Stephen E Conrad Wolfram: Uma Trajetória De Contribuições Para a Tecnologia E a Matemática Magnus Cesar Ody Faculdades Integ

Total Page:16

File Type:pdf, Size:1020Kb

Stephen E Conrad Wolfram: Uma Trajetória De Contribuições Para a Tecnologia E a Matemática Magnus Cesar Ody Faculdades Integ Stephen e Conrad Wolfram: uma trajetória de contribuições para a Tecnologia e a Matemática Magnus Cesar Ody Faculdades Integradas de Taquara - FACCAT [email protected] Lori Viali Pontifícia Universidade Católica do Rio Grande do Sul - PUCRS [email protected] Resumo: O artigo apresenta uma análise das contribuições dadas pelos irmãos Stephen Wolfram e Conrad Wolfram para os campos da Tecnologia e da Matemática. O objetivo é apresentar suas principais realizações nas pesquisas em tecnologia e apontar as relações com a Matemática e o seu ensino. Os dados foram coletados das informações disponíveis nos endereços wolfram.com, wolframalpha.com, computerbasedmath.org e conradwolfram.com. Identifica-se que juntamente em oferecer produtos e serviços de ponta para a computação, a pesquisa e o desenvolvimento científico em diferentes áreas, há a atenção para a matemática, tanto no seu ensino quanto na aprendizagem. Acreditam no ensino de matemática voltado para o uso do computador apoiando-se em metodologias adequadas que priorizem a resolução de problemas, a conceitualização e a reflexão. Palavras-chave: Uso do computador. Ensino de Matemática. Inovação. Pesquisa. Wolfram. 1. Introdução Pesquisas voltadas ao uso da tecnologia são relevantes, especialmente aquelas em prol da ciência da sociedade. Na maioria das vezes a tecnologia, quando criada, adapta-se naturalmente aos seus objetivos. Por exemplo, na medicina, quando um novo aparelho cirúrgico é criado, após testes, é inserido na prática hospitalar; ao lançar um novo modelo de celular, imediatamente os adeptos fazem uso. No caso do computador igualmente ocorre em todas as áreas. Mas o problema não é especialmente o computador enquanto máquina, mas seu efetivo uso, que nesse caso ainda é um problema para a educação (ODY, 2013) pela lacuna com relação ao uso efetivo na sociedade atual e especialmente na solução de problemas e sua utilização no contexto escolar e acadêmico. A Tecnologia e a Matemática resumem parte relevante das atividades desenvolvidas pelos Irmãos Stephen e Conrad Wolfram. A inovação e o espírito criativo fazem parte de suas trajetórias. Atualmente ambos são responsáveis pelo Wolfram Research, centro de pesquisas criado em 1987 com sedes em Illinois, Oxfordshire, Tóquio, Cambridge (MA) e Paris. Stephen é conhecido pelos Autômatos Celulares, pelos sistemas algébricos computacionais (SAC), sendo o mais lembrado o programa educacional Mathamática e pelo projeto Wolfran Alpha. Conrad por defender o uso do computador para ensinar matemática (computerbasedmath) e propor uma nova abordagem conceitual e metodológica. Nesse sentido, o artigo propõe discutir as contribuições dadas por Stephen Wolfram e Conrad Wolfram no campo da tecnologia da informação e da Matemática. Contudo, pretende- se analisá-las sob a ótica da educação e das ciências pelo fato dos irmãos terem atividades voltadas para diferentes áreas, mesmo o foco sendo a Matemática. Procura-se responder a seguinte pergunta: Quais contribuições de Stephen Wolfram e Conrad Wolfram são percebidas no campo da Tecnologia e da Matemática? Para isso o estudo possui abordagem qualitativa (DENZIN E LINCOLN, 2006) pela flexibilidade de analisar e compreender fenômenos sociais e humanos por meio da interpretação e da descrição de dados e eventos em que por vezes o pesquisador interage com o objeto de estudo. Os dados foram coletados das produções dos sujeitos da pesquisa e informações encontradas nos sítiosi disponíveis. 