DAVID W. SCHOLL US Geological Survey Menlo

Total Page:16

File Type:pdf, Size:1020Kb

DAVID W. SCHOLL US Geological Survey Menlo GEOLOGICAL SOCIETY OF AMERICA SPECIAL PAPER 151 ©1975 Plate Tectonics and the Structural Evolution o f the Aleutian-Bering Sea Region DAVID W. SCHOLL U.S. Geological Survey Menlo Park, California 94025 U.S.A. EDWIN C. BUFFINGTON Naval Undersea Center San Diego, California 92132 U.S.A. MICHAEL S. MARLOW U.S. Geological Survey Menlo Park, California 94025 U.S.A. ABSTRACT The general aspects of the structural evolution of the Aleutian-Bering Sea region can be described in terms of plate tectonics. Involved in this model is the formation of the Aleutian Ridge in latest Cretaceous or earliest Tertiary time. The ridge is presumed to have formed in response to a southward relocation in the convergence zone of the Pacific oceanic plate, a shift away from the Beringian continental margin connecting Alaska and Siberia to an oceanic location at the Aleutian Trench. Prior to the formation of the ridge, Pacific crust is presumed to have directly underthrust the northeast-trending Koryak-Kamchatka coast. The middle and late Mesozoic eugeosynclinal or thalassogeosynclinal masses that underlie this segment 1 2 SCHOLL AND OTHERS of the Pacific fold belt are highly deformed, thrust faulted, and intruded by ultra- mafic bodies—characteristics that can be ascribed to the mechanical and magmatic consequence of plate underthrusting. This model implies a similar orogenic process for the formation of the stratigraphically and structurally similar Mesozoic rocks underlying the northeast-trending continental margin of southern Alaska. Less intense underthrusting may have occurred along the northwest-trending Pribilof segment of the Beringian margin connecting Alaska and Siberia. This margin may have been more parallel to the approximate direction of relative motion be­ tween the oceanic and continental plates. Nonetheless, fold belts, possibly intruded by ultramafic masses, formed along this segment of the Beringian continental margin in Late Cretaceous and perhaps earliest Tertiary time. The folds have since subsided below sea level—their eroded tops presently underlying as much as 3 km of virtually undeformed Cenozoic deposits. Our model relates pre- and postorogenic deposits underlying the Beringian margin and adjacent coast to the time of formation of the Aleutian Ridge, which marked the cessation of continental underthrusting and the beginning of island-arc under­ thrusting. Our model also implies that the ridge formed near or at its present loca­ tion and that oceanic crust of late Mesozoic age underlies the Aleutian Basin of the Bering Sea. Since formation of the ridge this basin has received from 2 to 10 km of sedimentary fill. Although the model we suggest broadly explains the observed changes in tectonic style, magmatic history, and sedimentation for the Aleutian-Bering Sea region, it also implies that thousands of kilometers of oceanic crust underthrust the Kamchat­ ka, Beringian, and Alaskan margins between Late Triassic and Late Cretaceous time, and hundreds of kilometers underthrust the Aleutian Ridge in Cenozoic time. The enormous masses of pelagic and volcanic offscrapings that would be indicative of extensive or long-term crustal underthrusting are not apparent as mappable units. Thus, while our model may be stylistically adequate, it paradoxically predicts quantities of rocks and structures that we are not able to find. Presumably they have been subducted. INTRODUCTION During the last decade an impressive volume of bathymetric, geologic, and geo­ physical data has been gathered in the Aleutian-Bering Sea region (Fig. 1). Emerging from this information is a partically decipherable geologic history extending back into Mesozoic time—a history that includes the formation of the Aleutian Ridge, the sedimentary infilling of the deep basin