Democratizing Observational Astronomy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Precollimator for X-Ray Telescope (Stray-Light Baffle) Mindrum Precision, Inc Kurt Ponsor Mirror Tech/SBIR Workshop Wednesday, Nov 2017
Mindrum.com Precollimator for X-Ray Telescope (stray-light baffle) Mindrum Precision, Inc Kurt Ponsor Mirror Tech/SBIR Workshop Wednesday, Nov 2017 1 Overview Mindrum.com Precollimator •Past •Present •Future 2 Past Mindrum.com • Space X-Ray Telescopes (XRT) • Basic Structure • Effectiveness • Past Construction 3 Space X-Ray Telescopes Mindrum.com • XMM-Newton 1999 • Chandra 1999 • HETE-2 2000-07 • INTEGRAL 2002 4 ESA/NASA Space X-Ray Telescopes Mindrum.com • Swift 2004 • Suzaku 2005-2015 • AGILE 2007 • NuSTAR 2012 5 NASA/JPL/ASI/JAXA Space X-Ray Telescopes Mindrum.com • Astrosat 2015 • Hitomi (ASTRO-H) 2016-2016 • NICER (ISS) 2017 • HXMT/Insight 慧眼 2017 6 NASA/JPL/CNSA Space X-Ray Telescopes Mindrum.com NASA/JPL-Caltech Harrison, F.A. et al. (2013; ApJ, 770, 103) 7 doi:10.1088/0004-637X/770/2/103 Basic Structure XRT Mindrum.com Grazing Incidence 8 NASA/JPL-Caltech Basic Structure: NuSTAR Mirrors Mindrum.com 9 NASA/JPL-Caltech Basic Structure XRT Mindrum.com • XMM Newton XRT 10 ESA Basic Structure XRT Mindrum.com • XMM-Newton mirrors D. de Chambure, XMM Project (ESTEC)/ESA 11 Basic Structure XRT Mindrum.com • Thermal Precollimator on ROSAT 12 http://www.xray.mpe.mpg.de/ Basic Structure XRT Mindrum.com • AGILE Precollimator 13 http://agile.asdc.asi.it Basic Structure Mindrum.com • Spektr-RG 2018 14 MPE Basic Structure: Stray X-Rays Mindrum.com 15 NASA/JPL-Caltech Basic Structure: Grazing Mindrum.com 16 NASA X-Ray Effectiveness: Straylight Mindrum.com • Correct Reflection • Secondary Only • Backside Reflection • Primary Only 17 X-Ray Effectiveness Mindrum.com • The Crab Nebula by: ROSAT (1990) Chandra 18 S. -
Messier Objects
Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun. -
Astronomy (ASTR) 1
Astronomy (ASTR) 1 ASTR 3300. Astrophysics of Planetary Astronomy (ASTR) Systems. Units: 3 Semester Prerequisite: ASTR 2300 Courses Physical principles of planetary systems and their formation, stellar structure and evolution. Formerly PHYS 370; students may not earn credit ASTR 1000. Introduction to Planetary for both courses. Astronomy. Units: 3 ASTR 3310. Astrophysics of Galaxies and Semester Prerequisite: Satisfactory completion of GE mathematics requirement, area B4 Cosmology. Units: 3 A brief history of the development of astronomy followed by modern Semester Prerequisite: ASTR 2300 descriptions of our planetary system, extrasolar systems, and the Physical principles of stellar evolution, galactic structure, extragalactic possibilities of life in the universe. Discussions of methods of extending astrophysics, and cosmology. knowledge of the universe. No previous background in natural sciences is ASTR 4000. Observational Astronomy. Units: required. Satisfies GE Category B1. Formerly offered as ASTR 103. 3 ASTR 1000L. Introduction to Planetary Semester Prerequisite: ASTR 2300, PHYS 3300 or other computer Astronomy Lab. Unit: 1 programming course. Prerequisite: CSE 201 or other computer Semester Prerequisite: Satisfactory completion of GE mathematics programming course requirement, area B4 Introduction to the operation of telescopes to image astronomical targets, Semester Corequisite: ASTR 1000 primarily in the optical range. Topics include night sky motion and Laboratory associated with Introduction to Planetary Astronomy (ASTR coordinate systems; digital imaging, reduction, and analysis; proposal 1000). Satisfies GE Category B3. Materials fee required. design and review; and observation run planning. Projects include observation and analysis of both pre-determined objects and objects ASTR 1010. Introduction to Galaxies and of the students' choosing. Presentations throughout the course using Cosmology. -
Measure the Sky
Measure the Sky Program Type: Demonstration or Audience Type: Grade 4–8 Classroom Program Description: Students assemble a quadrant, a tool for measuring the positions of objects in the sky. Topics: Sky, observation, astronomy. Process Skills Focus: Critical thinking, observing, measuring, predicting. LEARNING OBJECTIVES For Next Generation Science Standards alignment, see end of outline. • A quadrant is a tool scientists use to measure how high an object is above the horizon. • Islamic astronomers during the 11th–13th centuries developed and used quadrants to track the movements of celestial objects, work that led to many scientific discoveries. TIME REQUIRED Advance Prep Set Up Activity Clean Up 15 minutes 5 minutes 25 minutes 10 minutes SITE REQUIREMENTS • Standard size classroom • Desks or tables with chairs • The presence