Characterisation and Structural Studies of a Superoxide Dismutase and Ompa-Like Proteins from Borrelia Burgdorferi Sensu Lato

Total Page:16

File Type:pdf, Size:1020Kb

Characterisation and Structural Studies of a Superoxide Dismutase and Ompa-Like Proteins from Borrelia Burgdorferi Sensu Lato University of Huddersfield Repository Brown, Gemma Characterisation and structural studies of a superoxide dismutase and OmpA-like proteins from Borrelia burgdorferi sensu lato Original Citation Brown, Gemma (2016) Characterisation and structural studies of a superoxide dismutase and OmpA-like proteins from Borrelia burgdorferi sensu lato. Doctoral thesis, University of Huddersfield. This version is available at http://eprints.hud.ac.uk/id/eprint/31870/ The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided: • The authors, title and full bibliographic details is credited in any copy; • A hyperlink and/or URL is included for the original metadata page; and • The content is not changed in any way. For more information, including our policy and submission procedure, please contact the Repository Team at: [email protected]. http://eprints.hud.ac.uk/ Characterisation and structural studies of a superoxide dismutase and OmpA-like proteins from Borrelia burgdorferi sensu lato Gemma Brown BSc A thesis submitted to the University of Huddersfield in partial fulfilment of the requirements for the degree of Doctor of Philosophy July 2016 Page | 1 Copyright declaration i. The author of this thesis (including any appendices and/or schedules to this thesis) owns any copyright in it (the “Copyright”) and he has given The University of Huddersfield the right to use such Copyright for any administrative, promotional, educational and/or teaching purposes. ii. Copies of this thesis, either in full or in extracts, may be made only in accordance with the regulations of the University Library. Details of these regulations may be obtained from the Librarian. This page must form part of any such copies made. iii. The ownership of any patents, designs, trademarks and any and all other intellectual property rights except for the Copyright (the “Intellectual Property Rights”) and any reproductions of copyright works, for example graphs and tables (“Reproductions”), which may be described in this thesis, may not be owned by the author and may be owned by third parties. Such Intellectual Property Rights and Reproductions cannot and must not be made available for use without the prior written permission of the owner(s) of the relevant Intellectual Property Rights and/or Reproductions. Page | 2 For my family Page | 3 “Wine is the most healthful and most hygienic of beverages.” Louis Pasteur, 1822 – 1895. Page | 4 Abstract Lyme borreliosis is the most common tick-borne, human infection across the Northern hemisphere. The agent responsible, Borrelia burgdorferi sensu lato (s.l.) covers a family of Spirochaetes with unique characteristics which are shared by both Gram-negative and Gram- positive bacteria. The outer membrane (OM) is rich in lipoproteins but contains a relatively low density of integral membrane proteins (OMPs), of these OMPs very few have been identified and even fewer are well characterised. The OmpA-like transmembrane domain defined by the Pfam family PF01389 is a 8-stranded membrane spanning β-barrel and is well conserved among Gram-negative bacteria but to date remains unknown in Spirochaetes. Building from previous computational work which had sought to identify possible OMPs from B. burgdorferi s.l. four OmpA-like proteins, BAPKO_0422 (Borrelia afzelii), BB_0562, BB_0406 (B. burgdorferi) and BG0408 (Borrelia garinii) have been identified and structurally characterised. The four proteins are encoded by chromosomal genes and highly conserved