Enhancing Reaction-Based De Novo Design Using Machine Learning

Total Page:16

File Type:pdf, Size:1020Kb

Enhancing Reaction-Based De Novo Design Using Machine Learning Enhancing Reaction-based de novo Design using Machine Learning A thesis submitted to the University of Sheffield in fulfilment of the requirements for the degree of Doctor of Philosophy by Gian Marco Ghiandoni This work was sponsored by The University of Sheffield Information School - Faculty of Social Sciences December 2019 Acknowledgements Reaching the end of a doctoral study is something you do not do on your own. There are several people who deserve to be acknowledged for the achievement of such a personal milestone. First, I want to thank my supervisors, Prof Val Gillet, Prof Beining Chen, and Dr Mike Bodkin: Val, in primis , for her precious experience and feedback, and most importantly, for trusting in me during all the time I have spent at Sheffield as a student; Beining, for her support and presence during this journey; Mike, for his continuous encouragement, for the stimulating discussions, and for giving me the opportunity to work in close contact with many skilled scientists. These people gave me the chance to challenge myself in this adventure. The "Reaction Vector Cowboys", my colleagues James Webster and Dr James Wallace, for the close collaboration we have established and managed to preserve during all these years. Most of the concepts that have been formulated and developed in this work are the fruit of hours of discussions with these two exceptional scientists. Next to them, I want to thank Dr Dimitar Hristozov, for his great contribution to my research and the reaction vector project; Dr Antonio de la Vega de León and Dr Alessandro Checco, for their help, especially at the beginning of my studies; Dr Matthew Seddon, Dr Christina Founti, Dr Lucyantie Mazalan, Dr Philip Reeve, Jessica Stacey, Arshnous Marandi, and all the people I have worked with at the University of Sheffield. I also want to thank the people who supported me from far away: My mother, grandmother, sisters, and my two uncles, without whom this could not have been possible. My friends Mario, Marco, Riccardo, Chris, and Tommy for their steady support; Margherita, for encouraging me to pursue my dreams; Luca, for helping and protecting my family. Special acknowledgements are due to Prof Peter Willett, for supporting my research with his vast knowledge; Prof Jon Sayers, allowing me to work with him and the Sheffield Medical School; Dr Richard Mead, for providing me with an exceptional case study to work on and for putting his interest in the development of our techniques; Dr Stuart Flanagan, for carrying out the syntheses of the compounds designed in this work with great commitment; Dr Daniel Lowe, for providing me with the data for my experiments; Marion Leclerc, for her artistic contribution to this work. Finally, I would like to thank Evotec U.K. and the Engineering and Physical Sciences Research Council (EPSRC) for their financial support and assistance. I II Abstract De novo design is a branch of chemoinformatics that is concerned with the rational design of molecular structures with desired properties, which specifically aims at achieving suitable pharmacological and safety profiles when applied to drug design. Scoring, construction, and search methods are the main components that are exploited by de novo design programs to explore the chemical space to encourage the cost-effective design of new chemical entities. In particular, construction methods are concerned with providing strategies for compound generation to address issues such as drug-likeness and synthetic accessibility. Reaction-based de novo design consists of combining building blocks according to transformation rules that are extracted from collections of known reactions, intending to restrict the enumerated chemical space into a manageable number of synthetically accessible structures. The reaction vector is an example of a representation that encodes topological changes occurring in reactions, which has been integrated within a structure generation algorithm to increase the chances of generating molecules that are synthesisable. The general aim of this study was to enhance reaction-based de novo design by developing machine learning approaches that exploit publicly available data on reactions. A series of algorithms for reaction standardisation, fingerprinting, and reaction vector database validation were introduced and applied to generate new data on which the entirety of this work relies. First, these collections were applied to the validation of a new ligand-based design tool. The tool was then used in a case study to design compounds which were eventually synthesised using very similar procedures to those suggested by the structure generator. A reaction classification model and a novel hierarchical labelling system were then developed to introduce the possibility of applying transformations by class. The model was augmented with an algorithm for confidence estimation, and was used to classify two datasets from industry and the literature. Results from the classification suggest that the model can be used effectively to gain insights on the nature of reaction collections. Classified reactions were further processed to build a reaction class recommendation model capable of suggesting appropriate reaction classes to apply to molecules according to their fingerprints. The model was validated, then integrated within the reaction vector-based design framework, which was assessed on its performance