State Utility Forecasting Group | Energy Center at Discovery Park | Purdue University | West Lafayette, Indiana October 2018

Total Page:16

File Type:pdf, Size:1020Kb

State Utility Forecasting Group | Energy Center at Discovery Park | Purdue University | West Lafayette, Indiana October 2018 October 2018 State Utility Forecasting Group | Energy Center at Discovery Park | Purdue University | West Lafayette, Indiana 2018 INDIANA RENEWABLE ENERGY RESOURCES STUDY State Utility Forecasting Group Energy Center Purdue University West Lafayette, Indiana David Nderitu Douglas Gotham Liwei Lu Darla Mize Tim Phillips Paul Preckel Marco Velastegui Fang Wu October 2018 Table of Contents List of Figures .......................................................................................................................... iii List of Tables ........................................................................................................................... vii Acronyms and Abbreviations ................................................................................................... ix Foreword……………………………… ………………………………………………. ..... .xiii 1. Overview ......................................................................................................................... 1 1.1 Trends in renewable energy consumption in the United States ....................... 1 1.2 Trends in renewable energy consumption in Indiana ...................................... 5 1.3 Cost of renewable resources .......................................................................... 10 1.4 References ...................................................................................................... 12 2. Energy from Wind ........................................................................................................ 15 2.1 Introduction .................................................................................................... 15 2.2 Economics of wind energy ............................................................................ 17 2.3 State of wind energy nationally ..................................................................... 23 2.4 Wind energy in Indiana .................................................................................. 28 2.5 Incentives for wind energy ............................................................................ 34 2.6 References ...................................................................................................... 36 3. Dedicated Energy Crops ............................................................................................... 39 3.1 Introduction .................................................................................................... 39 3.2 Economics of energy crops ............................................................................ 44 3.3 State of energy crops nationally ..................................................................... 48 3.4 Energy crops in Indiana ................................................................................. 50 3.5 Incentives for energy crops ............................................................................ 53 3.6 References ...................................................................................................... 54 4. Organic Waste Biomass ................................................................................................ 57 4.1 Introduction .................................................................................................... 57 4.2 Economics of organic waste biomass ............................................................ 59 4.3 State of organic waste biomass nationally ..................................................... 63 4.4 Organic waste biomass in Indiana ................................................................. 68 i 2018 Indiana Renewable Energy Resources Study - State Utility Forecasting Group 4.5 Incentives for organic waste biomass ............................................................ 75 4.6 References ...................................................................................................... 76 5. Solar Energy ................................................................................................................. 81 5.1 Introduction .................................................................................................... 81 5.2 Economics of solar technologies ................................................................... 84 5.3 State of solar energy nationally ..................................................................... 88 5.4 Solar Energy in Indiana ................................................................................. 91 5.5 Incentives for solar energy ............................................................................. 93 5.6 References ...................................................................................................... 95 6. Photovoltaic Cells ......................................................................................................... 97 6.1 Introduction .................................................................................................... 97 6.2 Economics of PV systems ............................................................................ 100 6.3 State of PV systems nationally .................................................................... 104 6.4 PV systems in Indiana .................................................................................. 108 6.5 Incentives for PV systems ............................................................................ 111 6.6 References .................................................................................................... 113 7. Hydropower ................................................................................................................ 