The Circumnuclear Ring (CNR) (11 Slides) – Quintuplet Proper Members (Qpms) (6 Slides) – Pistol Nebula (10 Slides)

Total Page:16

File Type:pdf, Size:1020Kb

The Circumnuclear Ring (CNR) (11 Slides) – Quintuplet Proper Members (Qpms) (6 Slides) – Pistol Nebula (10 Slides) SOFIA/FORCAST Observations of the Galactic Center Ryan M. Lau SOFIA Community Collaborators: T. L. Herter, M. R. Morris, E. E. Becklin, M. J. Hankins, Task Force Teletalks, J. D. Adams, G. E. Gull, C. P. Henderson, J. Schoenwald February 6, 2013 SOFIA/FORCAST Observations of the Galactic Center R. M. Lau Talk Outline • Background – The Galactic Center – Observations • Results and Science – The Circumnuclear Ring (CNR) (11 slides) – Quintuplet Proper Members (QPMs) (6 slides) – Pistol Nebula (10 slides) • Further Work 2 SOFIA/FORCAST Observations of the Galactic Center R. M. Lau The Galactic Center • ~500 pc unique region containing a 4,000,000 solar mass black hole, massive stars, supernovae, and star formation regions QC & Pistol • 10% of present SF activity in Galaxy occurs in GC yet only tiny fraction of a percent of volume in Galactic disk CNR 10 pc • Contains ~4/12 of the LBVs and ~90/240 of Wolf-Rayet stars in galaxy 3 SOFIA/FORCAST Observations of the Galactic Center R. M. Lau The Galactic Center: Inner 50 Pc • Circumnuclear Ring (CNR) – Dense ring of gas and dust surrounding Sgr A* by 1.4 pc • Quintuplet Cluster (QC) QC & Pistol – ~4 Myr cluster of hot, massive stars – Named after 5 bright IR sources within cluster (we observe 4 of them) • Pistol Nebula CNR – Asymmetric shell of dust and 10 pc gas surrounding the Pistol star – Appears to be shaped by 8 μm Spitzer/IRAC image of the inner interaction with QC winds 50 pc of the Galactic Center 4 SOFIA/FORCAST Observations of the Galactic Center R. M. Lau Observations • SOFIA/FORCAST Quintuplet Galactic Center Stars observations conducted during Basic Science flights 63 and 64 QC & Pistol Nebula Pistol on June 4, 2011 and 8, 2011, respectively. 40 pc CNR SOFIA/FORCAST images CNR at 19.7 (blue), 31.5 (green), 37.1 (red) mm 8 μm Spitzer/IRAC image of the inner 50 pc of the Galactic Center 5 SOFIA/FORCAST Observations of the Galactic Center R. M. Lau FORCAST • Facility Instrument – LHe cooled (4.2 K), 700 lbs • Dual-Channel 256x256 Camera w/ Si BIB arrays – BIB: Blocked-Impurity-Band – 5-25 mm with Si:As array – 25-38 mm with Si:Sb array • Plate scale: 0.75 arcsec/pixel – 3.23.2 arcmin FOV • Selectable filters over the 5 - 38 mm range FORCAST commissioning in mid-March 2013 and available for Cycle 1B Above: FORCAST mounted on the SOFIA Telescope observations in early Summer 2013 Below: FORCAST in the DAOF lab 6 SOFIA/FORCAST Observations of the Galactic Center R. M. Lau FORCASTFilter Profiles Filters 1.0 Filter (mm) R (l/Dl) 0.8 5.3 33 6.3 48 0.6 6.6 34 0.4 7.6 15 Filter Transmission 0.2 8.6 42 11.0 12 0.0 5 6 7 8 9 10 11 12 11.28 56 Wavelength (microns) Filter Profiles 19.5 3.8 1.0 19.7 31.5 37.1 24.4 7.5 0.8 30.6 5.7 0.6 33.4 18 34.8 8.3 0.4 37.1 8.8 Filter Transmission 0.2 Left: Representative FORCAST filter 0.0 curves (not including atmospheric 15 20 25 30 35 40 transmission or detector response). Wavelength (microns) Arrows indicate filters used in GC observations. 