against the baseline algorithm. Results from the de novo design experiments indicate that the use of the recommendation model leads to a higher synthetic accessibility and a more efficient management of computational resources. III IV Table of Contents Acknowledgements .............................................................................................................. I Abstract ........................................................................................................................... III Table of Contents .............................................................................................................. V List of Figures .................................................................................................................. XI List of Tables ................................................................................................................ XXI Table of Common Acronyms ........................................................................................ XXV Preface ...................................................................................................................... XXVII Chapter 1: Chemical Representations ............................................................ 1 1.1. Introduction ....................................................................................................... 1 1.2. Molecular Representation ................................................................................... 1 1.2.1. Molecular Graph Theory ............................................................................ 4 1.2.2. Molecular Search Methods .......................................................................... 5 1.3. Reaction Representation ................................................................................... 10 1.3.1. Reaction Mapping .................................................................................... 11 1.4. Reaction Databases .......................................................................................... 13 1.5. Reaction Search Methods ................................................................................. 14 1.6. Reaction Classification ..................................................................................... 15 1.6.1. Model-driven Methods .............................................................................. 15 1.6.2. Data-driven Methods ................................................................................ 18 1.7. Conclusions ...................................................................................................... 22 Chapter 2: De novo Molecular Design ......................................................... 23 2.1. Introduction ..................................................................................................... 23 2.2. The Molecular Design Route ............................................................................ 23 2.3. De novo Design Components ............................................................................ 25 2.4. Scoring Components ......................................................................................... 25 2.4.1. Structure-based Scoring ............................................................................ 26 2.4.2. Ligand-based Scoring ................................................................................ 28 2.5. Construction Components ................................................................................ 30 2.5.1. Atom-based Construction ......................................................................... 30 2.5.2. Fragment-based Construction ................................................................... 31 2.6. Search Components .......................................................................................... 34 2.6.1. Stochastic Search ...................................................................................... 34 2.6.2. Deterministic Search ................................................................................. 36 2.7. Artificial Intelligence in de novo Design ..........................................................
Recommended publications
  • Deuterium Exchange Studies of Some Cyclopentenone Derivatives Robert Logan Myers Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1963 Deuterium exchange studies of some cyclopentenone derivatives Robert Logan Myers Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Myers, Robert Logan, "Deuterium exchange studies of some cyclopentenone derivatives " (1963). Retrospective Theses and Dissertations. 2549. https://lib.dr.iastate.edu/rtd/2549 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been 64—3885 microfilmed exactly as received MYERS, Robert Logan, 1937- DEUTERIUM EXCHANGE STUDIES OF SOME CYCLOPENTENONE DERIVATIVES. Iowa State University of Science and Technology Ph.D., 1963 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan DEUTERIUM EXCHANGE STUDIES OF SOME CYCIOPEHTENONE DERIVATIVES Robert Logan Myers A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Organic Chemistry Approved : Signature was redacted for privacy. Work Signature was redacted for privacy. Head of Major Department Signature was redacted for privacy. Dean Iowa State University Of Science and Technology Ames, Iowa 1963 11 TABLE OF CONTENTS Page INTRODUCTION 1 HISTORICAL 3 DISCUSSION 1Ç EXPERIMENTAL 43 SUMMARY 82 ACKNOWLEDGEMENTS 83 APPENDIX 84 1 INTRODUCTION Synthetic methods for the preparation of highly substi­ tuted 5-benzylidenecyclopentenones have long been known.