2. Stephen Wolfram Stephen Wolfram nasceu em Londres, Inglaterra, em 29 de agosto de 1959 (atualmente com 56 anos). Possui formação pelas universidades de Eton, Oxford e Caltech. Atua nas áreas da Matemática, Física (formação inicial) e Computação. O Doutorado, aos 20 anos, foi em Física Teórica pela Caltech, onde aos 21 anos passou a integrar o grupo docente (WOLFRAM, 2015). A Caltech é um Instituto de Tecnologia da Califórnia (California Institute of Tecnology) localizado na cidade Pasadena no estado da Califórnia, EUA. É considerada uma das melhores universidades do mundo onde atuam diversos condecorados com prêmios Nobel de inúmeras áreas. Dentre seus notáveis alunos podemos citar: Linus Pauling, Stanislav Konstantinovich Smirnov, Ronald W. Davis, William Alfred Fowler, Gregory Chamitoff, John McCarthy, etc. Desde sua fundação em 1891, tem atuado na formação profissional de seus alunos. Atualmente é referência mundial em pesquisas científicas com ênfase nas ciências naturais e na engenharia. Administra o laboratório de propulsão à jato (JPL) da NASA, o principal centro americano de exploração robótica. Dentre os objetivos do JPL está na contribuição das pesquisas sobre a origem do sistema solar, da própria atmosfera terrestre e missões com naves espaciais Três grandes projetos fazem parte da vida de Stephen Wolfram: o primeiro diz respeito ao Programa Computacional Mathematica, desenvolvido na década de 1980 com a finalidade de computar e resolver problemas nas mais diversas áreas do conhecimento. O segundo trata da escrita do livro A New Kind of Science fruto de suas pesquisas sobre autômatos celulares que, em suma, Stephen justifica pela frase […] a natureza usa regras simples para gerar a complexa realidade do mundo e todas podem ser computáveis (WOLFRAM, 2002). Originalmente os autômatos celulares foram estudados no final da década de 40 do século passado pelo matemático húngaro John Von Neumann e o matemático polaco Stanislaw Ulam, período em que o mundo da ciência computacional vivenciou fértil desenvolvimento de novas tecnologias. Consistiu em estudar técnicas computacionais a serem usadas para estabelecer modelos matemáticos que possam representar processos de crescimento e auto reprodução, Von Neumann (1966), Toffoli e Margulos (1987), Pascoal (2005). Um sistema com muitos elementos idênticos que interagem local e deterministicamente podem ser modelados usando autômatos celulares. De acordo com Melotti (2009, p. 7, grifo nosso), A ideia de autômatos celulares surgiu quando Stanislaw Ulam trabalhava no Laboratório Nacional de Los Alamos (Los Alamos, Novo México) estudou o crescimento de cristais, usando a mais simples rede (matriz) como seu modelo. Na mesma época Neumann trabalhava tendo como foco a auto reprodução. A ideia inicial era a capacidade de uma máquina se auto reproduzir e as cópias se auto reproduzirem, ou seja, cópias idênticas à máquina inicial. Ulam sugeriu que Von Neumann desenvolvesse o projeto dele em torno de uma abstração matemática, da mesma forma como Ulam usou para estudar o crescimento de cristais. Assim, nasceu o primeiro sistema de autômato celular de duas dimensões: a implementação de um algoritmo com a ideia de auto reprodução. De acordo com Gardner (1970) e Dewdney (1989) na década de 60 do século passado os autômatos celulares tiveram uma maior divulgação por meio do matemático Conway quando desenvolveu o jogo da vidaii. De acordo com Pascoal (2005), Automata Celulares (AC) são sistemas dinâmicos discretos, sendo frequentemente descritos como contrapartes às equações diferenciais parciais que apresentam a potencialidade para descrever sistemas dinâmicos contínuos. O significado de discreto é que as variáveis de estado mantêm-se inalteradas ao longo de intervalos de tempo, e mudam seus valores somente em momentos bem definidos conhecidos como passo ou tempo de ocorrência de evento. (p. 11) A ideia é procurar mostrar que a simulação de sistemas complexos ocorre por regras e interações celulares simples. Bar-Yam (1997) descreve que os Autômatos Celulares representam um dos modelos matemáticos capazes de representar sistemas e fenômenos que formam uma classe geral de modelos de sistemas dinâmicos, que são simples e ainda capturam uma rica variedade de comportamento. Isto fez deles uma ferramenta favorita para pesquisadores estudarem o comportamento genérico de sistemas dinâmicos complexos. A palavra autômato representava máquinas automáticas cujo comportamento era modelado por termos matemáticos inconfundíveis (PASCOAL, 2005). De modo especial, Neumann estava interessado com a relação dos autômatos com a Biologia ou o fenômeno biológico da auto reprodução (estudos neurofisiológicos). Stephen Wolfram, em 1983, publicou uma série de trabalhos como resultados de suas análises sobre autômato celular muito simples, mesmo com a complexidade do seu comportamento, porém induzidos por regras elementares. Ele percebeu que mecanismos similares poderiam ajudar a esclarecer fenômenos físicos complexos, o que definitivamente levou-o a publicar seu livro, em 