of the Bering Sea, and the structural evolution of the Beringian continental margin, which reaches in a broad northward- swinging arc from Cape Kamchatka on the west to the Alaska Peninsula on the east (Fig. 1). Although a number of geotectonic models have already been applied to the Aleutian-Bering Sea region (see Stone, 1968; Cameron and Stone, 1970; and Perry, STRUCTURAL EVOLUTION, ALEUTIAN-BERING SEA REGION 3 1971, for reviews of some of these schemes), we will attempt to relate prior and new findings within a framework of the expected consequences of sea-floor spread­ ing and interacting lithospheric plates (Isacks and others, 1968; Mitchell and Reading, 1969, 1971; Hamilton, 1969, 1970; Dewey and Horsefield, 1970; Ernst, 1970; Dewey and Bird, 1970; Oxburgh and Turcotte, 1970, 1971; Matsuda and Uyeda, 1971;Hasebe and others, 1970). Our purpose in preparing this paper has been to determine how the structural evolution of the Aleutian-Bering Sea region fits in with the suspected pattern of global tectonics, which many geologists believe is the causative mechanism behind the formation of the Pacific fold belt of late Paleozoic through Cenozoic rocks. To some extent we are molding our data to a prescribed model, but our general ability to do this, although we encounter difficulties, must not in itself be taken as proof that the plate models are valid. These models, however, are exceptionally instructive in that they allow us to treat the structural and magmatic evolution of this vast area in a unified way. This paper contains speculations about these unifying schemes. The Aleutian-Bering Sea region includes the Aleutian Trench and bordering ridge, the Bering Sea Basin (that part of the sea exclusive of its broad and shallow shelf) north of the ridge, and the Beringian continental margin sweeping northward around the basin between Alaska and Kamchatka. The submerged physiography of this vast region has been described and discussed by Gibson and Nichols (1953), Udinstev and others (1959), Gibson (1960), Gershanovich (1963), Nichols and others (1964), Kotenev (1965), Nichols and Perry (1966), Perry and Nichols (1966), Lisitsyn (1966), Scholl and others (1968), Chase and others (1970), and Perry (1971). Because the deep Bering Sea did not exist prior to the formation of the ridge, we discuss first the known geology of this ridge and its possible relation to postu­ lated movements of major lithospheric plates. Next we consider what is known about the structural, magmatic, and sedimentary histories of the deep Bering Sea and its bordering continental margin-also interpreting these findings in relation to those expected from plate interactions and the presence or absence of an outlying Aleutian Ridge. In a concluding section we outline what appears to be the best-fitting plate model, mentioning at this point important conflicts in observed and prescribed findings. ALEUTIAN RIDGE General Background Based on the age of rocks actually exposed, initial growth of the ridge can with certainty be placed only in earliest Tertiary time (Fig. 2; Scholl and others, 1970a; Carr and others, 1970); an earlier or Cretaceous age is a speculation, albeit a reason­ able one (Coats, 1956a; Gates and others, 1971). Burk’s (1965) geologic study of 4 SCHOLL AND OTHERS the Alaska Peninsula and adjacent Pacific continental margin also stresses that the ridge is wholly of Cenozoic age; however, structural and stratigraphie findings from regions adjacent to the Aleutian Ridge can be interpreted to mean that it existed prior to the Tertiary Period. This evidence includes (1) the findings of Markov and others (1969) at Cape Kamchatka (Fig. 1) that structural trends including rocks of Cretaceous and Paleogene ages strike roughly toward the western end of the Aleutian Ridge; (2) the Middle Jurassic or older age of the structural and geomorphic trend of the Alaska Peninsula (Burk, 