Originally published as: Richter, T., Sens-Schönfelder, C., Kind, R., Asch, G. (2014): Comprehensive observation and modeling of earthquake and temperature-related seismic velocity changes in northern Chile with passive image interferometry. - Journal of Geophysical Research, 119, 6, p. 4747-4765. DOI: http://doi.org/10.1002/2013JB010695 JournalofGeophysicalResearch: SolidEarth RESEARCH ARTICLE Comprehensive observation and modeling of earthquake and 10.1002/2013JB010695 temperature-related seismic velocity changes in northern Key Points: Chile with passive image interferometry • Superior sensitivity of velocity to stress and acceleration at Salar Tom Richter1,2, Christoph Sens-Schönfelder2, Rainer Kind1,2, and Günter Asch1,2 Grande • Linear correlation between velocity 1FR Geophysik, Malteserstraße, Freie Universität Berlin, Berlin, Germany, 2Deutsches GeoForschungsZentrum GFZ, decrease and PGA at single station Telegrafenberg, Potsdam, Germany • Observation and modeling of velocity changes caused by thermal stresses Abstract We report on earthquake and temperature-related velocity changes in high-frequency Supporting Information: autocorrelations of ambient noise data from seismic stations of the Integrated Plate Boundary Observatory • Readme Chile project in northern Chile. Daily autocorrelation functions are analyzed over a period of 5 years with • Figure S1 • Figure S2 passive image interferometry. A short-term velocity drop recovering after several days to weeks is observed for the Mw 7.7 Tocopilla earthquake at most stations. At the two stations PB05 and PATCX, we observe a long-term velocity decrease recovering over the course of around 2 years. While station PB05 is located in Correspondence to: T. Richter, the rupture area of the Tocopilla earthquake, this is not the case for station PATCX. Station PATCX is situated
[email protected] in an area influenced by salt sediment in the vicinity of Salar Grande and presents a superior sensitivity to ground acceleration and periodic surface-induced changes.