2002. O terceiro projeto de Stephen é a Wolfram Research, é uma das empresas mais respeitadas no mundo voltada para a indústria de softwares para computação, web e nuvem, pesquisa e desenvolvimento científico. Foi fundada por ele em 1987 e possui atualmente em torno de 400 funcionários distribuídos em diferentes locais, dentre eles Illinois, Oxfordshire, Tóquio, Cambridge (MA) e Paris. Imagem 1 – Interface do site wolfram.com Fonte – www.wolfram.com Dentre os inúmeros produtos e serviços podemos destacar os dois principais projetos: o programa computacional Mathematica, carro chefe da empresa, e a Wolfram Alpha. Oferece produtos para a educação básica e superior procurando trazer o melhor do mundo da tecnologia para a educação; inúmeros produtos e serviços para dispositivos móveis; consultoria corporativa; apoio a projetos e treinamento além de manter sites e blogs atualizados sobre as empresas. O Programa computacional Mathematica existe a mais de 25 anos, lançado em 1988 é o produto original e carro chefe da empresa. Consiste
Recommended publications
  • Jet Development in Leading Log QCD.Pdf
    17 CALT-68-740 DoE RESEARCH AND DEVELOPMENT REPORT Jet Development in Leading Log QCD * by STEPHEN WOLFRAM California Institute of Technology, Pasadena. California 91125 ABSTRACT A simple picture of jet development in QCD is described. Various appli- cations are treated, including transverse spreading of jets, hadroproduced y* pT distributions, lepton energy spectra from heavy quark decays, soft parton multiplicities and hadron cluster formation. *Work supported in part by the U.S. Department of Energy under Contract No. DE-AC-03-79ER0068 and by a Feynman Fellowship. 18 According to QCD, high-energy e+- e annihilation into hadrons is initiated by the production from the decaying virtual photon of a quark and an antiquark, ,- +- each with invariant masses up to the c.m. energy vs in the original e e collision. The q and q then travel outwards radiating gluons which serve to spread their energy and color into a jet of finite angle. After a time ~ 1/IS, the rate of gluon emissions presumably decreases roughly inversely with time, except for the logarithmic rise associated with the effective coupling con­ 2 stant, (a (t) ~ l/log(t/A ), where It is the invariant mass of the radiating s . quark). Finally, when emissions have degraded the energies of the partons produced until their invariant masses fall below some critical ~ (probably c a few times h), the system of quarks and gluons begins to condense into the observed hadrons. The probability for a gluon to be emitted at times of 0(--)1 is small IS and may be est~mated from the leading terms of a perturbation series in a (s).
    [Show full text]
  • PARTON and HADRON PRODUCTION in E+E- ANNIHILATION Stephen Wolfram California Institute of Technology, Pasadena, California 91125
    549 * PARTON AND HADRON PRODUCTION IN e+e- ANNIHILATION Stephen Wolfram California Institute of Technology, Pasadena, California 91125 Ab stract: The production of showers of partons in e+e- annihilation final states is described according to QCD , and the formation of hadrons is dis­ cussed. Resume : On y decrit la production d'averses d� partons dans la theorie QCD qui forment l'etat final de !'annihilation e+ e , ainsi que leur transform­ ation en hadrons. *Work supported in part by the U.S. Department of Energy under contract no. DE-AC-03-79ER0068. SSt1 Introduction In these notes , I discuss some attemp ts e ri the cl!evellope1!1t of - to d s c be hadron final states in e e annihilation events ll>Sing. QCD. few featm11res A (barely visible at available+ energies} of this deve l"'P"1'ent amenab lle· are lt<J a precise and formal analysis in QCD by means of pe·rturbatirnc• the<J ry. lfor the mos t part, however, existing are quite inadle<!i""' lte! theoretical mett:l�ods one must therefore simply try to identify dl-iimam;t physical p.l:ten<0melilla tt:he to be expected from QCD, and make estll!att:es of dne:i.r effects , vi.th the hop·e that results so obtained will provide a good appro�::illliatimn to eventllLal'c ex­ act calculations . In so far as such estllma�es r necessa�y� pre�ise �r..uan- a e titative tests of QCD are precluded . On the ott:her handl , if QC!Ji is ass11l!med correct, then existing experimental data to inve•stigate its be­ may \JJ:SE•«f havior in regions not yet explored by theoreticalbe llJleaums .