1965), which is contiguous with the opposite or eastern end of the island chain (Fig. 1); and (3) the presence of a deeply buried and thick (1 to 4 km) intermediate velocity (3.2 to 4.3 km per sec) rock layer over- lying normal oceanic crust (Shor, 1964; Kienle, 1971; Ludwig and others, 1971a) beneath the Aleutian Basin (Fig. 3) that may be a thick sequence of terrigenous deposits impounded north of a Cretaceous Aleutian Ridge (Scholl and others, 1968; Hopkins and others, 1969; Scholl and Hopkins, 1969). Viewed simply, the rocks of the Aleutian Ridge can be subdivided into four groups or series: (1) initial, (2) early, (3) middle, and (4) late. The principal distin­ guishing criterion is age, but they also differ in lithology and style of deformation. Whether or not initial growth of the Aleutian Ridge began in Mesozoic time, we presume that ridge growth was initiated by the voluminous outpouring of mafic lavas, probably of subalkaline or tholeiitic composition (Jakes and White, 1969, 1972). These rocks constitute the great bulk of the ridge (that is, its basement complex) and form the initial series. Unequivocal exposures are not known, but the youngest part of the series may be represented by thé Eocene or older Finger Bay Volcanics of Adak Island (Figs. 1,2; Coats, 1956a; Fraser and Snyder, 1959; Scholl and others, 1970a). We are unaware of exposures that suggest the initial series may include slabs of uplifted or obducted oceanic crust, which apparently form part of the basement complex of other Pacific margining island arcs (Coleman, 1966; Shiraki, 1971; Kroenke, 1972; Bryan and others, 1972; Ewart and Bryan, 1972). By at least late Eocene time the ridge had attained approximately its present size, and portions of it had built above sea level (Gates and others, 1954; Gates and Gibson, 1956; Drewes and others, 1961 ; Scholl and others, 1970a; Gates and others, 1971). Subsequently, and through early Miocene time, large volumes of sedimentary rock, chiefly beds of conglomerate, graywacke, argillite, chert, siliceous shale, diato- maceous siltstone, and volcaniclastic deposits, accumulated in basins between volcanic centers and over the flanks of the ridge. These sedimentary deposits and associated volcanic rocks form the early series (Marlow and others, 1973), a unit equivalent to the “early marine series” of Wilcox (1959). Deposition of these rocks indicates that vigorous subaerial erosion of the ridge began after about middle Eocene time.
Recommended publications
  • Universim of Alaska Table: of Contents
    UNITED STATES DEPARTMENT OF THE XNTEFSOR GEOLOGICAL SURmY RESOURCE REPORT FOR THE DEEP-WATER AREAS OF PROPOSED mS LEASE SALE NO* 70, ST. GEORGE BASIN, ALASKA A- K. Cooper, D. W. Scholl, T. L. Vallier, and E. W. scott Open File Report 80- 246 This reprt is preliminary and has not been edited or reviewed for conformity with Geological . Survey standards and nanenclature. Menlo Park, Calif,ornia October, 1979 BMER E. RASMUSON LIBRARY UNIVERSIM OF ALASKA TABLE: OF CONTENTS Introduction -cation ..................................................... 5 Publieally available data .................................... 5 . Regional Tectonic setting .................................... 7 Geologic Fxamework Gemrphic setting ......................................... 10 frmnak Plateau and continental slope ...................... 10 Aleutian Ridge .......................................... 10 Geology of Umnak Plateau Region ............................... 14' Umnak Plateau and continental slope ..................... 14 Aleutian Ridge ...................................... 18 Structural Framework Seismic reflection/refraction data ........................... 29 Umnak Plateau and continental slope .......................... 31 Seamen- and igneous crustal sections ................ 31 Diapirs ........................,..,.................. 37 Folding and Faulting ................................. 40 Submarine canyons ....................................... 42 Aleutian Ridge ............................................... 44 Igneous and sedimentary crustal sections