between Borrelia species and may be of diagnostic or therapeutic value. Structural characterisation by both circular dichroism and small angle X-ray scattering suggests these four proteins adopt a compact globular structure rich in β-strand (~40%) with Ab initio molecular envelopes resembling a cylindrical peanut shape with dimensions of ~25x45 Å consistent with an 8-stranded β-barrel. The present work demonstrates that BAPKO_0422 can bind human factor H (hfH) and some evidence for a further interaction between the BAPKO_0422 protein and heparin. The interaction with hfH may contribute to the spirochaete’s immune evasion mechanisms by the inhibition of the complement response. The zoonotic life-cycle of Borrelia and challenges by the host’s immune system causes an ever changing environment which often leads to fluctuations of O2 exposure. Although B. burgdorferi s.l. have a distinct lack of metabolic systems including peroxidases and catalase enzymes the Spirochaetes genome does encode a single superoxide dismutase gene (sodA - bb_0157). Previously assigned as a Fe-SOD there has been some debate whether this protein requires iron or manganese as a co-factor. The present work demonstrates that the B. burgdorferi enzyme SodA requires manganese for activity and does not display cambialistic behaviour. Structural and proteomic characterisation suggests the B. burgdorferi SodA enzyme shares significant sequence similarity to a superoxide dismutase from Thermus thermophilus. Page | 5 Table of Contents Copyright declaration 2 Abstract 5 Table of contents 6 List of figures 13 List of tables 18 List of equations 20 Abbreviations 21 Acknowledgements 23 Chapter 1. Introduction 24 1.1. Lyme disease 24 1.1.1. A brief history of Lyme disease 24 1.1.2. Symptoms 25 1.1.3. Diagnosis 31 1.1.4. Treatment and vaccination 33 1.1.5. Post-Lyme disease syndrome (PLDS) 34 1.1.6. Incidence 35 1.1.7. Risk of infection 37 1.2. Ticks 39 1.2.1. Ecology, reservoirs and the tick lifecycle 39 1.2.2. Tick morphology 43 1.2.3. Feeding of ticks and the transmission of Borrelia 43 1.3. Borrelia 45 1.3.1. Spirochaetes and Borrelia 45 1.3.2. The genus Borrelia 45 1.3.3. Relapsing fever Borreliae 46 1.3.4. Genomic complexity 49 1.3.5. Morphology and ultrastructure 51 1.3.6. Alternative morphological states 52 1.4. The Borrelia outer membrane 54 1.4.1. Introduction to the outer membrane and its diagnostic and therapeutic importance 54 1.4.2. Lipoproteins and Borrelia 58 1.4.3. Bacterial integral membrane proteins 59 1.4.3.1. Introduction to beta-barrel proteins 59 Page | 6 1.4.3.2. E. coli – OmpA 63 1.4.3.3. E. coli – OmpX 64 1.4.3.4. E. coli – OmpW 65 1.4.3.5. OmpA-like proteins 66 1.4.3.5.1. Yersinia pestis – Ail 68 1.4.3.5.2. Neisseria – NspA 70 1.4.3.6. OmpA-like proteins and the blood brain barrier 71 1.4.4. Known Borrelia OMPs 75 1.5 Protein expression throughout the enzootic lifecycle 77 1.5.1. Major surface proteins of Borrelia expressed within the tick 77 vector 1.5.2. Borrelia proteins implicated in the early stage of host 80 infection 1.5.3. Borrelia proteins responsible for dissemination and 80 extracellular matrix adhesion 1.5.4 Translocation of Borrelia across the vascular endothelium 83 involvement of the blood brain barrier 1.6. Immune evasion strategies 85 1.6.1 Tick salivary proteins 86 1.6.2 Hijacking plasminogen activation 86 1.6.3 Evading the complement system 88 1.6.4 Surface antigenic variation 93 1.6.5 Oxidative stress and Borrelia superoxide dismutase 96 1.7 Research Aims 99 1.7.1 Borrelia OmpA-like proteins 99 1.7.2 Superoxide dismutase A 102 Chapter 2: Materials and Methods 104 2.1 Materials 104 2.1.1 DNA and Oligonucleotides 104 2.1.2 Reagents, buffers and enzymes 109 2.1.3 Detergents 112 2.1.4 Expression and maintenance E .coli