    [Show full text]
  • Nuclear Magnetic Resonance Study of Cyclopentenone and Some of Its Derivatives Charles Edward Lyons Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1961 Nuclear magnetic resonance study of cyclopentenone and some of its derivatives Charles Edward Lyons Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Lyons, Charles Edward, "Nuclear magnetic resonance study of cyclopentenone and some of its derivatives " (1961). Retrospective Theses and Dissertations. 1975. https://lib.dr.iastate.edu/rtd/1975 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been 62-1359 microfilmed exactly as received LYONS, Charles Edward, 1929- NUCLEAR MAGNETIC RESONANCE STUDY OF CYCLOPENTENONE AND SOME OF ITS DERIVA­ TIVES. Iowa State University of Science and Technology Ph.D., 1961 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan NUCISÂR MACBETIC RESONANCE STUDY OF CTCIJDPENTBNONE AHD SOIE OF ITS DERIVATIVES ty Charles Edward Iyons A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHHCSQPHT Major Subject! Organic Chemistry ApprovedJ Signature was redacted for privacy. Signature was redacted for privacy. Signature was redacted for privacy. Iowa State University Of Science and Technology Ames, Iowa 1961 ii TABIE OF CONTENTS Page INTRODUCTION 1 HISTORICAL 2 DISCUSSION 12 SPECTRA 61 EXPERIMENTAL 91 SUMMAHT 96 ACKNOWIEDGEMBNTS 97 APPENDIX 98 1 INTRODUCTION During the past several years progress has been made in exploring the oheaLstiy of eyclopentenone and soma of its derivatives.
    [Show full text]
  • Recent Progress in the Synthetic Assembly of 2-Cyclopentenones
    REVIEW ▌1 Recentreview Progress in the Synthetic Assembly of 2-Cyclopentenones David2-Cyclopentenone J. Synthesis Aitken,*a Hendrik Eijsberg,a,b Angelo Frongia,b Jean Ollivier,a Pier Paolo Pirasb a Laboratoire de Synthèse Organique & Méthodologie, ICMMO (CNRS UMR 8182), Université Paris Sud, 15 rue Georges Clemenceau, 91045 Orsay cedex, France Fax +33(1)69156278; E-mail: [email protected] b Dipartimento di Scienze Chimiche e Geologiche, Università degli studi di Cagliari, Complesso Universitario di Monserrato, S.S. 554, Bivio per Sestu, 09042 Monserrato, Cagliari, Italy Received: 09.07.2013; Accepted after revision: 21.08.2013 considerable number of ways in which the target ring sys- Abstract: An overview of the most important synthetic strategies currently available for the preparation of cyclopent-2-enones is pre- tem can be created from acyclic precursors, in either inter- sented and illustrated with recent applications. molecular or intramolecular mode. Most of the possible disconnection strategies have been examined, and it is im- 1 Introduction portant to recognize that for any given target 2-cyclopen- 2 Multicomponent Ring Assembly tenone, there may be several convenient approaches 3 Cyclizations available. The main approaches for ring construction are 4 Transformations of Existing Cyclic Systems summarized graphically in Figure 1. 5 Miscellaneous Methods O (4+1) O O (3+2) (3+2) coupling 6 Conclusions 1 1 1 5 5 2 5 2 2 RCM Key words: cyclopentenones, cyclization, carbocycles, ring clo- (4+1) (3+2) Rautenstrauch 4 3 4 3 4 3 aldol-type annulation sure, rearrangement, annulation (2+2+1) PKR Nazarov (3+2) Figure 1 The main ring-construction strategies for 2-cyclopente- none synthesis, showing the atom connectivities made during ring as- 1 Introduction sembly (left and center) and cyclization approaches (right).