    [Show full text]
  • Plate Tectonic Model for the Evolution of the Eastern Bering Sea Basin
    Plate tectonic model for the evolution of the eastern Bering Sea Basin ALAN K. COOPER } DAVID W. SCHOLL T U.S. Geological Survey, 345 Middlefield Road, Menlo Park, California 94025 MICHAEL S. MARLOW ABSTRACT Watts and Weissel, 1975) have been pro- orientation of the magnetic lineations in the posed for the crustal generation by exten- eastern Bering Sea Basin. The eastern Bering Sea Basin, composed sion. These basins are commonly associated of the Aleutian and Bowers Basins, is with high heat-flow values (Sclater, 1972; GEOMORPHIC AND flanked to the north by Mesozoic foldbelts Matsuda and Uyeda, 1971), positive re- GEOLOGIC SETTING that probably represent zones of plate sub- gional gravity anomalies (Packham and duction in Mesozoic time. Present plate Falvey, 1971; Watts and Talwani, 1974), Major bathymetric features of the eastern subduction occurs 400 to 1,000 km farther layered oceanic crustal sections (Karig, Bering Sea Basin include two large aseismic south, at the Aleutian Trench. North-south 1971), and low-amplitude magnetic ridges, Bowers Ridge and Shirshov Ridge magnetic lineations that formed at an anomalies that trend in a direction sub- (Fig. 1), and the flat abyssal floors of the oceanic spreading ridge, probably in parallel with the active island arc (Uyeda Aleutian and Bowers Basins. Bowers Ridge Mesozoic time (117 to 132 m.y. ago), have and Vacquier, 1968; Karig, 1970; Watts extends in a broad arc, nearly encircling been identified in the Aleutian Basin. The and Weissel, 1975). Bowers Basin, from the central Aleutian orientation and age of those anomalies can The hypothesis of crustal generation by Ridge to near the southern end of Shirshov be explained by reconstructing Kula- extension within the marginal basins may Ridge.
    [Show full text]
  • Reconstruction of Subduction and Back-Arc Spreading in the NW
    RESEARCH ARTICLE Reconstruction of Subduction and Back‐Arc Spreading 10.1029/2018TC005164 in the NW Pacific and Aleutian Basin: Clues to Causes Key Points: • At 85‐80 Ma, a plate reorganization of Cretaceous and Eocene Plate Reorganizations fi occurred in the northern Paci c that Bram Vaes1 , Douwe J. J. van Hinsbergen1 , and Lydian M. Boschman1 included the formation of two subduction zones and the Kula plate 1Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands • Our reconstruction predicts that the Aleutian Basin crust formed between 85 and 60 Ma in a back‐arc basin behind the Olyutorsky arc Abstract The Eocene (~50–45 Ma) major absolute plate motion change of the Pacific plate forming • Subduction polarity reversal from the Hawaii‐Emperor bend is thought to result from inception of Pacific plate subduction along one of its Kamchatka to Sakhalin at ~50 Ma is modern western trenches. Subduction is suggested to have started either spontaneously, or result from not a straightforward driver of the Eocene Pacific plate motion change subduction of the Izanagi‐Pacific mid‐ocean ridge, or from subduction polarity reversal after collision of the Olyutorsky arc that was built on the Pacific plate with NE Asia. Here we provide a detailed plate‐kinematic Supporting Information: reconstruction of back‐arc basins and accreted terranes in the northwest Pacific region, from Japan to • Supporting Information S1 the Bering Sea, since the Late Cretaceous. We present a new tectonic reconstruction of the intraoceanic • Table S1 • Data Set S1 Olyutorsky and Kronotsky arcs, which formed above two adjacent, oppositely dipping subduction zones at • Data Set S2 ~85 Ma within the north Pacific region, during another Pacific‐wide plate reorganization.