strains 114 2.2 Methods 115 2.2.1 Sequence analysis and BLAST searching 115 2.2.2 Molecular biology 115 Page | 7 2.2.2.1 PCR amplification of gene targets and addition of 115 restriction sites 2.2.2.2 Agarose gels 116 2.2.2.3 DNA quantification 117 2.2.2.4 Restriction digest and ligation of targets and vector 117 2.2.2.5 Competency and transformation 118 2.2.2.6 Restriction analysis and extraction for storage 119 2.2.3 Protein overexpression 119 2.2.3.1 Recombinant protein expression by IPTG 119 2.2.3.2 Recombinant protein expression by auto-induction 120 2.2.3.3 SDS-PAGE and Western blot analysis 120 2.2.3.4 Casting of gels and running conditions 122 2.2.3.5 Western blot analysis 122 2.2.4 Protein extraction and preparation of OMP-A like proteins 124 2.2.4.1 Cell harvesting and lysis 124 2.2.4.2 Inclusion body preparation and solubilisation 124 2.2.5 Protein purification and refolding of OMP-A like proteins 124 2.2.5.1 Immobilised Metal Affinity Chromatography 124 (IMAC) 2.2.5.2 Ion Exchange Chromatography 125 2.2.5.3 Bench top refolding 125 2.2.5.4 On-column refolding 125 2.2.5.5 Removal of the poly-histidine-tag 126 2.2.5.6 Concentration and dialysis of protein samples 126 2.2.5.7 UV absorbance spectrum of refolded protein and 126 quantification 2.2.5.8 Size Exclusion Chromatography (SEC) 127 2.2.6 Characterisation of OMP-A like proteins 129 2.2.6.1 Gel shift assays for Borrelia OMPs 129 2.2.6.2 Phase partitioning of Borrelia OMPs 129 2.2.6.3 Affinity ligand binding assays for Borrelia OMPs 130 2.2.6.4 Immobilised heparin binding assays for Borrelia 131 BAPKO_0422 2.2.7 Protein overexpression and preparation of superoxide 131 dismutase A Page | 8 2.2.7.1 Bacterial Strains, Plasmids, Growth Conditions 131 and Protein Expression 2.2.7.2 Production of apo-protein 132 2.2.7.4 On-column refolding and purification 132 2.2.7.5 Assaying SOD activity 133 2.2.8 Structural Experiments of OMP-A like proteins and SodA 135 2.2.8.1 Circular Dichroism - Sample preparation, data 135 collection and analysis 2.2.8.2 Small Angle X-ray Scattering 136 2.2.8.2.1 Sample preparation and data collection 136 2.2.8.2.2 Data analysis 136 2.2.9 Crystallography of SOD and OMP targets 138 2.2.9.1 Vapour diffusion crystallography 138 2.2.9.2 In meso phase crystallography 139 2.2.10 In silico characterisation and homology modelling 142 of OMPs Chapter 3: Results - Borrelia OMPA-like proteins 145 3.1 Identification of possible OmpA-like proteins in B.
Recommended publications
  • Alpine Soil Bacterial Community and Environmental Filters Bahar Shahnavaz
    Alpine soil bacterial community and environmental filters Bahar Shahnavaz To cite this version: Bahar Shahnavaz. Alpine soil bacterial community and environmental filters. Other [q-bio.OT]. Université Joseph-Fourier - Grenoble I, 2009. English. tel-00515414 HAL Id: tel-00515414 https://tel.archives-ouvertes.fr/tel-00515414 Submitted on 6 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour l’obtention du titre de l'Université Joseph-Fourier - Grenoble 1 École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Par Bahar SHAHNAVAZ Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr. Thierry HEULIN Rapporteur Dr. Christian JEANTHON Rapporteur Dr. Sylvie NAZARET Examinateur Dr. Jean MARTIN Examinateur Dr. Yves JOUANNEAU Président du jury Dr. Roberto GEREMIA Directeur de thèse Thèse préparée au sien du Laboratoire d’Ecologie Alpine (LECA, UMR UJF- CNRS 5553) THÈSE Pour l’obtention du titre de Docteur de l’Université de Grenoble École Doctorale : Chimie et Sciences du Vivant Spécialité : Biodiversité, Écologie, Environnement Communautés bactériennes de sols alpins et filtres environnementaux Bahar SHAHNAVAZ Directeur : Roberto GEREMIA Soutenue devant jury le 25 Septembre 2009 Composition du jury Dr.