    [Show full text]
  • The Problem of Distributed Consensus: a Survey Stephen Wolfram*
    The Problem of Distributed Consensus: A Survey Stephen Wolfram* A survey is given of approaches to the problem of distributed consensus, focusing particularly on methods based on cellular automata and related systems. A variety of new results are given, as well as a history of the field and an extensive bibliography. Distributed consensus is of current relevance in a new generation of blockchain-related systems. In preparation for a conference entitled “Distributed Consensus with Cellular Automata and Related Systems” that we’re organizing with NKN (= “New Kind of Network”) I decided to explore the problem of distributed consensus using methods from A New Kind of Science (yes, NKN “rhymes” with NKS) as well as from the Wolfram Physics Project. A Simple Example Consider a collection of “nodes”, each one of two possible colors. We want to determine the majority or “consensus” color of the nodes, i.e. which color is the more common among the nodes. A version of this document with immediately executable code is available at writings.stephenwolfram.com/2021/05/the-problem-of-distributed-consensus Originally published May 17, 2021 *Email: [email protected] 2 | Stephen Wolfram One obvious method to find this “majority” color is just sequentially to visit each node, and tally up all the colors. But it’s potentially much more efficient if we can use a distributed algorithm, where we’re running computations in parallel across the various nodes. One possible algorithm works as follows. First connect each node to some number of neighbors. For now, we’ll just pick the neighbors according to the spatial layout of the nodes: The algorithm works in a sequence of steps, at each step updating the color of each node to be whatever the “majority color” of its neighbors is.
    [Show full text]
  • Purchase a Nicer, Printable PDF of This Issue. Or Nicest of All, Subscribe To
    Mel says, “This is swell! But it’s not ideal—it’s a free, grainy PDF.” Attain your ideals! Purchase a nicer, printable PDF of this issue. Or nicest of all, subscribe to the paper version of the Annals of Improbable Research (six issues per year, delivered to your doorstep!). To purchase pretty PDFs, or to subscribe to splendid paper, go to http://www.improbable.com/magazine/ ANNALS OF Special Issue THE 2009 IG® NOBEL PRIZES Panda poo spinoff, Tequila-based diamonds, 11> Chernobyl-inspired bra/mask… NOVEMBER|DECEMBER 2009 (volume 15, number 6) $6.50 US|$9.50 CAN 027447088921 The journal of record for inflated research and personalities Annals of © 2009 Annals of Improbable Research Improbable Research ISSN 1079-5146 print / 1935-6862 online AIR, P.O. Box 380853, Cambridge, MA 02238, USA “Improbable Research” and “Ig” and the tumbled thinker logo are all reg. U.S. Pat. & Tm. Off. 617-491-4437 FAX: 617-661-0927 www.improbable.com [email protected] EDITORIAL: [email protected] The journal of record for inflated research and personalities Co-founders Commutative Editor VP, Human Resources Circulation (Counter-clockwise) Marc Abrahams Stanley Eigen Robin Abrahams James Mahoney Alexander Kohn Northeastern U. Research Researchers Webmaster Editor Associative Editor Kristine Danowski, Julia Lunetta Marc Abrahams Mark Dionne Martin Gardiner, Tom Gill, [email protected] Mary Kroner, Wendy Mattson, General Factotum (web) [email protected] Dissociative Editor Katherine Meusey, Srinivasan Jesse Eppers Rose Fox Rajagopalan, Tom Roberts, Admin Tom Ulrich Technical Eminence Grise Lisa Birk Psychology Editor Dave Feldman Robin Abrahams Design and Art European Bureau Geri Sullivan Art Director emerita Kees Moeliker, Bureau Chief Contributing Editors PROmote Communications Peaco Todd Rotterdam Otto Didact, Stephen Drew, Ernest Lois Malone Webmaster emerita [email protected] Ersatz, Emil Filterbag, Karen Rich & Famous Graphics Steve Farrar, Edinburgh Desk Chief Hopkin, Alice Kaswell, Nick Kim, Amy Gorin Erwin J.O.