7 SOFIA/FORCAST Observations of the Galactic Center R. M. Lau Galactic Center Results: The Circumnuclear Ring QC & Pistol 40 pc CNR 8 μm Spitzer/IRAC image of the inner SOFIA/FORCAST false color image of the inner 6 pc of the GC at 19.7 50 pc of the Galactic Center 8 (blue), 31.5 (green), 37.1 (red) mm SOFIA/FORCAST Observations of the Galactic Center R. M. Lau The Ring around Sgr A* Face on View Observed View SOFIA/FORCAST Sgr A* Northern Arm East-West Bar Observed view of CNR model 1 pc Face-on view of CNR model SOFIA/FORCAST false-color CNR inclined by ~67 degrees and image of CNR has a radius of 1.4 pc 9 SOFIA/FORCAST Observations of the Galactic Center R. M. Lau Observations of the CNR Deconvolved and reconvolved to 2.5’’ beamsize Left: Observed SOFIA/FORCAST images of the CNR at different intensity stretches Right: Deconvolved and reconvolved CNR images 10 SOFIA/FORCAST Observations of the Galactic Center R. M. Lau Evidence for Central Heating b a c b c a e e d d Above: 37.1 mm intensity map Shifts in peaks across wavelengths indicate a Upper Right: Intensity line cut through center of ring radial temperature gradient and central heating11 Lower Right: Intensity line cut through south of ring SOFIA/FORCAST Observations of the Galactic Center R. M. Lau Temperatures Across the Ring • Temperatures range from 70 - 85 K – Consistent with temperature calculations assuming central 7 L ~ 2 x 10 Lsun heating source. • Fairly uniform temperature around ring – Heating dominated by radiation from central cluster Color temperature map of the inner – No star formation 6 pc of the GC derived from 19.7 and 37.1 µm intensity maps occurring in rung 12 SOFIA/FORCAST Observations of the Galactic Center R. M. Lau CNR Column Density • Column densities range from 0.025 – 0.4 – They peak at the northern and southern clumps • A majority of the material in this region lies in the ring (not the Northern arm or East-West bar) • Total CNR gas mass is ~450 Solar masses* Optical depth map at 37.1 mm of the inner 6 pc of the GC. Contours at 0.025, 0.05, 0.1, 0.2, and 0.4 (dark) 13 *Assuming dust to gas mass ratio of 1/100 SOFIA/FORCAST Observations of the Galactic Center R. M. Lau Ring Morphology • We can determine the width of the CNR given our 2.5’’ resolution images Rin φo – We can also find the Sky Plane inclination angle θi (67°), θi and inner radius Rin (1.4 pc) • From the width we Line of determine the Sight opening angle φo (14°) h and ring height Cross section through CNR. The h (0.35 pc) orange regions indicate the illuminated region of the ring 14 SOFIA/FORCAST Observations of the Galactic Center R. M. Lau CNR Intensity Model 37.1 µm 37.1 µm MODEL OBS Model 37.1 µm Intensity map of CNR Observed 37.1 µm Intensity map of Density at inner edge is n = 104 cm-3 the inner 6 pc of the GC Model has been convolved with 2.5’’ Gaussian to match beamsize of the observed image 15 SOFIA/FORCAST Observations of the Galactic Center R. M. Lau Model vs Observed 37.1 Intensity Map Radial Line Cuts: East-West 37.1 µm East-West Intensity Line Cut OBS Western Arc 15 Observed 10 Model Intensity (Jy) Intensity 5 0 -60 -40 -20 0 20 40 60 Pixel Western Arc Observed 37.1 µm Intensity map of the inner 6 pc of the GC with East- Model vs. Observed 37.1 µm West cut overlaid intensity line cut through CNR Model intensity peak location, width, and value at Western arc are consistent with observed data 16 SOFIA/FORCAST Observations of the Galactic Center R. M. Lau Model vs Observed 37.1 Intensity Map Radial Line Cuts: Diagonal 37.1 µm Diagonal Intensity Line Cut OBS Western Arc 15 Observed Model 10 Intensity (Jy) Intensity 5 0 -50 0 50 Pixel Western Arc Observed 37.1 µm Intensity map of the inner 6 pc of the GC with Model vs. Observed 37.1 µm intensity diagonal cut overlaid line cut through CNR. Model intensity peak