Micro-Magnetofluidics: Interactions Between Magnetism and Fluid Flow on the Microscale

Total Page:16

File Type:pdf, Size:1020Kb

Micro-Magnetofluidics: Interactions Between Magnetism and Fluid Flow on the Microscale Microfluid Nanofluid DOI 10.1007/s10404-011-0903-5 REVIEW PAPER Micro-magnetofluidics: interactions between magnetism and fluid flow on the microscale Nam-Trung Nguyen Received: 15 September 2011 / Accepted: 30 October 2011 Ó Springer-Verlag 2011 Abstract Micro-magnetofluidics refers to the science and Keywords Micro-magnetofluidics Á Magnetism Á technology that combines magnetism with microfluidics to Microfluidics Á Magnetic bead Á Ferro fluid gain new functionalities. Magnetism has been used for actuation, manipulation and detection in microfluidics. In turn, microfluidic phenomena can be used for making tun- 1 Introduction able magnetic devices. This paper presents a systematic review on the interactions between magnetism and fluid flow Magnetofluidics traditionally refers to a class of devices that on the microscale. The review rather focuses on physical and utilize a magnetic fluid for sensing and actuating functions. engineering aspects of micro-magnetofluidics, than on the These devices were used as sensor for applications such as biological applications which have been addressed in a hearing aid and accelerometer. However, the term of number of previous excellent reviews. The field of micro- ‘‘magnetofluidics’’ is used here for the broader research field magnetofluidics can be categorized according to the type of involving magnetism and fluid flows. Figure 1 shows the the working fluids and the associated microscale phenomena basic relationships between the four principal fields of of established research fields such as magnetohydrodynam- physics with the most applications: fluidics, electrics, optics, ics, ferrohydrodynamics, magnetorheology and magneto- and magnetism. The links between these fields cover most phoresis. Furthermore, similar to microfluidics the field can modern technologies, especially micro/nanotechnologies. also be categorized as continuous and digital micro-mag- However, efforts on the exploration of magnetofluidics in netofluidics. Starting with the analysis of possible magnetic microscale and its applications have been scattered. Many forces in microscale and the impact of miniaturization on possibly interesting phenomena have been neglected due to these forces, the paper revisits the use of magnetism for the lack of a systematic approach. Compared to an electric controlling fluidic functions such as pumping, mixing, field, a magnetic field has various advantages in microfluidic magnetowetting as well as magnetic manipulation of parti- applications. Magnetic manipulation can utilize external cles. Based on the observations made with the state of the art magnets that are not in direct contact with the fluid. Non- of the field micro-magnetofluidics, the paper presents some magnetic molecules and cells can be attached to magnetic perspectives on the possible future development of this field. beads, so that they can be sorted and detected by an external While the use of magnetism in microfluidics is relatively magnetic field. In contrast to electric concepts, magnetic established, possible new phenomena and applications can manipulation and detection are not affected by other be explored by utilizing flow of magnetic and electrically parameters such as surface charges, pH and ion concentra- conducting fluids. tion. In most cases, magnetic manipulation does not induce heating and does not require expensive external systems as compared to optical concepts. N.-T. Nguyen (&) A number of excellent reviews on applications of School of Mechanical and Aerospace Engineering, magnetism in microfluidics exist in the literature. However, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore the scopes of these reviews are limited to phenomena with e-mail: [email protected] existing biological applications. Gijs (2004) reviewed the 123 Microfluid Nanofluid aspects of micro-magnetofluidics, than on the biological Electrokinetics applications which have been addressed in the above- Fluidics Electrowetting mentioned excellent reviews. The field of micro-mag- s netofluidics can be categorized according to the type of the c i d i working fluids, and the microscale phenomena of estab- u Magnetofluidics l o t p lished research fields such as