115 7.1 Introduction .................................................................................................. 115 7.2 Economics of hydropower ........................................................................... 118 7.3 State of hydropower nationally .................................................................... 121 7.4 Hydropower in Indiana ................................................................................ 125 7.5 Incentives for hydropower ........................................................................... 128 7.6 References .................................................................................................... 129 ii 2018 Indiana Renewable Energy Resources Study - State Utility Forecasting Group List of Figures 1-1 Renewable energy consumption in the U.S. (1949-2017) .............................................. 2 1-2 U.S. energy consumption by source (1949-2017) .......................................................... 2 1-3 U.S. total energy consumption by energy source in 2017 .............................................. 3 1-4 Renewable electricity generation in the U.S. (1949-2017) ............................................. 4 1-5 U.S. Electricity generation by source (1949-2017) ........................................................ 4 1-6 Net U.S. electricity generation by energy source in 2017 .............................................. 5 1-7 Renewables share of Indiana total energy consumption (1960-2016) ............................ 6 1-8 Renewables share of Indiana electricity generation (1990-2017) .................................. 7 1-9 Wind energy capacity in Indiana .................................................................................... 8 1-10 Average construction cost of generation installed in 2016 ........................................... 10 1-11 Average construction cost of generation installed in 2016 ........................................... 11 1-12 Estimated generating technologies fixed and variable O&M cost ............................... 12 2-1 Horizontal wind turbine configuration ......................................................................... 15 2-2 Estimated capital costs of various electric generation options ..................................... 18 2-3 Installed wind power project costs over time ............................................................... 19 2-4 Generating technologies O&M cost ............................................................................. 20 2-5 Average O&M costs for available data years ............................................................... 21 2-6 Average wind and wholesale electricity prices ............................................................. 22 2-7 Wholesale energy value of wind ................................................................................... 23 2-8 U.S. wind capacity growth ............................................................................................ 24 2-9 Renewable portfolio standards across the U.S .............................................................. 25 2-10 Wind power capacity by state at the end of March 2018 (MW) ................................... 26 2-11 100-meter U.S. wind resource map............................................................................... 28 2-12 Wind energy capacity in Indiana .................................................................................. 29 2-13 Indiana wind speed at 100 meters height ...................................................................... 32 2-14 Indiana wind speed at 50 meters height ........................................................................ 33 3-1 Energy crops included in the 2016 Billion-Ton Report ................................................ 41 3-2 Production of energy crops at various farm-gate prices for select years ...................... 45 3-3 Supply
Recommended publications
  • Renewable Tracking Progress Appendix
    California Energy Commission – Tracking Progress Renewable Energy Advancing the use and availability of renewable energy is critical to achieving California’s ambitious climate goals. With this in mind, California has pursued a suite of policies and programs aimed at advancing renewable energy and ensuring all Californians, including low- income and disadvantaged communities, benefit from this transition. This report presents the state’s progress in meeting its renewable energy goals and provides an updated analysis through 2018 of renewable energy generation, installed renewable capacity, and a discussion of the trends, opportunities, and challenges associated with the renewable energy transition. More detailed figures and tables are included in the appendix.1 Renewable Energy Serving California Consumers Annual Renewable Percentage: Renewables Portfolio Standard Progress An increasing percentage of energy consumed by Californians comes from renewable sources. A key mandate advancing the use of renewable energy has been the Renewables Portfolio Standard (RPS), which requires California load-serving entities2 (LSEs) to increase their procurement of eligible renewable energy resources (solar, wind, geothermal, biomass, and small hydroelectric) to 33 percent of retail sales by 2020 and 60 percent of retail sales by 2030. Based on reported electric generation from RPS-eligible sources divided by forecasted electricity retail sales for 2019, the California Energy Commission (CEC) estimates that 36 percent of California’s 2019 retail electricity sales was served by RPS-eligible renewable resources as shown in Figure 1. Although this number is not a final RPS determination, it is an important indicator of progress in achieving California’s RPS goals. Figure 1: Estimated Current Renewables Portfolio Standard Progress Source: CEC staff analysis, December 2019 The annual renewable percentage estimated by the CEC has continued to increase in recent years, often ahead of the timelines envisioned by prior legislation.