location, width, and value at Western arc are consistent with observed data 17 SOFIA/FORCAST Observations of the Galactic Center R. M. Lau Inner Edge “Clumps” • We resolve “clumps” at the inner edge of the CNR • “Clumps” due to density enhancements (not embedded sources) • n ~ 2-3 x 104 cm-3 SOFIA/FORCAST false color image of the inner 6 pc of the GC at 19.7 • Periodic? (blue), 31.5 (green), 37.1 (red) mm. Inset shows zoom of inner edge “clumps” 18 SOFIA/FORCAST Observations of the Galactic Center R. M. Lau CNR Results Summary • The CNR is heated by central cluster of stars • Observed temperatures consistent with heating by central source with total luminosity 7 L ~ 2 x 10 Lsun • No star formation occurring in CNR • Dust emission from CNR can be modeled as an inclined ring • Possibly periodic “clumps” occur SOFIA/FORCAST false color image in the inner edge of the CNR of the inner 6 pc of the GC at 19.7 (blue), 31.5 (green), 37.1 (red) mm 19 SOFIA/FORCAST Observations of the Galactic Center R. M. Lau Galactic Center Results: The Quintuplet Proper Members* Quintuplet Proper Members QC & Pistol 40 pc *Work lead by Matt Hankins, CNR senior undergrad at UCA 8 μm Spitzer/IRAC image of the inner SOFIA/FORCAST false color image of the Quintuplet cluster at 19.7 (blue), 50 pc of the Galactic Center 31.5 (green), 37.1 (red) mm 20 SOFIA/FORCAST Observations of the Galactic Center R. M. Lau The Quintuplet Proper Members (QPMs) • Quintuplet cluster age ~4 Myrs – Cluster of hot, massive stars – Coeval formation Q9 Q4* Q1 Q2 • QPMs very luminous (L~105 Q3 LSun), cool (600-1200 K) sources with featureless K- band spectra – Extremely dusty Pistol • Late-type dusty Wolf-Rayet Nebula stars (DWCL) (Figer et al. 1999) SOFIA/FORCAST false color image of 1 pc the Quintuplet cluster at 19.7 (blue), 21 31.5 (green), 37.1 (red) mm *we barely observe Q4 SOFIA/FORCAST Observations of the Galactic Center R.
Recommended publications
  • Luminous Blue Variables
    Review Luminous Blue Variables Kerstin Weis 1* and Dominik J. Bomans 1,2,3 1 Astronomical Institute, Faculty for Physics and Astronomy, Ruhr University Bochum, 44801 Bochum, Germany 2 Department Plasmas with Complex Interactions, Ruhr University Bochum, 44801 Bochum, Germany 3 Ruhr Astroparticle and Plasma Physics (RAPP) Center, 44801 Bochum, Germany Received: 29 October 2019; Accepted: 18 February 2020; Published: 29 February 2020 Abstract: Luminous Blue Variables are massive evolved stars, here we introduce this outstanding class of objects. Described are the specific characteristics, the evolutionary state and what they are connected to other phases and types of massive stars. Our current knowledge of LBVs is limited by the fact that in comparison to other stellar classes and phases only a few “true” LBVs are known. This results from the lack of a unique, fast and always reliable identification scheme for LBVs. It literally takes time to get a true classification of a LBV. In addition the short duration of the LBV phase makes it even harder to catch and identify a star as LBV. We summarize here what is known so far, give an overview of the LBV population and the list of LBV host galaxies. LBV are clearly an important and still not fully understood phase in the live of (very) massive stars, especially due to the large and time variable mass loss during the LBV phase. We like to emphasize again the problem how to clearly identify LBV and that there are more than just one type of LBVs: The giant eruption LBVs or h Car analogs and the S Dor cycle LBVs.