of at least one adult Measure the Sky 1 Lenses on the Sky OMSI 2017 PROGRAM FORMAT Segment Format Time Introduction Large group discussion 5 min Make a Quadrant Instructor-led activity 10 min Quadrant Practice Partner activity 5 min Wrap-Up Large group discussion 5 min SUPPLIES Permanent Supplies Amount Pencils 1/student Scissors 1/student Tape One roll/4 students Major Consumables Amount Notes Quadrant template 1/student At the end of this document String, 12” 1/student Drinking straw 1/student Metal washer, roughly 1” in diameter 1/student ADVANCE PREPARATION • Print the quadrant template on heavy cardstock and cut the page in half to produce one quadrant per student. • Assemble one quadrant to show the students as an example. • Depending on the age group, students might have trouble poking a pencil through the quadrant paper. -
Find Your Telescope. Your Find Find Yourself
FIND YOUR TELESCOPE. FIND YOURSELF. FIND ® 2008 PRODUCT CATALOG WWW.MEADE.COM TABLE OF CONTENTS TELESCOPE SECTIONS ETX ® Series 2 LightBridge ™ (Truss-Tube Dobsonians) 20 LXD75 ™ Series 30 LX90-ACF ™ Series 50 LX200-ACF ™ Series 62 LX400-ACF ™ Series 78 Max Mount™ 88 Series 5000 ™ ED APO Refractors 100 A and DS-2000 Series 108 EXHIBITS 1 - AutoStar® 13 2 - AutoAlign ™ with SmartFinder™ 15 3 - Optical Systems 45 FIND YOUR TELESCOPE. 4 - Aperture 57 5 - UHTC™ 68 FIND YOURSEL F. 6 - Slew Speed 69 7 - AutoStar® II 86 8 - Oversized Primary Mirrors 87 9 - Advanced Pointing and Tracking 92 10 - Electronic Focus and Collimation 93 ACCESSORIES Imagers (LPI,™ DSI, DSI II) 116 Series 5000 ™ Eyepieces 130 Series 4000 ™ Eyepieces 132 Series 4000 ™ Filters 134 Accessory Kits 136 Imaging Accessories 138 Miscellaneous Accessories 140 Meade Optical Advantage 128 Meade 4M Community 124 Astrophotography Index/Information 145 ©2007 MEADE INSTRUMENTS CORPORATION .01 RECRUIT .02 ENTHUSIAST .03 HOT ShOT .04 FANatIC Starting out right Going big on a budget Budding astrophotographer Going deeper .05 MASTER .06 GURU .07 SPECIALIST .08 ECONOMIST Expert astronomer Dedicated astronomer Wide field views & images On a budget F IND Y OURSEL F F IND YOUR TELESCOPE ® ™ ™ .01 ETX .02 LIGHTBRIDGE™ .03 LXD75 .04 LX90-ACF PG. 2-19 PG. 20-29 PG.30-43 PG. 50-61 ™ ™ ™ .05 LX200-ACF .06 LX400-ACF .07 SERIES 5000™ ED APO .08 A/DS-2000 SERIES PG. 78-99 PG. 100-105 PG. 108-115 PG. 62-76 F IND Y OURSEL F Astronomy is for everyone. That’s not to say everyone will become a serious comet hunter or astrophotographer. -
Experiencing Hubble
PRESCOTT ASTRONOMY CLUB PRESENTS EXPERIENCING HUBBLE John Carter August 7, 2019 GET OUT LOOK UP • When Galaxies Collide https://www.youtube.com/watch?v=HP3x7TgvgR8 • How Hubble Images Get Color https://www.youtube.com/watch? time_continue=3&v=WSG0MnmUsEY Experiencing Hubble Sagittarius Star Cloud 1. 12,000 stars 2. ½ percent of full Moon area. 3. Not one star in the image can be seen by the naked eye. 4. Color of star reflects its surface temperature. Eagle Nebula. M 16 1. Messier 16 is a conspicuous region of active star formation, appearing in the constellation Serpens Cauda. This giant cloud of interstellar gas and dust is commonly known as the Eagle Nebula, and has already created a cluster of young stars. The nebula is also referred to the Star Queen Nebula and as IC 4703; the cluster is NGC 6611. With an overall visual magnitude of 6.4, and an apparent diameter of 7', the Eagle Nebula's star cluster is best seen with low power telescopes. The brightest star in the cluster has an apparent magnitude of +8.24, easily visible with good binoculars. A 4" scope reveals about 20 stars in an uneven background of fainter stars and nebulosity; three nebulous concentrations can be glimpsed under good conditions. Under very good conditions, suggestions of dark obscuring matter can be seen to the north of the cluster. In an 8" telescope at low power, M 16 is an impressive object. The nebula extends much farther out, to a diameter of over 30'. It is filled with dark regions and globules, including a peculiar dark column and a luminous rim around the cluster. -
2002 Convention Bulletin