    [Show full text]
  • Optimization and Characterization of the Growth Of
    OPTIMIZATION AND CHARACTERIZATION OF THE GROWTH OF THE PHOTOSYNTHETIC BACTERIUM BLASTOCHLORIS VIRIDIS AND A BRIEF SURVEY OF ITS POTENTIAL AS A REMEDIATIVE TOOL A Dissertation Submitted to the Graduate School of the University of Notre Dame in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Darcy Danielle LaClair, B.S. ___________________________________ Agnes E. Ostafin, Director Graduate Program in Chemical and Biomolecular Engineering Notre Dame, Indiana April 2006 OPTIMIZATION AND CHARACTERIZATION OF THE GROWTH OF THE PHOTOSYNTHETIC BACTERIUM BLASTOCHLORIS VIRIDIS AND A BRIEF SURVEY OF THEIR POTENTIAL AS A REMEDIATIVE TOOL Abstract by Darcy Danielle LaClair The growth of B. viridis was characterized in an undefined rich medium and a well-defined medium, which was later selected for further experimentation to insure repeatability. This medium presented a significant problem in obtaining either multigenerational or vigorous growth because of metabolic limitations; therefore optimization of the medium was undertaken. A primary requirement to obtain good growth was a shift in the pH of the medium from 6.9 to 5.9. Once this shift was made, it was possible to obtain growth in subsequent generations, and the media formulation was optimized. A response curve suggested optimum concentrations of 75 mM carbon, supplemented as sodium malate, 12.5 mM nitrogen, supplemented as ammonium sulfate, Darcy Danielle LaClair and 12.7 mM phosphate buffer. In addition, the vitamins p-Aminobenzoic acid, Thiamine, Biotin, B12, and Pantothenate were important to achieving good growth and good pigment formation. Exogenous carbon dioxide, added as 2.5 g sodium bicarbonate per liter media also enhanced growth and reduced the lag time.
    [Show full text]
  • Rhodopseudomonas Viridis and Rhodopseudomonas Sulfoviridis to the Genus Blastochloris Gen
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Jan. 1997, p. 217-219 Vol. 47, No. 1 0020-7713/97/$04.00+ 0 Copyright 0 1997, International Union of Microbiological Societies Transfer of the Bacteriochlorophyll &Containing Phototrophic Bacteria Rhodopseudomonas viridis and Rhodopseudomonas sulfoviridis to the Genus Blastochloris gen. nov. AKIRA HIMISHI* Department of Ecological Engineering, Toyohashi University of Technology, Toyohashi 441, and Laboratory of Environmental Biotechnology, Konishi Co., Tokyo 130, Japan The phylogenetic positions of the bacteriochlorophyll (BChl) b-producing budding phototrophic bacteria Rhodopseudomonas viridis and Rhodopseudomonas sulfoviridis were studied on the basis of 16s rRNA gene sequence information. These bacteria formed a tight cluster with the genus Rhodoplanes as a sister group within the alpha-2 subgroup of the Proteobacteria. Genomic DNA-DNA hybridization assays showed that R. viridis and R. sulfoviridis were closely related but were different species. Creation of the genus Blastochloris gen. nov. is proposed to accommodate these BChl b-producing species of phototrophic bacteria. In 1984 some species of the classically defined genus Rho- tion of the organisms. For Rhodopseudomonas sulfoviridis, the dopseudomonas were reclassified into new genera, including medium was supplemented with 10 mM glucose, 2 mM sodium the new genera Rhodobacter and Rhodopila, on the basis of sulfide (neutralized), and 2 mM thiosulfate. The medium was modern taxonomic criteria (17). In recent years, the taxonomy supplemented with 10 mM pyruvate (filter sterilized) for Rho- of the genus Rhodopseudomonas has been further reevaluated doplanes roseus. The organisms were grown at 30°C in screw- on the basis of increasing molecular and chemotaxonomic in- cap test tubes under anaerobic conditions in the light.