    [Show full text]
  • Cellular Automation
    John von Neumann Cellular automation A cellular automaton is a discrete model studied in computability theory, mathematics, physics, complexity science, theoretical biology and microstructure modeling. Cellular automata are also called cellular spaces, tessellation automata, homogeneous structures, cellular structures, tessellation structures, and iterative arrays.[2] A cellular automaton consists of a regular grid of cells, each in one of a finite number of states, such as on and off (in contrast to a coupled map lattice). The grid can be in any finite number of dimensions. For each cell, a set of cells called its neighborhood is defined relative to the specified cell. An initial state (time t = 0) is selected by assigning a state for each cell. A new generation is created (advancing t by 1), according to some fixed rule (generally, a mathematical function) that determines the new state of each cell in terms of the current state of the cell and the states of the cells in its neighborhood. Typically, the rule for updating the state of cells is the same for each cell and does not change over time, and is applied to the whole grid simultaneously, though exceptions are known, such as the stochastic cellular automaton and asynchronous cellular automaton. The concept was originally discovered in the 1940s by Stanislaw Ulam and John von Neumann while they were contemporaries at Los Alamos National Laboratory. While studied by some throughout the 1950s and 1960s, it was not until the 1970s and Conway's Game of Life, a two-dimensional cellular automaton, that interest in the subject expanded beyond academia.
    [Show full text]
  • A New Kind of Science
    Wolfram|Alpha, A New Kind of Science A New Kind of Science Wolfram|Alpha, A New Kind of Science by Bruce Walters April 18, 2011 Research Paper for Spring 2012 INFSY 556 Data Warehousing Professor Rhoda Joseph, Ph.D. Penn State University at Harrisburg Wolfram|Alpha, A New Kind of Science Page 2 of 8 Abstract The core mission of Wolfram|Alpha is “to take expert-level knowledge, and create a system that can apply it automatically whenever and wherever it’s needed” says Stephen Wolfram, the technologies inventor (Wolfram, 2009-02). This paper examines Wolfram|Alpha in its present form. Introduction As the internet became available to the world mass population, British computer scientist Tim Berners-Lee provided “hypertext” as a means for its general consumption, and coined the phrase World Wide Web. The World Wide Web is often referred to simply as the Web, and Web 1.0 transformed how we communicate. Now, with Web 2.0 firmly entrenched in our being and going with us wherever we go, can 3.0 be far behind? Web 3.0, the semantic web, is a web that endeavors to understand meaning rather than syntactically precise commands (Andersen, 2010). Enter Wolfram|Alpha. Wolfram Alpha, officially launched in May 2009, is a rapidly evolving "computational search engine,” but rather than searching pre‐existing documents, it actually computes the answer, every time (Andersen, 2010). Wolfram|Alpha relies on a knowledgebase of data in order to perform these computations, which despite efforts to date, is still only a fraction of world’s knowledge. Scientist, author, and inventor Stephen Wolfram refers to the world’s knowledge this way: “It’s a sad but true fact that most data that’s generated or collected, even with considerable effort, never gets any kind of serious analysis” (Wolfram, 2009-02).
    [Show full text]
  • Downloadable PDF of the 77500-Word Manuscript
    From left: W. Daniel Hillis, Neil Gershenfeld, Frank Wilczek, David Chalmers, Robert Axelrod, Tom Griffiths, Caroline Jones, Peter Galison, Alison Gopnik, John Brockman, George Dyson, Freeman Dyson, Seth Lloyd, Rod Brooks, Stephen Wolfram, Ian McEwan. In absentia: Andy Clark, George Church, Daniel Kahneman, Alex "Sandy" Pentland (Click to expand photo) INTRODUCTION by Venki Ramakrishnan The field of machine learning and AI is changing at such a rapid pace that we cannot foresee what new technical breakthroughs lie ahead, where the technology will lead us or the ways in which it will completely transform society. So it is appropriate to take a regular look at the landscape to see where we are, what lies ahead, where we should be going and, just as importantly, what we should be avoiding as a society. We want to bring a mix of people with deep expertise in the technology as well as broad 1 thinkers from a variety of disciplines to make regular critical assessments of the state and future of AI. —Venki Ramakrishnan, President of the Royal Society and Nobel Laureate in Chemistry, 2009, is Group Leader & Former Deputy Director, MRC Laboratory of Molecular Biology; Author, Gene Machine: The Race to Decipher the Secrets of the Ribosome. [ED. NOTE: In recent months, Edge has published the fifteen individual talks and discussions from its two-and-a-half-day Possible Minds Conference held in Morris, CT, an update from the field following on from the publication of the group-authored book Possible Minds: Twenty-Five Ways of Looking at AI. As a special event for the long Thanksgiving weekend, we are pleased to publish the complete conference—10 hours plus of audio and video, as well as this downloadable PDF of the 77,500-word manuscript.