magnetohydrodynamics O Magnetism Electrics (MHD), ferrohydrodynamics (FHD), magnetorheology Electromagnetism (MR) and magnetophoresis (MP). Furthermore, the field Magneto optics can also be categorized as continuous and digital micro- magnetofluidics as in traditional microfluidics. Figure 2 shows an overview of micro-magnetofluidics and its sub- Optics Optoelectronics fields. In general, the field can be categorized according to Photonics the properties of the fluids or to the ways the fluids are Fig. 1 The basic domains of physics and their interfaces handled. The majority of magnetofluidic phenomena are based on electrically conducting fluids and magnetic fluids. The mutual interaction of magnetic field and the flow of use of magnetic beads for analytical applications. Later, Gijs electrically conducting fluids is covered by MHD, which is et al. (2010) followed up with a more comprehensive and well established and studied in the past hundred years updated review on applications of magnetic particles for (Davidson 2011). The fluids need to be electrically con- biological analysis and catalysis. Pamme (2006) extended ducting and non-magnetic, thus are limited to liquid metals, the scope in her review and covered a wider range of appli- plasmas and strong electrolytes. The traditional applica- cations of magnetism in microfluidics: pumping, mixing, tions of MHD are geophysics, astrophysics, plasmaphysic manipulation of partiles and magnetic detection. Pamme’s and metallurgy. review was the first attempt to look at the field from a broader Magnetic fluid consists of a carrier fluid and a suspen- perspective and to consider both ways of the interactions sion of magnetic particles. Depending on the size of the between magnetism and microfluidics. Since Pamme’s magnetic particles,the magnetic fluid behaves differently review was only based on reported works, many potentially leading to three main areas of FHD, MR and MP. If the interesting phenomena were neglected. Weston et al. (2010) magnetic particles are smaller than about 10 nm, the discussed the use of different types of magnetic forces for thermal energy dominates over the magnetic energy fluid motion. Weston’s review was based on the discussion of induced by an external magnetic field. Thus, the particles possible magnetic forces followed by their applications. can disperse well in the carrier fluid. The whole fluid Fisher and Ghosh reviewed the use of magnetism for pro- behaves as a paramagnetic liquid and is called ferrofluid. If pulsion of swimming particles (Fischer 2011). This minire- the magnetic particles is large enough, ranging from 10 nm view offers a new perspective on ‘‘smart’’magnetic particles. to 10 lm, they interact and react to the external magnetic Magnetic micro- and nano-structures with unique shapes field changing the viscosity of the fluid. The fluid is then other than the conventional sphere can be controlled with an called magnetorheological fluid. For magnetic particles on external magnetic field. Weddemann et al. (2010) reviewed the order of several microns or larger, the magnetic parti- the implementation of magnetic components in total analysis cles need to be considered individually as discrete entities, systems for biomedical applications. The scope of this leading to the field of magnetophoresis. review was limited to the detection and manipulation of According to the properties of the fluid flow, the research magnetic beads. Similarly, the review of Suwa and Watarai field can be categorized as continuous-flow and digital only focuses on the manipulation and detection of micro- MMF. In continuous-flow MMF, fluids are supplied or particles (Suwa 2011). Ganguly and Puri reviewed micro- manipulated in a continuous manner, where the fluids exist in fluidic transport of ferrofluid and magnetic particles in a single phase as in the case of MHD pumps and MHD mixers MEMS, Bio-MEMS devices (Ganguly 2010). Friedman and or in multiple phases such as emulsion. In digital MMF, Yellen discussed the physical fundamentals of magnetic fluids are manipulated as individual droplets or marbles, separation, manipulation and assembly using relatively which are droplets with a protective coating of hydrophobic simple but useful scaling analysis of the magnetic force and particles. Magnetic particles inside a droplet allow its con- its counter parts (Friedman 2005). trol and manipulation using a magnetic field. In this paper, micro-magnetofluidics (MMF) is under- Following fundamentals of magnetic forces in micro- stood as the science and technology that combines mag- scale, dimensionless numbers and their scaling laws are netism with microfluidics to gain new functionalities. The first discussed. Important phenomena are subsequently present review rather focuses on physical and engineering discussed according to the type of the fluid. 