    [Show full text]
  • The Unseen Costs of Solar-Generated Electricity
    THE UNSEEN COSTS OF SOLAR-GENERATED ELECTRICITY Megan E. Hansen, BS, Strata Policy Randy T Simmons, PhD, Utah State University Ryan M. Yonk, PhD, Utah State University The Institute of Political Economy (IPE) at Utah State University seeks to promote a better understanding of the foundations of a free society by conducting research and disseminating findings through publications, classes, seminars, conferences, and lectures. By mentoring students and engaging them in research and writing projects, IPE creates diverse opportunities for students in graduate programs, internships, policy groups, and business. PRIMARY INVESTIGATORS: Megan E. Hansen, BS Strata Policy Randy T Simmons, PhD Utah State University Ryan M. Yonk, PhD Utah State University STUDENT RESEARCH ASSOCIATES: Matthew Crabtree Jordan Floyd Melissa Funk Michael Jensen Josh Smith TABLE OF CONTENTS Table of Contents ................................................................................................................................................................ 2 Executive Summary ............................................................................................................................................................. 1 Introduction ......................................................................................................................................................................... 1 Solar Energy and the Grid ............................................................................................................................................
    [Show full text]
  • A Guide to Residential Solar Installation in Carroll County
    A Guide to Residential Solar Installation in Carroll County Dear Carroll County Resident, The Environmental Advisory Council (EAC) created this document to help start Zoning Requirements ................... 2 you on your way as you consider installing solar power on your residential Permitting & Inspections .............. 3 property. Solar panels are appearing in neighborhoods all over the county, and technology is improving each year. Now, more options are available than ever. Process ..................................... 4-5 Calculating Solar Needs ............. 6-9 Solar panels for accessory residential use are being marketed by over 100 companies in the State of Maryland. Residents need to be savvy and selective Commonly Used Terms .............. 10 when beginning the process. Recent changes to Carroll County regulations have expanded the opportunity for residential solar use, including both roof- and Finding a Certified Installer ........ 10 ground-mounted units. Questions to Ask ........................ 11 This booklet is designed to assist you in finding helpful resources and to Frequently Asked Questions ...... 12 encourage you to think about the questions you want to ask. It is not intended to Buying vs. Leasing ...................... 13 be a comprehensive manual containing everything you need to know. Rather, it is a consumer resource which is not produced in favor of any particular company Financing Options ....................... 14 or choice. While some of the information is more general, much of the Grants & Incentives ................... 15 information is specific to residents of the unincorporated areas of Carroll County. Always consult local zoning, development, and permitting codes and regulations Add’l Online Resources .............. 16 to ensure that you have the most up-to-date information. Talk with the Contact Info ...............................
    [Show full text]
  • Barriers, Opportunities, and Research Needs Draft Report
    Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT TASK 5. Biomass Energy in California’s Future: Barriers, Opportunities, and Research Needs_ Draft Report Prepared for: California Energy Commission Prepared by: UC Davis California Geothermal Energy Collaborative DECEMBER 2013 CEC‐500‐01‐016 Prepared by: Primary Author(s): Stephen Kaffka, University of California, Davis Robert Williams, University of California, Davis Douglas Wickizer, University of California, Davis UC Davis California Geothermal Energy Collaborative 1715 Tilia St. Davis, CA 95616 www.cgec.ucdavis.edu Contract Number: 500‐01‐016 Prepared for: California Energy Commission Michael Sokol Contract Manager Reynaldo Gonzalez Office Manager Energy Generation Research Office Laurie ten Hope Deputy Director Energy Research & Development Division Robert P. Oglesby Executive Director DISCLAIMER This report was prepared as the result of work sponsored by the California Energy Commission. It does not necessarily represent the views of the Energy Commission, its employees or the State of California. The Energy Commission, the State of California, its employees, contractors and subcontractors make no warrant, express or implied, and assume no legal liability for the information in this report; nor does any party represent that the uses of this information will not infringe upon privately owned rights. This report has not been approved or disapproved by the California Energy Commission nor has the California Energy Commission passed upon the accuracy or adequacy of the information in this report. ACKNOWLEDGEMENTS The California Goethermal Energy Collaborative would like to thank the California Energy Commission and its Public Interest Energy Research Program (PIER) for sponsoring this important work as well as the Geothermal Energy Association for assisting in tracking down the most up to date data both within the United States and abroad.