STELLAFANE The 67th Convention of Amateur Telescope Makers on Breezy Hill in Springfield, Vermont. Friday, August 9th and Saturday, August 10th, 2002 "For it is true that astronomy, from a popular standpoint, is handicapped by the inability of the average workman to own an expensive astronomical telescope. It is also true that if an amateur starts out to build a telescope just for fun he will find, before his labors are over, that he has become seriously interested in the wonderful mechanism of our universe. And finally there is understandably the stimulus of being able to unlock the mysteries of the heavens by a tool fashioned by one's own hand." Russell W. Porter, March 1923 -- Founder of Stellafane The Stellafane Convention is a gathering of amateur telescope makers. The Convention was started in 1926 to give amateur telescope makers an opportunity to gather, to show off their creations and teach each other telescope making and mirror grinding techniques. If you have made your own telescope, we strongly encourage you to display it in the telescope fields near the Pink Clubhouse. If you wish, you can enter it in the mechanical and/or optical competition. There are also mirror grinding and telescope making demonstrations, technical lectures on telescope making and the presentation of awards for telescope design and craftsmanship. Vendor displays and the retail sale of commercial products are not permitted. For additional information please check out the home page www.stellafane.com. Enjoy the convention! PLEASE NOTE AN IMPORTANT SCHEDULE CHANGE DURING CONVENTION: The optical judging has been re- scheduled for Friday night! There will be no optical judging Saturday night unless clouds interfere with the optical competition on Friday. -
Astronomy (Astr) 1
ASTRONOMY (ASTR) 1 ASTR 102. Introduction to Astronomy: Stars, Galaxies & Cosmology. 3 ASTRONOMY (ASTR) Credits. The sun, stellar observables, star birth, evolution, and death, novae and ASTR 61. First-Year Seminar: The Copernican Revolution. 3 Credits. supernovae, white dwarfs, neutron stars, black holes, the Milky Way This seminar explores the 2,000-year effort to understand the motion galaxy, normal galaxies, active galaxies and quasars, dark matter, dark of the sun, moon, stars, and five visible planets. Earth-centered cosmos energy, cosmology, early universe. Honors version available gives way to the conclusion that earth is just another body in space. Requisites: Prerequisite, ASTR 101, or pre- or co-requisite, PHYS 117 Cultural changes accompany this revolution in thinking. or 119; Permission of the instructor for students lacking the pre- or co- Gen Ed: PL, NA, WB. requisites. Grading status: Letter grade Gen Ed: PL. Same as: PHYS 61. Grading status: Letter grade. ASTR 63. First-Year Seminar: Catastrophe and Chaos: Unpredictable ASTR 102H. Introduction to Astronomy: Stars, Galaxies & Cosmology. 3 Physics. 3 Credits. Credits. Physics is often seen as the most precise and deterministic of sciences. The sun, stellar observables, star birth, evolution, and death, novae and Determinism can break down, however. This seminar explores the rich supernovae, white dwarfs, neutron stars, black holes, the Milky Way and diverse areas of modern physics in which "unpredictability" is the galaxy, normal galaxies, active galaxies and quasars, dark matter, dark norm. Honors version available. energy, cosmology, early universe. ASTR 63H. First-Year Seminar: Catastrophe and Chaos: Unpredictable Requisites: Prerequisite, ASTR 101, or pre- or co-requisite, PHYS 117 Physics. -
The Observer
The Observer The Official Publication of the Lehigh Valley Amateur Astronomical Society https://lvaas.org/ https://www.facebook.com/lvaas.astro June 2021 Volume 61 Issue 6 1 ad ast ra * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * After review by the Board of Governors it was decided that additional changes will be made to the By-Laws. This includes changing the Fiscal Year from October - September to the calendar year, so the new Fiscal Year will run from January to December in 2022. This will result in new dates for LVAAS membership dues. As always dues should be received by January 1st. Membership dues will continue to be collected until March 1st; from March 1st until June 1st members will be considered in arrears. If dues are not paid by June 1st you will no longer be considered a member. I'm sad to report Carol Kiely has decided to step down as Star Party Coordinator due to family commitments. Carol has been a mainstay in running Star Parties for the last few years. I am sure Carol will continue to help as she is able. If anyone is interested in this position, please contact me at [email protected] The state of Pennsylvania has decided to lift many pandemic restrictions as of May 31st. In line with this change LVAAS has decided to open up some activities to its members. The BOG has approved the following activities for LVAAS Members Only at the South Mountain site: - Astro Imaging Meeting June 19th - Star Party June 26th - LVAAS Picnic July 10th - Star Party July 17th - Star Party August 14th Note: These events will be held for LVAAS Members Only with the following restrictions: - Masks and Social Distancing are required as per Pennsylvania state requirements in force at the time of the event. -
Astr-Astronomy 1