123 Microfluid Nanofluid - droplet-based - MHD micropumps - instabilities - ferrofluid droplets - MHD micromixers - MR fluid plug - magneto wetting - charged droplets Single-phase Multi-phase - droplets with magnetic beads - magnetic marbles Continous-flow micro magnetofluidics Digital micro magnetofluidics Micro magnetofluidics Electrically conducting fluids Magnetic fluids Magnetohydrodynamics Small magnetic particles Medium magnetic particles Large magnetic particles (MHD) d<10 nm 10 nm<d<1 m d>1 m DC-MHD AC-MHD RedOx-MHD Ferrohydrodynamics Magnetorheology
Recommended publications
  • (2020) Role of All Jet Drops in Mass Transfer from Bursting Bubbles
    PHYSICAL REVIEW FLUIDS 5, 033605 (2020) Role of all jet drops in mass transfer from bursting bubbles Alexis Berny,1,2 Luc Deike ,2,3 Thomas Séon,1 and Stéphane Popinet 1 1Sorbonne Université, CNRS, UMR 7190, Institut Jean le Rond ࢚’Alembert, F-75005 Paris, France 2Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, USA 3Princeton Environmental Institute, Princeton University, Princeton, New Jersey 08544, USA (Received 12 September 2019; accepted 13 February 2020; published 10 March 2020) When a bubble bursts at the surface of a liquid, it creates a jet that may break up and produce jet droplets. This phenomenon has motivated numerous studies due to its multiple applications, from bubbles in a glass of champagne to ocean/atmosphere interactions. We simulate the bursting of a single bubble by direct numerical simulations of the axisymmetric two-phase liquid-gas Navier-Stokes equations. We describe the number, size, and velocity of all the ejected droplets, for a wide range of control parameters, defined as nondimensional numbers, the Laplace number which compares capillary and viscous forces and the Bond number which compares gravity and capillarity. The total vertical momentum of the ejected droplets is shown to follow a simple scaling relationship with a primary dependency on the Laplace number. Through a simple evaporation model, coupled with the dynamics obtained numerically, it is shown that all the jet droplets (up to 14) produced by the bursting event must be taken into account as they all contribute to the total amount of evaporated water. A simple scaling relationship is obtained for the total amount of evaporated water as a function of the bubble size and fluid properties.
    [Show full text]
  • Magnetic Fields Magnetism Magnetic Field
    PHY2061 Enriched Physics 2 Lecture Notes Magnetic Fields Magnetic Fields Disclaimer: These lecture notes are not meant to replace the course textbook. The content may be incomplete. Some topics may be unclear. These notes are only meant to be a study aid and a supplement to your own notes. Please report any inaccuracies to the professor. Magnetism Is ubiquitous in every-day life! • Refrigerator magnets (who could live without them?) • Coils that deflect the electron beam in a CRT television or monitor • Cassette tape storage (audio or digital) • Computer disk drive storage • Electromagnet for Magnetic Resonant Imaging (MRI) Magnetic Field Magnets contain two poles: “north” and “south”. The force between like-poles repels (north-north, south-south), while opposite poles attract (north-south). This is reminiscent of the electric force between two charged objects (which can have positive or negative charge). Recall that the electric field was invoked to explain the “action at a distance” effect of the electric force, and was defined by: F E = qel where qel is electric charge of a positive test charge and F is the force acting on it. We might be tempted to define the same for the magnetic field, and write: F B = qmag where qmag is the “magnetic charge” of a positive test charge and F is the force acting on it. However, such a single magnetic charge, a “magnetic monopole,” has never been observed experimentally! You cannot break a bar magnet in half to get just a north pole or a south pole. As far as we know, no such single magnetic charges exist in the universe, D.