    [Show full text]
  • Estimating the Quantity of Wind and Solar Required to Displace Storage-Induced Emissions † ‡ Eric Hittinger*, and Ineŝ M
    Article Cite This: Environ. Sci. Technol. 2017, 51, 12988-12997 pubs.acs.org/est Estimating the Quantity of Wind and Solar Required To Displace Storage-Induced Emissions † ‡ Eric Hittinger*, and Ineŝ M. L. Azevedo † Department of Public Policy, Rochester Institute of Technology, Rochester, New York 14623, United States ‡ Department of Engineering & Public Policy, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States *S Supporting Information ABSTRACT: The variable and nondispatchable nature of wind and solar generation has been driving interest in energy storage as an enabling low-carbon technology that can help spur large-scale adoption of renewables. However, prior work has shown that adding energy storage alone for energy arbitrage in electricity systems across the U.S. routinely increases system emissions. While adding wind or solar reduces electricity system emissions, the emissions effect of both renewable generation and energy storage varies by location. In this work, we apply a marginal emissions approach to determine the net system CO2 emissions of colocated or electrically proximate wind/storage and solar/storage facilities across the U.S. and determine the amount of renewable energy ff fi required to o set the CO2 emissions resulting from operation of new energy storage. We nd that it takes between 0.03 MW (Montana) and 4 MW (Michigan) of wind and between 0.25 MW (Alabama) and 17 MW (Michigan) of solar to offset the emissions from a 25 MW/100 MWh storage device, depending on location and operational mode. Systems with a realistic combination of renewables and storage will result in net emissions reductions compared with a grid without those systems, but the anticipated reductions are lower than a renewable-only addition.
    [Show full text]
  • Milebymile.Com Personal Road Trip Guide Indiana United States Highway #41
    MileByMile.com Personal Road Trip Guide Indiana United States Highway #41 Miles ITEM SUMMARY 0.0 Indiana/Kentucky State Indiana/Kentucky State Line, South of Evansville, Indiana, near the Line Bridge over Ohio River, crosses United States Highway #41 into Indiana from Kentucky and starts its northerly journey in Indiana mostly parallel to the Indiana/Illinois. This Highway enters Illinois on the north just north of Hammond, Indiana, ending its long run through Indiana. Altitude: 387 feet 2.7 Washington Ave: Medical Altitude: 381 feet Center 3.2 Lincoln Avenue : Lincoln Avenue, The University of Evansville, a small, private University university located in Evansville, Indiana, The University of Evansville is nationally renowned for its Theatre and Physical Therapy departments, Islamic Center of Evansville, Grace & Peace Lutheran Church, Evansville State Hospital, Indiana Mental Health Center, Altitude: 384 feet 3.5 Interchange State Rte #62 : Altitude: 390 feet Evansville, IN 4.0 Oak Hill St./Virginia St. : Oak Hill Street/Virginia Street, Deaconnes Hospital, a two-campus Park & Zoo healthcare in Evansville, Indiana, Lamasco Park, Helfrich Park, Mesker Music Theater, The Mesker Park Zoo and Botanic Garden, one of the oldest and largest zoos in Indiana, located in Evansville, Indiana, Community of Hilltop, Community of Western Terrace, located in Evansville, Indiana. Altitude: 390 feet 5.3 Interchange State Rte Interchange State Route #66/Diamond Avenue Expressway, to Mesker #66/Diamond Ave Expy : Park, Mesker Zoo located within Helfrich Park in Evansville, Indiana, Mesker Park Garvin Park, Bosse Field, a baseball stadium built in 1915, Stringtown Branch Library, Evansville Country Club, Community of Diamond Stringtown, Community of Willemette, Skylane Airport, an airport located along State Route #66 west off United States Highway #41.