    [Show full text]
  • Microbial Degradation of Organic Micropollutants in Hyporheic Zone Sediments
    Microbial degradation of organic micropollutants in hyporheic zone sediments Dissertation To obtain the Academic Degree Doctor rerum naturalium (Dr. rer. nat.) Submitted to the Faculty of Biology, Chemistry, and Geosciences of the University of Bayreuth by Cyrus Rutere Bayreuth, May 2020 This doctoral thesis was prepared at the Department of Ecological Microbiology – University of Bayreuth and AG Horn – Institute of Microbiology, Leibniz University Hannover, from August 2015 until April 2020, and was supervised by Prof. Dr. Marcus. A. Horn. This is a full reprint of the dissertation submitted to obtain the academic degree of Doctor of Natural Sciences (Dr. rer. nat.) and approved by the Faculty of Biology, Chemistry, and Geosciences of the University of Bayreuth. Date of submission: 11. May 2020 Date of defense: 23. July 2020 Acting dean: Prof. Dr. Matthias Breuning Doctoral committee: Prof. Dr. Marcus. A. Horn (reviewer) Prof. Harold L. Drake, PhD (reviewer) Prof. Dr. Gerhard Rambold (chairman) Prof. Dr. Stefan Peiffer In the battle between the stream and the rock, the stream always wins, not through strength but by perseverance. Harriett Jackson Brown Jr. CONTENTS CONTENTS CONTENTS ............................................................................................................................ i FIGURES.............................................................................................................................. vi TABLES ..............................................................................................................................
    [Show full text]
  • Denitrification and the Hypoxic Response in Obligate Aerobic Methane-Oxidizing Bacteria
    Denitrification and the hypoxic response in obligate aerobic methane-oxidizing bacteria By Kerim Dimitri Kits A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Microbiology and Biotechnology Department of Biological Sciences University of Alberta Kerim Dimitri Kits, 2016 Abstract Aerobic methanotrophic bacteria lessen the impact of the greenhouse gas methane (CH4) not only because they are a sink for atmospheric methane but also because they oxidize it before it is emitted to the atmospheric reservoir. Aerobic methanotrophs, unlike anaerobic methane oxidizing archaea, have a dual need for molecular oxygen (O2) for respiration and CH4 oxidation. Nevertheless, methanotrophs are highly abundant and active in environments that are extremely hypoxic and even anaerobic. While the O2 requirement in these organisms for CH4 oxidation is inflexible, recent genome sequencing efforts have uncovered the presence of putative denitrification genes in many aerobic methanotrophs. Being able to use two different terminal electron acceptors – hybrid respiration – would be massively advantageous to aerobic methanotrophs as it would allow them to halve their O2 requirement. But, the function of these genes that hint at an undiscovered respiratory anaerobic metabolism is unknown. Moreover, past work on pure cultures of aerobic methanotrophs ruled out the possibility that these organisms - denitrify. An organism that can couple CH4 oxidation to NO3 respiration so far does not exist in pure culture. So while the role of aerobic methanotrophs in the carbon cycle is appreciated, the hypoxic metabolism and contribution of these specialized microorganisms to the nitrogen cycle is not understood. Here we demonstrate using cultivation dependent approaches, microrespirometry, and whole genome, transcriptome, and proteome analysis that an aerobic - methanotroph – Methylomonas denitrificans FJG1 – couples CH4 oxidation to NO3 respiration - with N2O as the terminal product via the intermediates NO2 and NO.