    [Show full text]
  • A Novel Momentum-Conserving, Mass-Momentum Consistent Method for Interfacial flows Involving Large Density Contrasts Sagar Pal, Daniel Fuster, St´Ephanezaleski
    Highlights A novel momentum-conserving, mass-momentum consistent method for interfacial flows involving large density contrasts Sagar Pal, Daniel Fuster, St´ephaneZaleski • Conservative formulation of Navier Stokes with interfaces using the Volume- of-Fluid method. • Geometrical interface and flux reconstructions on a twice finer grid en- abling discrete consistency between mass and momentum on staggered uniform Cartesian grids. • Conservative direction-split time integration of geometric fluxes in 3D, enabling discrete conservation of mass and momentum. • Quantitative comparisons with standard benchmarks for flow configura- tions involving large density contrasts. • High degree of robustness and stability for complex turbulent interfacial flows, demonstrated using the case of a falling raindrop. arXiv:2101.04142v1 [physics.comp-ph] 11 Jan 2021 A novel momentum-conserving, mass-momentum consistent method for interfacial flows involving large density contrasts Sagar Pala,∗, Daniel Fustera, St´ephaneZaleskia aInstitut Jean le Rond @'Alembert, Sorbonne Universit´eand CNRS, Paris, France Abstract We propose a novel method for the direct numerical simulation of interfacial flows involving large density contrasts, using a Volume-of-Fluid method. We employ the conservative formulation of the incompressible Navier-Stokes equa- tions for immiscible fluids in order to ensure consistency between the discrete transport of mass and momentum in both fluids. This strategy is implemented on a uniform 3D Cartesian grid with a staggered configuration of primitive vari- ables, wherein a geometrical reconstruction based mass advection is carried out on a grid twice as fine as that for the momentum. The implementation is in the spirit of Rudman (1998) [41], coupled with the extension of the direction-split time integration scheme of Weymouth & Yue (2010) [46] to that of conservative momentum transport.
    [Show full text]
  • Steel Production Through Electrolysis: Impacts for Electricity Consumption 0, 0, 75
    Font Family: Benton Sans 131, 176, 70 Steel production through electrolysis: impacts for electricity consumption 0, 0, 75 204, 102, 51 Adam Rauwerdink 144, 144, 144 VP, Business Development October 18, 2019 Font Family: A 3,000 year old formula Benton Sans Iron Ore Carbon (Coal) Iron Carbon Dioxide 131, 176, 70 Fe2O3 C Fe CO2 0, 0, 75 204, 102, 51 >2 144, 144, 144 Gt CO2 per year (8% of global emissions) Iron Age 1000 BC Digital Age 2019 2 Boston Metal | 2019 Font Family: Steel in 2018 Benton Sans 131, 176, 70 Aluminium is #2 at 1,800 64 million tonnes 0, 0, 75 million tonnes 204, 102, 51 70% 30% 144, 144, 144 Integrated Steel Mill Mini Mill (Iron ore new steel units) (Scrap recycled steel units) Source: World Steel Association 3 Boston Metal | 2019 Font Family: Integrated steel mill: material flow Benton Sans 131, 176, 70 0, 0, 75 204, 102, 51 144, 144, 144 4 Boston Metal | 2019 Font Family: Molten oxide electrolysis (MOE) is emissions free Benton Sans Molten Oxide Electrolysis (MOE) 131, 176, 70 Iron Ore Electricity Iron Oxygen 0, 0, 75 - Fe2O3 e Fe O2 204, 102, 51 144, 144, 144 No carbon in the process = No CO2 emitted Electricity decarbonization eliminates/reduces indirect emissions! 5 Boston Metal | 2019 Font Family: Changing the formula from coal to electricity Benton Sans Iron Ore Carbon (Coal) Iron Carbon Dioxide 131, 176, 70 Fe2O3 C Fe CO2 0, 0, 75 204, 102, 51 Molten Oxide Electrolysis (MOE) 144, 144, 144 Iron Ore Electricity Iron Oxygen - Fe2O3 e Fe O2 6 Boston Metal | 2019 Font Family: MOE is more energy efficient Benton
    [Show full text]
  • Mass Transfer with the Marangoni Effect 87 7.1 Objectives