    [Show full text]
  • The Pauson-Khand Reaction: a Gas-Phase and Solution-Phase Examination Using Electrospray Ionization Mass Spectrometry † † ‡ † Matthew A
    ARTICLE pubs.acs.org/Organometallics The Pauson-Khand Reaction: A Gas-Phase and Solution-Phase Examination Using Electrospray Ionization Mass Spectrometry † † ‡ † Matthew A. Henderson, Jingwei Luo, Allen Oliver, and J. Scott McIndoe*, † Department of Chemistry, University of Victoria, P.O. Box 3065, Victoria, British Columbia V8W 3V6, Canada ‡ Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556-5670, United States bS Supporting Information ABSTRACT: A series of dicobalt hexacarbonyl complexes with charged alkyne ligands were prepared to enable the study of the PausonÀKhand reaction using ESI-MS. The hexacarbonyl complexes can be activated in the gas phase through removal of a CO ligand. The resulting pentacarbonyl ions react readily with alkenes, and no discrimina- tion between alkenes was found for this step, indicating that alkene association is not rate determining in the intermolecular reaction. Solution-phase ESI-MS studies on a system set up for intramolecular reactivity revealed only the hexacarbonyl complex as a detectable intermediate, and the reaction was shown to have a large enthalpy and entropy of activation, consistent with ligand dissociation being rate limiting in the reaction. ’ INTRODUCTION rapidly.24 Efforts have been expended to trap or detect later 25 The Pauson-Khand reaction was discovered in 1971 during intermediates. Evans and co-workers were able to crystallize a pentacarbonyldicobalt enyne complex with an (intramolecular) investigations of the reaction of Co2(CO)8 with various simple fi 26 compounds.1,2 Under a high pressure of CO, an alkene, an alkyne, alkene lling the sixth coordination site, but the subsequent and CO were observed to combine in a [2 + 2 + 1] cycloaddition insertion reaction failed.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,903,067 B2 Matsuda Et Al
    USOO6903067B2 (12) United States Patent (10) Patent No.: US 6,903,067 B2 Matsuda et al. (45) Date of Patent: Jun. 7, 2005 (54) FRAGRANCE COMPOSITION CONTAINING L. Crombie et al., “Synthesis of cis-Jasmone and Other 3-(3-HEXENYL)-2-CYCLOPENTENONE cis-Retthrones”, Journal Chem. Soc., pp. 1024-1027 (1969). (75) Inventors: Hiroyuki Matsuda, Kanagawa (JP); Dr. M. Schlosser et al., “Trans-Selective Olefin Syntheses', Kenji Maruyama, Kanagawa (JP) Angew. Chem. International Edition, Vol. 5, No. 1, pp. 126-127 (1966). (73) Assignee: Takasago International Corporation, “Cyclenones. VI." The Retroaldolaldol Route to cis-Jas Tokyo (JP) mone and Related Compounds”,Journal Org. Chem, vol.39, No. 15, pp. 2317–2318 (1974). (*) Notice: Subject to any disclaimer, the term of this Dubs Paul: “Synthesis of Three Jasmone Constituents ... ', patent is extended or adjusted under 35 Helvetica Chimica Acta, vol. 61(3), No. 87, 1978, pp. U.S.C. 154(b) by 147 days. 990-997. McCurry Patrick: “Cyclenones . , J Org Chem, vol.39, (21) Appl. No.: 10/309,096 No. 15, 1974, pp. 2317-2319. Chemical Abstracts, vol. 98, No. 21, May 23, 1983, Abstract (22) Filed: Dec. 4, 2002 No. 179066, XP00224.5946. (65) Prior Publication Data Chemical Abstracts, vol. 98, No. 21, May 23, 1983, Abstract No. 179065, XP00224.5947. US 2003/0158080A1 Aug. 21, 2003 Chemical Abstracts, vol. 96, No. 5, Feb. 1, 1982, Abstract (30) Foreign Application Priority Data No. 34688, XP00224.5948. Chemical Abstracts, vol. 93, No. 5, Aug. 4, 1980, Abstract Dec. 18, 2001 (JP) ....................................... 2001-385182 No. 46006, XP00224.5949. Dec. 18, 2001 (JP) ......................................