    [Show full text]
  • Complexes Present in Anoxygenic Phototrophic Bacteria
    Photosynthesis Research (2020) 145:83–96 https://doi.org/10.1007/s11120-020-00758-3 REVIEW A comparative look at structural variation among RC–LH1 ‘Core’ complexes present in anoxygenic phototrophic bacteria Alastair T. Gardiner1,2 · Tu C. Nguyen‑Phan1 · Richard J. Cogdell1 Received: 26 March 2020 / Accepted: 10 May 2020 / Published online: 19 May 2020 © The Author(s) 2020 Abstract All purple photosynthetic bacteria contain RC–LH1 ‘Core’ complexes. The structure of this complex from Rhodobacter sphaeroides, Rhodopseudomonas palustris and Thermochromatium tepidum has been solved using X-ray crystallography. Recently, the application of single particle cryo-EM has revolutionised structural biology and the structure of the RC–LH1 ‘Core’ complex from Blastochloris viridis has been solved using this technique, as well as the complex from the non-purple Chlorofexi species, Roseifexus castenholzii. It is apparent that these structures are variations on a theme, although with a greater degree of structural diversity within them than previously thought. Furthermore, it has recently been discovered that the only phototrophic representative from the phylum Gemmatimonadetes, Gemmatimonas phototrophica, also contains a RC–LH1 ‘Core’ complex. At present only a low-resolution EM-projection map exists but this shows that the Gemmatimonas phototrophica complex contains a double LH1 ring. This short review compares these diferent structures and looks at the functional signifcance of these variations from two main standpoints: energy transfer and quinone
    [Show full text]
  • A Comparative Look at Structural Variation Among RC–LH1 'Core'
    Photosynthesis Research https://doi.org/10.1007/s11120-020-00758-3 REVIEW A comparative look at structural variation among RC–LH1 ‘Core’ complexes present in anoxygenic phototrophic bacteria Alastair T. Gardiner1,2 · Tu C. Nguyen‑Phan1 · Richard J. Cogdell1 Received: 26 March 2020 / Accepted: 10 May 2020 © The Author(s) 2020 Abstract All purple photosynthetic bacteria contain RC–LH1 ‘Core’ complexes. The structure of this complex from Rhodobacter sphaeroides, Rhodopseudomonas palustris and Thermochromatium tepidum has been solved using X-ray crystallography. Recently, the application of single particle cryo-EM has revolutionised structural biology and the structure of the RC–LH1 ‘Core’ complex from Blastochloris viridis has been solved using this technique, as well as the complex from the non-purple Chlorofexi species, Roseifexus castenholzii. It is apparent that these structures are variations on a theme, although with a greater degree of structural diversity within them than previously thought. Furthermore, it has recently been discovered that the only phototrophic representative from the phylum Gemmatimonadetes, Gemmatimonas phototrophica, also contains a RC–LH1 ‘Core’ complex. At present only a low-resolution EM-projection map exists but this shows that the Gemmatimonas phototrophica complex contains a double LH1 ring. This short review compares these diferent structures and looks at the functional signifcance of these variations from two main standpoints: energy transfer and quinone exchange. Keywords Purple photosynthetic bacteria
    [Show full text]
  • Comparative Genome Analysis of Marine Purple Sulfur Bacterium