    [Show full text]
  • (DSDP) Results: Far North Pacific, And
    37. GEOLOGIC SYNTHESIS OF LEG 19 (DSDP) RESULTS; FAR NORTH PACIFIC, AND ALEUTIAN RIDGE, AND BERING SEA David W. Scholl, U. S. Geological Survey, Office of Marine Geology, Menlo Park, California Joe S. Creager, Department of Oceanography, University of Washington, Seattle, Washington1 INTRODUCTION global climates, pine forests grew only in high latitudes, for example, the uplands flanking the Cook Inlet area of Alaska Elsewhere in this volume (see Parts HI and IV), fairly (see Wolfe, and Evitt, this volume, also Wolfe, Hopkins and detailed treatment of a variety of sedimentological, petro- Leopold, 1966; Wolfe and Hopkins, 1967; and Wolfe, logical, paleontological, and tectonic subjects have been 1971). Deposition of turbidites ceased sometime in the presented. In this paper we synthesize these discussions and middle Oligocene, just prior to the accumulation of other available data in a general evaluation of the significant nannoplankton ooze. Again, the low speciation of the tectonic and sedimentological histories of the far north microflora in this ooze indicates a high-latitude depositional Pacific and the neighboring Bering Sea. This history extends environment. Pelagic clay, barren of age-diagnostic fossils, back to the Late Cretaceous for the Pacific basin, but only accumulated over the chalk until about 12 to 13 m.y. ago, to about the middle Miocene in the Bering Sea. in the middle Miocene, when diatom ooze becan to The stratigraphic columns of ten of the eleven Leg 19 accumulate. Although the introduction of volcanic ash drilling sites are shown on Figure 1. When arranged from began in the late Miocene and ice-rafted debris in the right to left, in the order of drilling, the columns construct Pliocene, accumulation of diatomaceous debris has con- a generalized east-to-west geologic cross section of the tinued into the Holocene at a rate averaging about 16 North Pacific and adjacent Bering Sea.
    [Show full text]
  • EA for Aleutians 2020
    Draft Environmental Assessment of a Marine Geophysical Survey by R/V Marcus G. Langseth of the Aleutian Arc, September–October 2020 Prepared for Lamont-Doherty Earth Observatory 61 Route 9W, P.O. Box 1000 Palisades, NY 10964-8000 and National Science Foundation Division of Ocean Sciences 4201 Wilson Blvd., Suite 725 Arlington, VA 22230 by LGL Ltd., environmental research associates 22 Fisher St., POB 280 King City, Ont. L7B 1A6 Submitted 27 March 2020 Revised 23 June 2020 LGL Report FA0202-01 Table of Contents TABLE OF CONTENTS List of Figures ............................................................................................................................................... v List of Tables ............................................................................................................................................... vi Abstract ....................................................................................................................................................... vii List of Acronyms ......................................................................................................................................... ix I Purpose and Need ...................................................................................................................................... 1 1.1 Mission of NSF ................................................................................................................................ 1 1.2 Purpose of and Need for the Proposed Action ................................................................................
    [Show full text]
  • 2006 Oil and Gas Assessment of North Aleutian Basin Planning Area