    [Show full text]
  • WOLFRAM EDUCATION SOLUTIONS MATHEMATICA® TECHNOLOGIES for TEACHING and RESEARCH About Wolfram Research
    WOLFRAM EDUCATION SOLUTIONS MATHEMATICA® TECHNOLOGIES FOR TEACHING AND RESEARCH About Wolfram Research For over two decades, Wolfram Research has been dedicated to developing tools that inspire exploration and innovation. As we work toward our goal to make the world’s data computable, we have expanded our portfolio to include a variety of products and technologies that, when combined, provide a true campuswide solution. At the center is Mathematica—our ever-advancing core product that has become the ultimate application for computation, visualization, and development. With millions of dedicated users throughout the technical and educational communities, Mathematica is used for everything from teaching simple concepts in the classroom to doing serious research using some of the world’s largest clusters. Wolfram’s commitment to education spans from elementary education to research universities. Through our free educational resources, STEM teacher workshops, and on-campus technical talks, we interact with educators whose feedback we rely on to develop tools that support their changing needs. Just as Mathematica revolutionized technical computing 20 years ago, our ongoing development of Mathematica technology and continued dedication to education are transforming the composition of tomorrow’s classroom. With more added all the time, Wolfram educational resources bolster pedagogy and support technology for classrooms and campuses everywhere. Favorites among educators include: Wolfram|Alpha®, the Wolfram Demonstrations Project™, MathWorld™,
    [Show full text]
  • The Wolfram Physics Project: the First Two Weeks—Stephen Wolfram Writings ≡
    6/21/2020 The Wolfram Physics Project: The First Two Weeks—Stephen Wolfram Writings ≡ RECENT | CATEGORIES | The Wolfram Physics Project: The First Two Weeks April 29, 2020 Project Announcement: Finally We May Have a Path to the Fundamental Theory of Physics… and It’s Beautiful Website: Wolfram Physics Project First, Thank You! We launched the Wolfram Physics Project two weeks ago, on April 14. And, in a word, wow! People might think that interest in fundamental science has waned. But the thousands of messages we’ve received tell a very different story. People really care! They’re excited. They’re enjoying understanding what we’ve figured out. They’re appreciating the elegance of it. They want to support the project. They want to get involved. It’s tremendously encouraging—and motivating. I wanted this project to be something for the world—and something lots of people could participate in. And it’s working. Our livestreams—even very technical ones—have been exceptionally popular. We’ve had lots of physicists, mathematicians, computer scientists and others asking questions, making suggestions and offering help. We’ve had lots of students and others who tell us how eager they are to get into doing research on the project. And we’ve had lots of people who just want to tell us they appreciate what we’re doing. So, thank you! https://writings.stephenwolfram.com/2020/04/the-wolfram-physics-project-the-first-two-weeks/ 1/35 6/21/2020 The Wolfram Physics Project: The First Two Weeks—Stephen Wolfram Writings Real-Time Science Science is usually done behind closed doors.