    www.nature.com/scientificreports OPEN Comparative genome analysis of marine purple sulfur bacterium Marichromatium gracile YL28 Received: 6 April 2018 Accepted: 16 November 2018 reveals the diverse nitrogen cycle Published: xx xx xxxx mechanisms and habitat-specifc traits Bitong Zhu1, Xiaobo Zhang1, Chungui Zhao1, Shicheng Chen2 & Suping Yang1 Mangrove ecosystems are characteristic of the high salinity, limited nutrients and S-richness. Marichromatium gracile YL28 (YL28) isolated from mangrove tolerates the high concentrations of nitrite and sulfur compounds and efciently eliminates them. However, the molecular mechanisms of nitrite and sulfur compounds utilization and the habitat adaptation remain unclear in YL28. We sequenced YL28 genome and further performed the comparative genome analysis in 36 purple bacteria including purple sulfur bacteria (PSB) and purple non-sulfur bacteria (PNSB). YL28 has 6 nitrogen cycle pathways (up to 40 genes), and possibly removes nitrite by denitrifcation, complete assimilation nitrate reduction and fermentative nitrate reduction (DNRA). Comparative genome analysis showed that more nitrogen utilization genes were detected in PNSB than those in PSB. The partial denitrifcation pathway and complete assimilation nitrate reduction were reported in PSB and DNRA was reported in purple bacteria for the frst time. The three sulfur metabolism genes such as oxidation of sulfde, reversed dissimilatory sulfte reduction and sox system allowed to eliminate toxic sulfur compounds in the mangrove ecosystem. Several unique stress response genes facilitate to the tolerance of the high salinity environment. The CRISPR systems and the transposon components in genomic islands (GIs) likely contribute to the genome plasticity in purple bacteria. Purple bacteria are anoxygenic and phototrophic bacteria, including purple sulfur bacteria (PSB) and purple non-sulfur bacteria (PNSB).
    [Show full text]
  • Analysis of Biofilm Communities in Breweries
    Analysis of Biofilm Communities in Breweries Markus Timke Osnabrück November 2004 Analysis of Biofilm Communities in Breweries Dissertation Zur Erlangung des akademischen Grades eines Doctor rerum naturalium (Dr. rer. nat.) eingereicht am Fachbereich Biologie/Chemie der Universität Osnabrück von Markus Timke Osnabrück, November 2004 Dissertation vorgelegt dem Fachbereich Biologie/Chemie der Universität Osnabrück Mündliche Prüfung: 21. Dezember 2004 Promotionskommission: Prof. Dr. K. Altendorf, Prof. Dr. H.-C. Flemming, Priv.-Doz. Dr. A. Lipski, Prof. Dr. F.-J. Methner Für meine Familie Preface Preface This work was part of the joint research project “Development of innovative strategies for an efficient and environmentally sound abatement of biofilms in the food industry considering the filling of beer exemplarily” (title in German: “Entwicklung innovativer Strategien zur effizienten und umweltschonenden Bekämpfung von Biofilmen in der Lebensmittelindustrie am Beispiel der Bierabfüllung”). The project partners were the Lehrstuhl Aquatische Mikrobiologie, Universität Duisburg-Essen, Privatbrauerei A. Rolinck GmbH & Co, Steinfurt, the Bitburger Brauerei Th. Simon GmbH, Bitburg and the Department of Microbiology, University of Osnabrück. The results are presented in nine Chapters. The Chapters 1 to 4 are manuscripts and represent the main part of this study. Additional data are reported in Chapters 5 to 9 to complete the picture of microbial communities of brewery biofilms obtained in this study. Acknowledgments First of all, I want to express my sincere thanks to many people, all of which contributed to this work in a scientific or private way. I thank Prof. Dr. Karlheinz Altendorf for providing the facilities for this study. He gave me the chance to come to Osnabrück and to start my Ph.D.
    [Show full text]
  • University of Groningen Structures of Photosynthetic Membrane
    University of Groningen Structures of photosynthetic membrane complexes Semchonok, Dmitry Alexandrovich IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2016 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Semchonok, D. A. (2016). Structures of photosynthetic membrane complexes. Rijksuniversiteit Groningen. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 01-10-2021 Chapter 1. Introduction Photosynthesis is the processes whereby plants, algae and some other groups of organisms convert light into chemically fixed energy.