ASTR-ASTRONOMY 1 ASTR 1116. Introduction to Astronomy Lab, Special ASTR-ASTRONOMY 1 Credit (1) This lab-only listing exists only for students who may have transferred to ASTR 1115G. Introduction Astro (lec+lab) NMSU having taken a lecture-only introductory astronomy class, to allow 4 Credits (3+2P) them to complete the lab requirement to fulfill the general education This course surveys observations, theories, and methods of modern requirement. Consent of Instructor required. , at some other institution). astronomy. The course is predominantly for non-science majors, aiming Restricted to Las Cruces campus only. to provide a conceptual understanding of the universe and the basic Prerequisite(s): Must have passed Introduction to Astronomy lecture- physics that governs it. Due to the broad coverage of this course, the only. specific topics and concepts treated may vary. Commonly presented Learning Outcomes subjects include the general movements of the sky and history of 1. Course is used to complete lab portion only of ASTR 1115G or ASTR astronomy, followed by an introduction to basic physics concepts like 112 Newton’s and Kepler’s laws of motion. The course may also provide 2. Learning outcomes are the same as those for the lab portion of the modern details and facts about celestial bodies in our solar system, as respective course. well as differentiation between them – Terrestrial and Jovian planets, exoplanets, the practical meaning of “dwarf planets”, asteroids, comets, ASTR 1120G. The Planets and Kuiper Belt and Trans-Neptunian Objects. Beyond this we may study 4 Credits (3+2P) stars and galaxies, star clusters, nebulae, black holes, and clusters of Comparative study of the planets, moons, comets, and asteroids which galaxies. -
The Importance of Radio Astronomy and Remote Sensing of the Earth, and the Unique Vulnerability of Passive Services to Interference
Before the FEDERAL COMMUNICATIONS COMMISSION Washington, DC 20554 In the Matter of ) ) Establishment of an Interference Temperature ) Metric to Quantify and Manage Interference ) ET Docket No. 03-237 and to Expand Available Unlicensed ) Operation in Certain Fixed, Mobile and ) Satellite Frequency Bands ) COMMENTS OF THE NATIONAL ACADEMY OF SCIENCES’ COMMITTEE ON RADIO FREQUENCIES The National Academy of Sciences, through the National Research Council's Committee on Radio Frequencies (hereinafter, CORF1), hereby submits its comments in response to the Notice of Inquiry and Notice of Proposed Rule Making (NPRM), released November 28, 2003, in the above-captioned docket, seeking comments on a new “interference temperature” metric for quantifying and managing interference. Herein, CORF supports the Commission’s general intent of quantifying and managing interference in a more precise fashion. However, in light of the tremendously weak signals observed by passive scientific users of the spectrum, and the long integration times used to make such observations, the use of the interference temperature metric cannot as a practical matter provide the protection needed for scientific observation. Accordingly, CORF strongly recommends that an interference temperature metric not be used in bands allocated for passive scientific observation, such as bands allocated to the Radio Astronomy Service (RAS) or to the Earth Exploration Satellite Service (EESS). I. Introduction: The Importance of Radio Astronomy and Remote Sensing of the Earth, and the Unique Vulnerability of Passive Services to Interference CORF has a substantial interest in this proceeding, as it represents the interests of the scientific users of the radio spectrum, including users of the RAS and the EESS bands. -
Asteroid Regolith Weathering: a Large-Scale Observational Investigation
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2019 Asteroid Regolith Weathering: A Large-Scale Observational Investigation Eric Michael MacLennan University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation MacLennan, Eric Michael, "Asteroid Regolith Weathering: A Large-Scale Observational Investigation. " PhD diss., University of Tennessee, 2019. https://trace.tennessee.edu/utk_graddiss/5467 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Eric Michael MacLennan entitled "Asteroid Regolith Weathering: A Large-Scale Observational Investigation." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Geology. Joshua P. Emery, Major Professor We have read this dissertation and recommend its acceptance: Jeffrey E. Moersch, Harry Y. McSween Jr., Liem T. Tran Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Asteroid Regolith Weathering: A Large-Scale Observational Investigation A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Eric Michael MacLennan May 2019 © by Eric Michael MacLennan, 2019 All Rights Reserved.