    TECHNISCHE UNIVERSITÄT MÜNCHEN Professur für Hydromechanik Numerical investigation of mass transfer at non-miscible interfaces including Marangoni force Tianshi Sun Vollständiger Abdruck der an der Ingenieurfakultät Bau Geo Umwelt der Technischen Universität Munchen zur Erlangung des akademischen Grades eines Doktor-Ingenieurs genehmigten Dissertation. Vorsitzender: Prof. Dr.-Ing. habil. F. Düddeck Prüfer der Dissertation: 1. Prof. Dr.-Ing. M. Manhart 2. Prof. Dr. J.G.M. Kuerten Die Dissertation wurde am 31. 08. 2018 bei der Technischen Universitat München eingereicht und durch die Ingenieurfakultat Bau Geo Umwelt am 11. 12. 2018 angenommen. Zusammenfassung Diese Studie untersucht den mehrphasigen Stofftransport einer nicht-wässrigen flüssigkeit ("Non-aqueous phase liquid", NAPL) im Porenmaßstab, einschließlich der Auswirkungen von Oberflachenspannungs und Marangoni-Kraften. Fur die Mehrphasensträmung wurde die Methode "Conservative Level Set" (CLS) implementiert, um die Grenzflache zu verfol­ gen, wahrend die Oberflachenspannungskraft mit der Methode "Sharp Surface Tension Force" (SSF) simuliert wird. Zur Messung des Kontaktwinkels zwischen der Oberflache der Flus- sigkeit und der Kontur der Kontaktflaäche wird ein auf der CLS-Methode basierendes Kon­ taktlinienmodell verwendet; das "Continuum Surface Force" (CSF)-Modell wird zur Model­ lierung des durch einen Konzentrationsgradienten induzierten Marangoni-Effekts verwendet; ein neues Stofftransfermodell, das einen Quellterm in der Konvektions-Diffusionsgleichungen verwendet, wird zur
    [Show full text]
  • Chapter 7 Magnetism and Electromagnetism
    Chapter 7 Magnetism and Electromagnetism Objectives • Explain the principles of the magnetic field • Explain the principles of electromagnetism • Describe the principle of operation for several types of electromagnetic devices • Explain magnetic hysteresis • Discuss the principle of electromagnetic induction • Describe some applications of electromagnetic induction 1 The Magnetic Field • A permanent magnet has a magnetic field surrounding it • A magnetic field is envisioned to consist of lines of force that radiate from the north pole to the south pole and back to the north pole through the magnetic material Attraction and Repulsion • Unlike magnetic poles have an attractive force between them • Two like poles repel each other 2 Altering a Magnetic Field • When nonmagnetic materials such as paper, glass, wood or plastic are placed in a magnetic field, the lines of force are unaltered • When a magnetic material such as iron is placed in a magnetic field, the lines of force tend to be altered to pass through the magnetic material Magnetic Flux • The force lines going from the north pole to the south pole of a magnet are called magnetic flux (φ); units: weber (Wb) •The magnetic flux density (B) is the amount of flux per unit area perpendicular to the magnetic field; units: tesla (T) 3 Magnetizing Materials • Ferromagnetic materials such as iron, nickel and cobalt have randomly oriented magnetic domains, which become aligned when placed in a magnetic field, thus they effectively become magnets Electromagnetism • Electromagnetism is the production
    [Show full text]
  • Chapter 22 Magnetism
    Chapter 22 Magnetism 22.1 The Magnetic Field 22.2 The Magnetic Force on Moving Charges 22.3 The Motion of Charged particles in a Magnetic Field 22.4 The Magnetic Force Exerted on a Current- Carrying Wire 22.5 Loops of Current and Magnetic Torque 22.6 Electric Current, Magnetic Fields, and Ampere’s Law Magnetism – Is this a new force? Bar magnets (compass needle) align themselves in a north-south direction. Poles: Unlike poles attract, like poles repel Magnet has NO effect on an electroscope and is not influenced by gravity Magnets attract only some objects (iron, nickel etc) No magnets ever repel non magnets Magnets have no effect on things like copper or brass Cut a bar magnet-you get two smaller magnets (no magnetic monopoles) Earth is like a huge bar magnet Figure 22–1 The force between two bar magnets (a) Opposite poles attract each other. (b) The force between like poles is repulsive. Figure 22–2 Magnets always have two poles When a bar magnet is broken in half two new poles appear. Each half has both a north pole and a south pole, just like any other bar magnet. Figure 22–4 Magnetic field lines for a bar magnet The field lines are closely spaced near the poles, where the magnetic field B is most intense. In addition, the lines form closed loops that leave at the north pole of the magnet and enter at the south pole. Magnetic Field Lines If a compass is placed in a magnetic field the needle lines up with the field.