    North Aleutian Basin OCS Planning Area Assessment of Undiscovered Technically-Recoverable Oil and Gas As of 2006 U.S. Department of the Interior Minerals Management Service Alaska OCS Region Anchorage, Alaska Kirk W. Sherwood John Larson C. Drew Comer James D. Craig Cameron Reitmeier February 2006 This report is available online at http://www.mms.gov/alaska/re/reports/rereport.htm. A Compact Disk version of the report (in PDF format) may be obtained by contacting Rance Wall, Regional Supervisor for Resource Evaluation, Minerals Management Service, Centerpoint Financial Center, 3801 Centerpoint Drive, Suite 500, MS 8100, Anchorage, AK 99503-5823, or at Ph. 907-334-5320, or at e-mail [email protected] Table of Contents List of Text Topics Summary, page 1 Source Potential of Coal-Bearing Rocks, page 23 Location and General Geology of North Source Potential of “Amorphous” Aleutian Basin OCS Planning Area, Interval, 15,620-17,155 ft bkb, page 5 page 24 Source Potential of Tertiary Basin Exploration History of North Aleutian Fill and Assessment Model, page Basin, page 6 26 Past Exploration Onshore, page 6 Oil and Gas Occurrences and Leasing Onshore, page 6 Biomarker Correlations, page 26 Offshore/OCS Exploration, page 7 Petroleum System—Critical Events, Past OCS Leasing, page 7 page 31 Productive Analog Basin—Cook Inlet Petroleum System Elements and Oil and Basin, page 8 Gas Plays in North Aleutian Basin OCS Planning Area, page 37 Petroleum Geology of the North Aleutian Key Elements of Petroleum System, Basin, page 9 page 37 Regional Geology,
    [Show full text]
  • Seafloor Hazards and Related Surficial Geology
    SEAFLOOR HAZARDS AND RELATED SURFICIAL GEOLOGY, NAVARIN BASIN PROVINCE, NORTHERN BERING SEA by Herman A. Karl and Paul R. Carlson U.S. Geological Survey Final Report Outer Continental Shelf Environmental Assessment Program Research Unit 588 January 1983 387 TABLE OF CONTENTS List of Figures . 391 List of Tables . 397 OVERVIEW . 399 I. Summary of Objectives, Conclusions and Implications with Respect to OCS Oil and Gas Development . 399 II. Introduction . 399 A. General Nature and Scope of Study . 399 B. Specific Objectives . 400 c. Relevance to Problems of Petroleum Development . 400 III . Current State of Knowledge . 400 IV. Study Area . 401 v. Sources, Methods and Rationale of Data Collection . 401 vl.- VIII. Results, Discussion, and Conclusions . 410 (See Chapters 1-12 below) IX. Needs for Further Study . 410 References . 411 CHAPTER 1: REPORTS PERTAINING TO NAVARIN BASIN PROVINCE PUBLISHED AS OF JANUARY 1983 . 415 CHAPTER 2: GEOLOGIC HAZARDS H. A. Karl andP. R. Carlson . 417 CHAPTER 3: TEXTURAL VARIATION OF SURFICIAL BOTTOM SEDIMENT H. A. Karl andP. R. Carlson . 421 CHAPTER 4: RATES OF SEDIMENT ACCUMULATION P. R. Carlsonand H. A. Karl . 427 CHAPTER 5: PRE-QUATERNARY ROCKS AND SEMI-CONSOLIDATED SEDIMENT FROM THE NAVARIN CONTINENTAL MARGIN P. R. Carlson, J. G. Baldauf, and C. Larkin . 435 CHAPTER 6: ISOPACH MAP OF UNIT A, YOUNGEST SEDIMENTARY SEQUENCE IN NAVARIN BASIN P. R. Carlson, J. M. Fischer, H. A. Karl, and C. Larkin . 439 CHAPTER 7: SUMMARY OF GEOTECHNICAL CHARACTERISTICS B. D. Edwards and H. J. Lee . 445 389 CHAPTER 8: HYDROCARBON GASES IN SEDIMENTS -- RESULTS FROM 1981 FIELD SEASON M. Golan-Bat and K.
    [Show full text]
  • New Views of the U.S. Continental Margins
    New Views of the U.S. Continental Margins James V. Gardner, Larry A. Mayer and Andrew Armstrong Center for Coastal & Ocean Mapping/Joint Hydrographic Center University of New Hampshire, Durham, NH 03824 Introduction The Center for Coastal & Ocean Mapping/Joint Hydrographic Center, University of New Hampshire was directed by Congress through funding by the National Oceanic & Atmospheric Administration to conduct multibeam mapping of many US continental margins in areas where there is a potential for a claim under Article 76 of the United Nations Convention on the Law of the Sea. In 2003, two areas in the Bering Sea and one area in the Arctic Ocean were mapped. In 2004, about 75% of the US Atlantic margin and an area of the Alaskan Arctic margin were mapped. The US Atlantic margin and a large area of the Gulf of Alaska margin will be completed in 2005. The mapping objectives in all these areas are to locate the 2500-m isobath and map the zone of maximum change in gradient of the continental margin that is defined by Article 76 as the foot of the slope. In practice, we have, where possible, been mapping the entire area of the margin between the ~1000-m and ~4800-m isobaths. We use multibeam echosounders (MBES) to map the areas where a potential claim may exist. The MBES systems are capable of producing maps with at least 100-m spatial resolution and a vertical precision of <1% of the water depth. Navigation on all cruises has been inertial-aided DGPS navigation with position accuracies of < ±5 m.