    [Show full text]
  • CSP Technologies
    CSP Technologies Solar Solar Power Generation Radiation fuel Concentrating the solar radiation in Concentrating Absorbing Storage Generation high magnification and using this thermal energy for power generation Absorbing/ fuel Reaction Features of Each Types of Solar Power PTC Type CRS Type Dish type 1Axis Sun tracking controller 2 Axis Sun tracking controller 2 Axis Sun tracking controller Concentrating rate : 30 ~ 100, ~400 oC Concentrating rate: 500 ~ 1,000, Concentrating rate: 1,000 ~ 10,000 ~1,500 oC Parabolic Trough Concentrator Parabolic Dish Concentrator Central Receiver System CSP Technologies PTC CRS Dish commercialized in large scale various types (from 1 to 20MW ) Stirling type in ~25kW size (more than 50MW ) developing the technology, partially completing the development technology development is already commercialized efficiency ~30% reached proper level, diffusion level efficiency ~16% efficiency ~12% CSP Test Facilities Worldwide Parabolic Trough Concentrator In 1994, the first research on high temperature solar technology started PTC technology for steam generation and solar detoxification Parabolic reflector and solar tracking system were developed <The First PTC System Installed in KIER(left) and Second PTC developed by KIER(right)> Dish Concentrator 1st Prototype: 15 circular mirror facets/ 2.2m focal length/ 11.7㎡ reflection area 2nd Prototype: 8.2m diameter/ 4.8m focal length/ 36㎡ reflection area <The First(left) and Second(right) KIER’s Prototype Dish Concentrator> Dish Concentrator Two demonstration projects for 10kW dish-stirling solar power system Increased reflection area(9m dia. 42㎡) and newly designed mirror facets Running with Solo V161 Stirling engine, 19.2% efficiency (solar to electricity) <KIER’s 10kW Dish-Stirling System in Jinhae City> Dish Concentrator 25 20 15 (%) 10 발전 효율 5 Peak.
    [Show full text]
  • Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives
    Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives DONALD VIAL CENTER ON EMPLOYMENT IN THE GREEN ECONOMY Institute for Research on Labor and Employment University of California, Berkeley November 10, 2014 By Peter Philips, Ph.D. Professor of Economics, University of Utah Visiting Scholar, University of California, Berkeley, Institute for Research on Labor and Employment Peter Philips | Donald Vial Center on Employment in the Green Economy | November 2014 1 2 Environmental and Economic Benefits of Building Solar in California: Quality Careers—Cleaner Lives Environmental and Economic Benefits of Building Solar in California Quality Careers — Cleaner Lives DONALD VIAL CENTER ON EMPLOYMENT IN THE GREEN ECONOMY Institute for Research on Labor and Employment University of California, Berkeley November 10, 2014 By Peter Philips, Ph.D. Professor of Economics, University of Utah Visiting Scholar, University of California, Berkeley, Institute for Research on Labor and Employment Peter Philips | Donald Vial Center on Employment in the Green Economy | November 2014 3 About the Author Peter Philips (B.A. Pomona College, M.A., Ph.D. Stanford University) is a Professor of Economics and former Chair of the Economics Department at the University of Utah. Philips is a leading economic expert on the U.S. construction labor market. He has published widely on the topic and has testified as an expert in the U.S. Court of Federal Claims, served as an expert for the U.S. Justice Department in litigation concerning the Davis-Bacon Act (the federal prevailing wage law), and presented testimony to state legislative committees in Ohio, Indiana, Kansas, Oklahoma, New Mexico, Utah, Kentucky, Connecticut, and California regarding the regulations of construction labor markets.
    [Show full text]
  • Incorporating Renewables Into the Electric Grid: Expanding Opportunities for Smart Markets and Energy Storage
    INCORPORATING RENEWABLES INTO THE ELECTRIC GRID: EXPANDING OPPORTUNITIES FOR SMART MARKETS AND ENERGY STORAGE June 2016 Contents Executive Summary ....................................................................................................................................... 2 Introduction .................................................................................................................................................. 5 I. Technical and Economic Considerations in Renewable Integration .......................................................... 7 Characteristics of a Grid with High Levels of Variable Energy Resources ................................................. 7 Technical Feasibility and Cost of Integration .......................................................................................... 12 II. Evidence on the Cost of Integrating Variable Renewable Generation ................................................... 15 Current and Historical Ancillary Service Costs ........................................................................................ 15 Model Estimates of the Cost of Renewable Integration ......................................................................... 17 Evidence from Ancillary Service Markets................................................................................................ 18 Effect of variable generation on expected day-ahead regulation mileage......................................... 19 Effect of variable generation on actual regulation mileage ..............................................................