    [Show full text]
  • Cyclopentane Synthesis
    Cyclopentane Synthesis Dan O’Malley Baran Group Meeting Cyclopentane Synthesis Group Meeting O'Malley 2/9/2005 This presentation is broken down into the following catagories. Some reactions either fit more than one Students of organic chemistry are taught a number of reactions for the synthesis of category or do not fit easily into any of them. Efforts have been made to place all such reactions in the cyclohexanes at a very early stage of their careers. Techniques for the creation of cyclopentanes, most appropriate category. however, are generally taught at a much later stage and are rarely given the same detailed treatment. This may be the result of the fact that there are no equivalents of reactions such as the Diels-Alder and I. General Information Robinson Annulation in terms of generality, extent of use, and historical importance. This may, in turn, II. Ionic Reactions be caused by the fact that the cyclopentane is an inherintly "umpoled" functionality, as illustrated below. III. Metal Mediated Reactions IV. Radical Reactions FG V. Pericyclic and Pseudo-pericyclic Reactions VI. Ring Expansion and Contraction Reactions I. General Information This situation is further exacerbated by the general lack of cheaply available cyclopentane compounds Baldwin's rules in the chiral pool; wheras a number of cyclohexane terpenes are readily available for elaboration, there Baldwin has divided ring closure reactions into those that are "favored" and those that are "disfavored". are no analogous cylcopentane natural products. Cyclopentanes are however, present in many Those that are disfavored are not always impossible, but are frequently much more difficult to effect.
    [Show full text]
  • Process for Producing 2-Alkyl-2-Cyclopentenones
    Europäisches Patentamt *EP001316541A1* (19) European Patent Office Office européen des brevets (11) EP 1 316 541 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.7: C07C 45/66, C07C 45/67, 04.06.2003 Bulletin 2003/23 C07C 49/597 (21) Application number: 02292899.8 (22) Date of filing: 22.11.2002 (84) Designated Contracting States: • Ujihara, Hideo, Takasago International Corp. AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Hiratsuka-shi, Kanagawa 254-0073 (JP) IE IT LI LU MC NL PT SE SK TR • Adachi, Kenichiro, Takasago International Corp. Designated Extension States: Hiratsuka-shi, Kanagawa 254-0073 (JP) AL LT LV MK RO SI • Hagiwara, Toshimitsu, Takasago International Corp. (30) Priority: 30.11.2001 JP 2001366023 Hiratsuka-shi, Kanagawa 254-0073 (JP) • Watanabe, Shinya, Takasago International Corp. (71) Applicant: Takasago International Corporation Hiratsuka-shi, Kanagawa 254-0073 (JP) Tokyo 144-8721 (JP) (74) Representative: Uchida, Kenji et al (72) Inventors: S.A. Fedit-Loriot et Autres Conseils en Propriété • Yamamoto, Takeshi, Industrielle, Takasago International Corp. 38, avenue Hoche Hiratsuka-shi, Kanagawa 254-0073 (JP) 75008 Paris (FR) (54) Process for producing 2-alkyl-2-cyclopentenones (57) Industrially advantageous processes for producing a 2-alkyl-2-cyclopentenone in high yields starting from a 2-(1-hydroxyalkyl)cyclopentanone or a 2-alkylidenecyclopentanone, which are obtainable from a cyclopentanone and a carbonyl compound. A 2-(1-hydroxyalkyl)cyclopentanone represented by the following general formula (1): is subjected to dehydrative isomerization or a 2- alkylidenecyclopentanone represented by the following general formula (3): is isomerized.
    [Show full text]
  • Technical Notes: 1
    Strem Chemicals, Inc. www.strem.com Catalog # 27-0400 Cobalt carbonyl (Dicobalt octacarbonyl) (Stabilized with 1-5% hexane) Catalysis Applications Technical Notes: 1. Reagent for the Pauson-Khand conversion of an olefin, an alkyne and carbon monoxide into a cyclopentenone. 2. Precatalyst in combination with triphenylphosphite for the cataytic Pauson-Khand reaction. 3. Catalyzes the rearrangement of 1-alkynylcyclopropanols to cyclopentenones. 4. Catalyzes the conversion of aziridines to -lactams. 5. Catalyzes the conversion of diallylanilines and aryliminies to quinolones. 6. Reagent for the selective cleavage of benzyl ethers. 7. Domino Nicholas and Pauson-Khand process induced by nitroarene reduction. Tech. Note (1) Ref. (1,2) Tech. Note (2) Refs. (3,4,5) Tech. Note (3) Ref. (6,7) Tech. Note (4) Ref. (8) Tech. Note (5) Ref. (9) \ Tech. Note (6) Ref. (10) Tech. Note (7) Ref. (11) References: 1. Comprehensive Organic Synthesis, 1991, Vol. 5, Ch. 9.1, 1037. 2. Encyclopedia of Reagents for Organic Synthesis, 1995, Vol. 6, 3785. 3. J. Am. Chem. Soc., 1994, 116, 3159. 4. J. Am. Chem. Soc., 1996, 118, 2285. 5. Tetrahedron Lett., 1998, 39, 7637. 6. Tetrahedron: Asymmetry, 2000, 11, 797. 7. J. Am. Chem. Soc., 1998, 120, 3903. 8. J. Am. Chem. Soc., 1996, 118, 111. 9. J. Org. Chem., 2003, 68, 3563. 10. Org. Lett., 2010, 12, 536. 11. Tetrahedron Lett., 2015, 56, 4674. CVD/ALD Applications Thermal Behavior: Vapor pressure of 1 Torr at 35 °C [2] Melting point: 51 °C [2] Decomposition temperature 60-70 °C [6] Technical Notes: 1. Volatile carbonyl precursor for various CVD processes for cobalt metal, oxide and silicide films.