    [Show full text]
  • Phylogeny of Anoxygenic Photosynthesis Based On
    microorganisms Article Phylogeny of Anoxygenic Photosynthesis Based on Sequences of Photosynthetic Reaction Center Proteins and a Key Enzyme in Bacteriochlorophyll Biosynthesis, the Chlorophyllide Reductase Johannes F. Imhoff 1,* , Tanja Rahn 1, Sven Künzel 2 and Sven C. Neulinger 3 1 GEOMAR Helmholtz Centre for Ocean Research, 24105 Kiel, Germany; [email protected] 2 Max Planck Institute for Evolutionary Biologie, 24306 Plön, Germany; [email protected] 3 omics2view.consulting GbR, 24118 Kiel, Germany; [email protected] * Correspondence: jimhoff@geomar.de Received: 29 October 2019; Accepted: 15 November 2019; Published: 19 November 2019 Abstract: Photosynthesis is a key process for the establishment and maintenance of life on earth, and it is manifested in several major lineages of the prokaryote tree of life. The evolution of photosynthesis in anoxygenic photosynthetic bacteria is of major interest as these have the most ancient roots of photosynthetic systems. The phylogenetic relations between anoxygenic phototrophic bacteria were compared on the basis of sequences of key proteins of the type-II photosynthetic reaction center, including PufLM and PufH (PuhA), and a key enzyme of bacteriochlorophyll biosynthesis, the light-independent chlorophyllide reductase BchXYZ. The latter was common to all anoxygenic phototrophic bacteria, including those with a type-I and those with a type-II photosynthetic reaction center. The phylogenetic considerations included cultured phototrophic bacteria from several phyla, including Proteobacteria (138 species), Chloroflexi (five species), Chlorobi (six species), as well as Heliobacterium modesticaldum (Firmicutes), Chloracidobacterium acidophilum (Acidobacteria), and Gemmatimonas phototrophica (Gemmatimonadetes). Whenever available, type strains were studied. Phylogenetic relationships based on a photosynthesis tree (PS tree, including sequences of PufHLM-BchXYZ) were compared with those of 16S rRNA gene sequences (RNS tree).
    [Show full text]
  • Copyright © 2017 by Luis Orellana
    MULTIOMIC APPROACHES FOR ASSESSING THE ROLE OF NATURAL MICROBIAL COMMUNITIES IN NITROUS OXIDE EMISSION FROM MIDWESTERN AGRICULTURAL SOILS A Dissertation Presented to The Academic Faculty by Luis Humberto Orellana Retamal In Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY in the SCHOOL OF CIVIL AND ENVIRONMENTAL ENGINEERING Georgia Institute of Technology August 2017 COPYRIGHT © 2017 BY LUIS ORELLANA MULTIOMIC APPROACHES FOR ASSESSING THE ROLE OF NATURAL MICROBIAL COMMUNITIES IN NITROUS OXIDE EMISSION FROM MIDWESTERN AGRICULTURAL SOILS Approved by: Dr. Konstantinos T. Konstantinidis, Dr. Joe Brown Advisor School of Civil and Environmental School of Civil and Environmental Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Spyros G. Pavlostathis Dr. Joel E. Kostka School of Civil and Environmental School of Biology and Earth & Engineering Atmospheric Sciences Georgia Institute of Technology Georgia Institute of Technology Dr. Jim C. Spain Dr. Frank E. Löffler School of Civil and Environmental School of Civil and Environmental Engineering Engineering Georgia Institute of Technology University of Tennessee Date Approved: April 28, 2017 To my Grandmother Noelia and Mother Cecilia ACKNOWLEDGEMENTS I would like to thank Dr. Kostas Konstantinidis for the opportunity to be part of his research group and for all the support, patience and guidance throughout the years that made this work possible. I am deeply grateful for the research and collaboration opportunities he provided me, which have helped me develop my academic career. I would like to thank my committee members Dr. Jim Spain, Dr. Spyros Pavlostathis, Dr. Joe Brown, Dr. Joel Kostka, and Dr. Frank Loëffler for their always insightful feedback and support.
    [Show full text]