    [Show full text]
  • An All-Mach Method for the Simulation of Bubble Dynamics Problems in the Presence of Surface Tension Daniel Fuster, Stéphane Popinet
    An all-Mach method for the simulation of bubble dynamics problems in the presence of surface tension Daniel Fuster, Stéphane Popinet To cite this version: Daniel Fuster, Stéphane Popinet. An all-Mach method for the simulation of bubble dynamics problems in the presence of surface tension. Journal of Computational Physics, Elsevier, 2018, 374, pp.752-768. 10.1016/j.jcp.2018.07.055. hal-01845218 HAL Id: hal-01845218 https://hal.sorbonne-universite.fr/hal-01845218 Submitted on 20 Jul 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. An all-Mach method for the simulation of bubble dynamics problems in the presence of surface tension Daniel Fuster, St´ephanePopinet Sorbonne Universit´e,Centre National de la Recherche Scientifique, UMR 7190, Institut Jean Le Rond D'Alembert, F-75005 Paris, France Abstract This paper presents a generalization of an all-Mach formulation for multi- phase flows accounting for surface tension and viscous forces. The proposed numerical method is based on the consistent advection of conservative quan- tities and the advection of the color function used in the Volume of Fluid method avoiding any numerical diffusion of mass, momentum and energy across the interface during the advection step.
    [Show full text]
  • Further Remarks and Comparison with Other Dimensionless Numbers
    Do we need the Navier number? – further remarks and comparison with other dimensionless numbers Paweł ZIÓŁKOWSKI∗, Janusz BADUR, Piotr Józef ZIÓŁKOWSKIy Keywords: dimensionless slip-length; external viscosity; internal viscosity; characteristic length; laminar to turbulent transition Abstract: This paper presents the role of the Navier num- ber (Na-dimensionless slip-length) in universal modeling of flow reported in micro- and nano-channels like: capillary biological flows, fuel cell systems, micro-electro-mechanical systems and nano-electro-mechanical systems. Similar to other bulk-like and surface-like dimensionless numbers, the Na number should be treated as a ratio of internal viscous to external viscous momen- tum transport and, therefore, this notion cannot be extended onto whole friction resistance phenomena. Several examples of dimensionless numbers for liquids and rarified gasses flowing in solid channels are presented. Additionally, this article explains the role of the Navier number in predicting closures for laminar to turbulent transition undergoing via eddies detachment from the slip layer in nano-channels. 1. Introduction In capillary biological flows, fuel cell systems (for example SOFC), micro-electro- mechanical systems (MEMS), and nano-electro-mechanical systems (NEMS) it is as- sumed that the external friction between solid and liquid surfaces cannot be further neglected (Beskok and Karniadakis, 1999; Ziółkowski and Zakrzewski, 2013). It in- volves the velocity slip, which is now important not only in the surface momentum transfer, but also in the surface mass, heat transfer, and reactive processes coupled with interfacial transport (Barber and Emerson, 2006). Transport phenomena under- going within a thin shell-like domain require much more complex, surface-like mech- anism of interchanging mass, momentum, and entropy.
    [Show full text]
  • Electrochemistry of Fuel Cell - Kouichi Takizawa
    ENERGY CARRIERS AND CONVERSION SYSTEMS – Vol. II - Electrochemistry of Fuel Cell - Kouichi Takizawa ELECTROCHEMISTRY OF FUEL CELL Kouichi Takizawa Tokyo Electric Power Company, Tokyo, Japan Keywords : electrochemistry, fuel cell, electrochemical reaction, chemical energy, anode, cathode, electrolyte, Nernst equation, hydrogen-oxygen fuel cell, electromotive force Contents 1. Introduction 2. Principle of Electricity Generation by Fuel Cells 3. Electricity Generation Characteristics of Fuel Cells 4. Fuel Cell Efficiency Glossary Bibliography Biographical Sketch Summary Fuel cells are devices that utilize electrochemical reactions to generate electric power. They are believed to give a significant impact on the future energy system. In particular, when hydrogen can be generated from renewable energy resources, it is certain that the fuel cell should play a significant role. Even today, some types of fuel cells have been already used in practical applications such as combined heat and power generation applications and space vehicle applications. Though research and development activities are still required, the fuel cell technology is one of the most important technologies that allow us to draw the environment friendly society in the twenty-first century. This section describes the general introduction of fuel cell technology with a brief overview of the principle of fuel cells and their historical background. 1. Introduction A fuel cellUNESCO is a system of electric power – generation,EOLSS which utilizes electrochemical reactions. It can produce electric power by inducing both a reaction to oxidize hydrogen obtained by reforming natural gas or other fuels, and a reaction to reduce oxygen in the air, each occurringSAMPLE at separate electrodes conne CHAPTERScted to an external circuit.