    [Show full text]
  • The Chemistry of 3-Acetyl-3, 4-Phenacylidenecoumarin Gerald Eugene Risinger Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1961 The chemistry of 3-acetyl-3, 4-phenacylidenecoumarin Gerald Eugene Risinger Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Organic Chemistry Commons Recommended Citation Risinger, Gerald Eugene, "The chemistry of 3-acetyl-3, 4-phenacylidenecoumarin " (1961). Retrospective Theses and Dissertations. 1983. https://lib.dr.iastate.edu/rtd/1983 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been 62-1367 microfilmed exactly as received RISINGER, Gerald Eugene, 1932- THE CHEMISTRY OF 3-ACETYL-3,4-PHENACYLI- DENECOUMARIN. Iowa State University of Science and Technology Ph.D., 1961 Chemistry, organic University Microfilms, Inc., Ann Arbor, Michigan THE CHEMISTRY OF 3-ACETYL-3 , ^-PI-ENACYLIDENECOUKARIN by Gerald Eugene Risinger A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject : Organic Chemistry Approved: Signature was redacted for privacy. In Charge of Major Work Signature was redacted for privacy. head of Major Department Signature was redacted for privacy. Iowa State University Of Science and Technology Ames, Iowa 1961 il TABLE OF CONTENTS PAGE I INTRODUCTION 1 II HISTORICAL 2 III DISCUSSION 49 IV SPECTRA 87 V EXPERIMENTAL 100 VI SUMMARY 116 VII LITERATURE CITED .
    [Show full text]
  • Alkyne-Cobalt-Clusters
    COBALT -CLUSTER MEDIATED PROPARGYL CATION AND RADICAI.J REARRANGEMENTS ALKYNE-COBALT-CLUSTERS: SYNTHESES, STRUCTURES AND REARRANGEMENTS OF METAL··STABILIZED PROPARGYL CATIONS AND RADICALS By JOHN H. KALDIS, B.Sc. A Thesis Submitted to the School of Graduate Studies In Partial Fulfillment ofthe Requirements for the Degree Doctor of Philosophy McMaster University © Copyright by John H. Kaldis, August 2003 DOCTOR OF PHILOSOPHY (2003) McMaster University (Chemistry) Hamilton, Ontario TITLE: Alkyne-Cobalt-Clusters: Syntheses, Structures and Rearrangements of Metal-Stabilized Propargyl Cations and Radicals AUTHOR: John H. Kaldis, B.Sc. (University of Western Ontario) SUPERVISOR: Dr. Michael J. McGlinchey NUMBER OF PAGES: XV, 192 11 Abstract Cobalt-clusters are versatile reagents in organometallic chemistry. Their ability to protect an alkyne allows one to selectively manipulate a ligand without undergoing a competitive reaction from the alkyne. Cobalt-clusters geometrically modify linear alkynes to 136-145° degrees, thereby allowing for some non-traditional alkynyl chemistry to occur. In particular, the focus of this dissertation lies upon the chemistry of cobalt-complexed propargyl alkynols, the ability of cobalt to stabilize neighbouring cations generated from these alcohols, and the chemistry that can be accomplished by altering the steric and electronic effects. We have chosen to study the possibility of inducing migration of various substituents from one terminus of the cobalt-complexed alkyne to the alcoholic site ofthe propargyl group via protonation ofthe desired complex. While examining various silanes, and altering the propargyl alcohol itself, we have considered both steric and electronic effects, thereby determining the idealized conditions for such transfers to occur. Furthermore, in our attempts to successfully apply these migrations to several systems, we have acquired a diverse synthetic knowledge of propargyl cobalt-clusters and their intricate reactivity.
