for practical values of applied stress, the proposed technique relies on the use of a kind of non-contact ultrasonic transducers called Figure 1. A scheme of a transmitting EMAT. EMATs (Electro-Magnetic Acoustic Transducer) The static field B and the current J i , induced for precisely measuring its influence on Lamb by the time varying current J e in the coil, waves. generate a Lorentz force F=J i ×B in the lower conducting medium. Keywords: Non Destructive Testing, ultrasound, Lamb waves, acoustoelastic effect, residual stress, EMAT 1. Introduction The acoustoelastic effect relates the change in the speed of an acoustic wave travelling in a solid, to the pre-stress of the propagation medium. It is analogous to the well-known photoelastic effect, where a stressed transparent Figure 2. A scheme of a receiving EMAT. sample exhibits birefringence when crossed by a The vibration of the lower medium, with ray of light. In the literature it has been shown conductivity σ and moving at velocity v, in how this effect can be used to relate the change presence of the static field B generates a in the speed of sound to the pre-stress of the v current J =σv×B.
    [Show full text]