    [Show full text]
  • Teaching H. C. Ørsted's Scientific Work in Danish High School Physics
    UNIVERSITY OF COPENHAGEN FACULTY OF SCIENCE Ida Marie Monberg Hindsholm Teaching H. C. Ørsted's Scientific Work in Danish High School Physics Masterʹs thesis Department of Science Education 19 July 2018 Master's thesis Teaching H. C. Ørsted’s Scientific Work in Danish High School Physics Submitted 19 July 2018 Author Ida Marie Monberg Hindsholm, B.Sc. E-mail [email protected] Departments Niels Bohr Institute, University of Copenhagen Department of Science Education, University of Copenhagen Main supervisor Ricardo Avelar Sotomaior Karam, Associate Professor, Department of Science Education, University of Copenhagen Co-supervisor Steen Harle Hansen, Associate Professor, Niels Bohr Institute, University of Copenhagen 1 Contents 1 Introduction . 1 2 The Material: H. C. Ørsted's Work . 3 2.1 The Life of Hans Christian Ørsted . 3 2.2 Ørsted’s Metaphysical Framework: The Dynamical Sys- tem............................. 6 2.3 Ritter and the failure in Paris . 9 2.4 Ørsted’s work with acoustic and electric figures . 12 2.5 The discovery of electromagnetism . 16 2.6 What I Use for the Teaching Sequence . 19 3 Didactic Theory . 20 3.1 Constructivist teaching . 20 3.2 Inquiry Teaching . 22 3.3 HIPST . 24 4 The Purpose and Design of the Teaching Sequence . 27 4.1 Factual details and lesson plan . 28 5 Analysis of Transcripts and Writings . 40 5.1 Method of Analysis . 40 5.2 Practical Problems . 41 5.3 Reading Original Ørsted's Texts . 42 5.4 Inquiry and Experiments . 43 5.5 "Role play" - Thinking like Ørsted . 48 5.6 The Reflection Corner . 51 5.7 Evaluation: The Learning Objectives .
    [Show full text]
  • Revision Pack Topic 7- Magnetism & Electromagnetism
    Revision Pack Topic 7- Magnetism & Electromagnetism Permanent and induced magnetism, magnetic forces and fields R/A/G Poles of a magnet The poles of a magnet are the places where the magnetic forces are strongest. When two magnets are brought close together they exert a force on each other. Two like poles repel each other. Two unlike poles attract each other. Attraction and repulsion between two magnetic poles are examples of non-contact force. A permanent magnet produces its own magnetic field. An induced magnet is a material that becomes a magnet when it is placed in a magnetic field. Induced magnetism always causes a force of attraction. When removed from the magnetic field an induced magnet loses most/all of its magnetism quickly. Magnetic fields The region around a magnet where a force acts on another magnet or on a magnetic material (iron, steel, cobalt and nickel) is called the magnetic field. The force between a magnet and a magnetic material is always one of attraction. The strength of the magnetic field depends on the distance from the magnet. The field is strongest at the poles of the magnet. The direction of the magnetic field at any point is given by the direction of the force that would act on another north pole placed at that point. The direction of a magnetic field line is from the north (seeking) pole of a magnet to the south (seeking) pole of the magnet. A magnetic compass contains a small bar magnet. The Earth has a magnetic field. The compass needle points in the direction of the Earth’s magnetic field.
    [Show full text]