    [Show full text]
  • The Story About Stephen Wolfram
    The Physicist Turned a Successful Entrepreneur THE STORY ABOUT STEPHEN WOLFRAM by Gennaro Cuofano FourWeekMBA.com Wolfram Alpha: The Physicist Turned a Successful Entrepreneur - The Four-Week MBA Wolfram Alpha: The Physicist Turned a Successful Entrepreneur Why Wolfram Alpha? Among my passions, I love to check financial data about companies I like. Recently I was looking for a quick way to get reliable financial information for comparative analyses. At the same time, I was looking for shortcuts to perform that analysis. I was researching for myself. I thought why waste so much time on scraping financial reports? While surfing the web, I was looking for a solution and a term popped to my eyes “computational engine.” Wolfram Alpha! That search opened me a universe I wasn’t aware of. Yet that universe wasn’t only about a fantastic tool I learned to use in several ways. I found out the most amazing entrepreneurial story. That is how I jumped in and researched as much as I could about this topic! Why is this story so remarkable? Imagine a kid that as many others, is struggling at arithmetic. Imagine that same kid at 12 years old building a physics dictionary and by the age of 14 drafting three books about particle physics. A few years later at 23, that kid, now a man gets awarded as a prodigious physicist. We could stop this story here, and it would be already one of the most incredible stories you’ll ever hear. Yet this is only the beginning. In fact, what if I told you, that same person turned into a successful entrepreneur, which built several companies and a whole new science from scratch! (Let’s save some details for later) That isn’t only the story of Wolfram Alpha, a tool that I learned to use and cherish.
    [Show full text]
  • Changing Mathematics Education in Estonia: Computer-Based Statistics Project
    Hõim, T., Hommik, C. & Kikas, Ü. (2016) Changing mathematics education in Estonia. Computer-based statistics project. [Working paper submitted for CIDREE-STEM 2016, December 22nd] Changing mathematics education in Estonia: Computer-based statistics project Terje Hõlm; Carita Hommik; Ülle Kikas University of Tartu, Estonia Introduction The accelerating growth of both quantity and availability of information afforded by new digital technologies has created greater expectations to people’s competencies in numerical, statistical and visual literacy, requiring fundamental changes in teaching and learning. Mathematical modeling and processing of large data sets are commonly required skills for jobs in STEM sector, as well as in business and social sectors. According to the OECD Innovation Strategy, data analysis discoveries have become the drivers behind innovation. In the forthcoming years this will call for effective improvement of visual and statistical literacy of a large number of individuals. Currently, only 0.5% of the labor force in OECD countries are specialists working with data, but the request will remarkably increase in coming years (OECD, 2015) In Estonia, the main goal of mathematics education is to teach students to formulate, employ and interpret mathematics in a variety of contexts, especially in different situations in their lives. The state final exams and the research evidences show that we have not yet achieved that goal. Whereas the performance of Estonian students in PISA mathematical tests is good (in PISA 2012, the average scores of Estonian students were ranked 10th to 14th among 65 countries worldwide, and 3rd to 6th in Europe), only 14.6% of students could solve complex mathematical problems that require mathematical modeling and well-developed reasoning skills (OECD, 2014).
    [Show full text]
  • THE LEGACY of the BBC MICRO: Effecting Change in the UK’S Cultures of Computing
    1 THE LEGACY OF THE BBC MICRO: effecting change in the UK’s cultures of computing THE Legacy OF THE BBC MICRO EFFECTING CHANGE IN THE UK’s cultureS OF comPUTING Tilly Blyth May 2012 2 THE LEGACY OF THE BBC MICRO: effecting change in the UK’s cultures of computing CONTENTS Preface 4 Research Approach 5 Acknowledgments 6 Executive Summary 7 1. Background 9 2. Creating the BBC Micro 10 3. Delivering the Computer Literacy Project 15 4. The Success of the BBC Micro 18 4.1 Who bought the BBC Micro? 20 4.2 Sales overseas 21 5. From Computer Literacy to Education in the 1980s 24 5.1 Before the Computer Literacy Project 24 5.2 Adult computer literacy 25 5.3 Micros in schools 29 6. The Legacy of the Computer Literacy Project 32 6.1 The legacy for individuals 32 6.2 The technological and industrial Legacy 50 6.3 The legacy at the BBC 54 7. Current Creative Computing Initiatives for Children 58 7.1 Advocacy for programming and lobbying for change 59 7.2 Technology and software initiatives 60 7.3 Events and courses for young people 63 8. A New Computer Literacy Project? Lessons and Recommendations 65 Appendix 69 Endnotes 76 About Nesta Nesta is the UK’s innovation foundation. We help people and organisations bring great ideas to life. We do this by providing investments and grants and mobilising research, networks and skills. We are an independent charity and our work is enabled by an endowment from the National Lottery. Nesta Operating Company is a registered charity in England and Wales with a company number 7706036 and charity number 1144091.
    [Show full text]