    [Show full text]
  • Analysis of Solar Community Energy Storage for Supporting Hawaii's 100% Renewable Energy Goals Erin Takata [email protected]
    The University of San Francisco USF Scholarship: a digital repository @ Gleeson Library | Geschke Center Master's Projects and Capstones Theses, Dissertations, Capstones and Projects Spring 5-19-2017 Analysis of Solar Community Energy Storage for Supporting Hawaii's 100% Renewable Energy Goals Erin Takata [email protected] Follow this and additional works at: https://repository.usfca.edu/capstone Part of the Natural Resources Management and Policy Commons, Oil, Gas, and Energy Commons, and the Sustainability Commons Recommended Citation Takata, Erin, "Analysis of Solar Community Energy Storage for Supporting Hawaii's 100% Renewable Energy Goals" (2017). Master's Projects and Capstones. 544. https://repository.usfca.edu/capstone/544 This Project/Capstone is brought to you for free and open access by the Theses, Dissertations, Capstones and Projects at USF Scholarship: a digital repository @ Gleeson Library | Geschke Center. It has been accepted for inclusion in Master's Projects and Capstones by an authorized administrator of USF Scholarship: a digital repository @ Gleeson Library | Geschke Center. For more information, please contact [email protected]. This Master's Project Analysis of Solar Community Energy Storage for Supporting Hawaii’s 100% Renewable Energy Goals by Erin Takata is submitted in partial fulfillment of the requirements for the degree of: Master of Science in Environmental Management at the University of San Francisco Submitted: Received: ...................................……….. ................................………….
    [Show full text]
  • CSPV Solar Cells and Modules from China
    Crystalline Silicon Photovoltaic Cells and Modules from China Investigation Nos. 701-TA-481 and 731-TA-1190 (Preliminary) Publication 4295 December 2011 U.S. International Trade Commission Washington, DC 20436 U.S. International Trade Commission COMMISSIONERS Deanna Tanner Okun, Chairman Irving A. Williamson, Vice Chairman Charlotte R. Lane Daniel R. Pearson Shara L. Aranoff Dean A. Pinkert Robert B. Koopman Acting Director of Operations Staff assigned Christopher Cassise, Senior Investigator Andrew David, Industry Analyst Nannette Christ, Economist Samantha Warrington, Economist Charles Yost, Accountant Gracemary Roth-Roffy, Attorney Lemuel Shields, Statistician Jim McClure, Supervisory Investigator Address all communications to Secretary to the Commission United States International Trade Commission Washington, DC 20436 U.S. International Trade Commission Washington, DC 20436 www.usitc.gov Crystalline Silicon Photovoltaic Cells and Modules from China Investigation Nos. 701-TA-481 and 731-TA-1190 (Preliminary) Publication 4295 December 2011 C O N T E N T S Page Determinations.................................................................. 1 Views of the Commission ......................................................... 3 Separate Views of Commission Charlotte R. Lane ...................................... 31 Part I: Introduction ............................................................ I-1 Background .................................................................. I-1 Organization of report.........................................................
    [Show full text]
  • Hawaii Solar Integration Study: Executive Summary, NREL
    HAWAII SOLAR INTEGRATION STUDY: Executive Summary A summary of research funded by: U.S. Department of Energy Hawaii Natural Energy Institute Hawaiian Electric Co. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. HAWAII SOLAR INTEGRATION STUDY: Executive Summary Kevin Eber and David Corbus National Renewable Energy Laboratory Prepared under Task No. SS13.7010 Technical Report NREL/TP-5500-57215 June 2013 iii Notice This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at http://www.osti.gov/bridge Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone: 865.576.8401 fax: 865.576.5728 email: mailto:[email protected] Available for sale to the public, in paper, from: U.S.
    [Show full text]