    [Show full text]
  • Plate-Tectonic Reconstructions Predict Part of the Hawaiian Hotspot Track to Be Preserved in the Bering Sea
    Plate-tectonic reconstructions predict part of the Hawaiian hotspot track to be preserved in the Bering Sea Bernhard Steinberger* Center for Geodynamics, Geological Survey of Norway, Leiv Eirikssons vei 39, Carmen Gaina N-7491 Trondheim, Norway ABSTRACT (Baranov et al., 1991). An 40Ar/39Ar (plagioclase) We use plate reconstructions to show that parts of the Hawaiian hotspot track of ca. 80– age 27.8 ± 1.1 Ma was determined for an andesite 90 Ma age could be preserved in the Bering Sea. Based on these reconstructions, the Hawaiian (Cooper et al., 1987a). No oceanic-island basalts hotspot was beneath the Izanagi plate before ca. 83 Ma. Around that time, the part of the plate are known to have been recovered from these carrying the hotspot track was transferred to the Kula plate. After 75–80 Ma the Hawaiian ridges (D. Scholl, 2000, personal commun.). hotspot underlay the Pacifi c plate. Circa 40–55 Ma, subduction initiated in the Aleutian These fi ndings and interpretations do not exclude Trench. Part of the Kula plate was attached to the North American plate and is preserved as the possibility that the ridges were fabricated out the oceanic part of the Bering Sea. We show that for a number of different plate reconstruc- of pre-existing structures of a different nature. We tions and a variety of assumptions covering hotspot motion, part of the hotspot track should speculate that a hotspot track localized the later be preserved in the Bering Sea. The predicted age of the track depends on the age of Aleutian Bowers and Shirshov Ridges.
    [Show full text]
  • Terrane Accretion, Production, and Continental Growth: a Perspective Based on the Origin and Tectonic Fate of the Aleutian-Bering Sea Region
    Downloaded from geology.gsapubs.org on February 1, 2015 Terrane accretion, production, and continental growth: A perspective based on the origin and tectonic fate of the Aleutian-Bering Sea region David W. Scholl, Tracy L. Vallier, Andrew J. Stevenson U.S. Geological Survey, Menlo Park, California 94025 ABSTRACT Orogenesis in the Aleutian-Bering Sea region would create an expansive new area of Pacific-rim mountain belts. The region itself formed about 55 Ma as a consequence of the suturing of a single exotic fragment of oceanic crust—Aleutia—to the Pacific's Alaskan- Siberian margin. A massive overlap assemblage of the igneous crust of the Aleutian Arc and the thick sedimentary masses of the Aleutian Basin have since accumulated above the captured basement terrane of Aleutia. Future closure of the Aleutian-Bering Sea region, either northward toward the continent or southward toward the Aleutian Arc, would structurally mold new continental crust to the North American plate. The resulting "Beringian orogen" would be constructed of a collage of suspect terrenes. Although some terrenes would include exotic crustal rocks formed as far as 5000 km away, most terrenes would be kindred or cotsctonic blocks composed of the overlap assemblage and of relatively local (100-1000 km) derivation. The Aleutian-Bering Sea perspective bolsters the common supposition that, although disrupted and smeared by transcurrent faulting, examples of kindred assemblages should exist, and perhaps commonly, in ocean-rim mountain belts. INTRODUCTION In this paper we emphasize that the actualis- Aleutian subduction zone and arc (Fig. 2A). Suspect tectonostratigraphic terranes are the tic example of the Aleutian-Bering Sea region The older subduction zone at the base of the principal structural units of lengthy sectors of (Fig.
    [Show full text]