    [Show full text]
  • Developing Novel Synthetic Methods for the Pauson-Khand Reaction
    Developing Novel Synthetic Methods for the Pauson-Khand Reaction A Thesis submitted in part fulfillment of the requirements of the degree of Doctor of Philosophy Gillian Blunt Department of Chemistry University of Glasgow Glasgow G12 8QQ August 2002 ©Gillian Blunt ProQuest Number: 13833932 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 13833932 Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 f GLASGOW UNIVERSITY LIBRARY; Ihe^is IZ725”Copv I Dedicated to my family iii Acknowledgements Firstly my thanks go to my supervisor, Dr Jennifer Matthews for all her help and support over the last three years. I would also like to thank Prof. David Robins for all his help and guidance over the last few years. Thanks also to the EPSRC for financial support. Many thanks go to the technical staff in the Department of Chemistry: Dr David Rycroft and Mr Jim Gall for NMR; Mrs Victoria Thomson for IR; and especially Mr Tony Ritchie for mass spectrometry and for looking after us in the lab. To those who started with me: Christine, Andy, Stuart and Derek - I wish you all the best Special thanks to the rest of the Matthews motley crew: Duncan, Loma and especially Main for all the help, support, fun and curry lunches! Also thanks go to everyone else that I met during my time here.
    [Show full text]
  • Design, Synthesis and Testing of New Chiral Sulfide Catalysts for Corey- Chaykovsky Reaction
    DESIGN, SYNTHESIS AND VESA TESTING OF NEW CHIRAL MYLLYMÄKI SULFIDE CATALYSTS FOR Department of Chemistry, COREY-CHAYKOVSKY University of Oulu REACTION OULU 2001 VESA MYLLYMÄKI DESIGN, SYNTHESIS AND TESTING OF NEW CHIRAL SULFIDE CATALYSTS FOR COREY- CHAYKOVSKY REACTION Academic Dissertation to be presented with the assent of the Faculty of Science, University of Oulu, for public discussion in Raahensali (Auditorium L10), Linnanmaa, on December 5th, 2001, at 12 noon. OULUN YLIOPISTO, OULU 2001 Copyright © 2001 University of Oulu, 2001 Manuscript received 16 November 2001 Manuscript accepted 19 November 2001 Communicated by Professor Liisa Kanerva Professor Tapio Hase ISBN 951-42-6571-8 (URL: http://herkules.oulu.fi/isbn9514265718/) ALSO AVAILABLE IN PRINTED FORMAT ISBN 951-42-6570-X ISSN 0355-3191 (URL: http://herkules.oulu.fi/issn03553191/) OULU UNIVERSITY PRESS OULU 2001 Myllymäki, Vesa, Design, synthesis and testing of new chiral sulfide catalysts for Corey-Chaykovsky reaction Department of Chemistry, University of Oulu, P.O.Box 3000, FIN-90014 University of Oulu, Finland 2001 Oulu, Finland (Manuscript received 16 November 2001) Abstract The first part of this monograph discusses the asymmetric, ylide based, reagent controlled epoxidations. Both different chiral ylides and epoxidation processes, stoichiometric and catalytic, are reviewed. In the following part, new chiral sulfide catalysts were discovered as enantioselective catalysts for the Corey-Chaykovsky reaction (epoxidation of aldehydes via sulfonium ylides). Using a crystal structure of an oxazolidine derivative as a starting point, a thiazolidine ligand family was designed, synthesized and finally employed as catalysts in the asymmetric epoxidation of benzaldehyde. The ligands were prepared starting from L-valine, L-tert-leucine, D-penicillamine and L-cysteine.
    [Show full text]