    [Show full text]
  • POSTERS SESSION I: Atmospheres of Massive Stars
    Abstracts of Posters 25 POSTERS (Grouped by sessions in alphabetical order by first author) SESSION I: Atmospheres of Massive Stars I-1. Pulsational Seeding of Structure in a Line-Driven Stellar Wind Nurdan Anilmis & Stan Owocki, University of Delaware Massive stars often exhibit signatures of radial or non-radial pulsation, and in principal these can play a key role in seeding structure in their radiatively driven stellar wind. We have been carrying out time-dependent hydrodynamical simulations of such winds with time-variable surface brightness and lower boundary condi- tions that are intended to mimic the forms expected from stellar pulsation. We present sample results for a strong radial pulsation, using also an SEI (Sobolev with Exact Integration) line-transfer code to derive characteristic line-profile signatures of the resulting wind structure. Future work will compare these with observed signatures in a variety of specific stars known to be radial and non-radial pulsators. I-2. Wind and Photospheric Variability in Late-B Supergiants Matt Austin, University College London (UCL); Nevyana Markova, National Astronomical Observatory, Bulgaria; Raman Prinja, UCL There is currently a growing realisation that the time-variable properties of massive stars can have a funda- mental influence in the determination of key parameters. Specifically, the fact that the winds may be highly clumped and structured can lead to significant downward revision in the mass-loss rates of OB stars. While wind clumping is generally well studied in O-type stars, it is by contrast poorly understood in B stars. In this study we present the analysis of optical data of the B8 Iae star HD 199478.
    [Show full text]
  • The Orbital Motion of the Quintuplet Cluster—A Common Origin for the Arches and Quintuplet Clusters?∗
    The Astrophysical Journal, 789:115 (20pp), 2014 July 10 doi:10.1088/0004-637X/789/2/115 C 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.A. THE ORBITAL MOTION OF THE QUINTUPLET CLUSTER—A COMMON ORIGIN FOR THE ARCHES AND QUINTUPLET CLUSTERS?∗ A. Stolte1,B.Hußmann1, M. R. Morris2,A.M.Ghez2, W. Brandner3,J.R.Lu4, W. I. Clarkson5, M. Habibi1, and K. Matthews6 1 Argelander Institut fur¨ Astronomie, Auf dem Hugel¨ 71, D-53121 Bonn, Germany; [email protected] 2 Division of Astronomy and Astrophysics, UCLA, Los Angeles, CA 90095-1547, USA; [email protected], [email protected] 3 Max-Planck-Institut fur¨ Astronomie, Konigstuhl¨ 17, D-69117 Heidelberg, Germany; [email protected] 4 Institute for Astronomy, University of Hawai’i, 2680 Woodlawn Drive, Honolulu, HI 96822, USA; [email protected] 5 Department of Natural Sciences, University of Michigan-Dearborn, 125 Science Building, 4901 Evergreen Road, Dearborn, MI 48128, USA; [email protected] 6 Caltech Optical Observatories, California Institute of Technology, MS 320-47, Pasadena, CA 91225, USA; [email protected] Received 2014 January 16; accepted 2014 May 14; published 2014 June 20 ABSTRACT We investigate the orbital motion of the Quintuplet cluster near the Galactic center with the aim of constraining formation scenarios of young, massive star clusters in nuclear environments. Three epochs of adaptive optics high-angular resolution imaging with the Keck/NIRC2 and Very Large Telescope/NAOS-CONICA systems were obtained over a time baseline of 5.8 yr, delivering an astrometric accuracy of 0.5–1 mas yr−1.
    [Show full text]
  • 121012-AAS-221 Program-14-ALL, Page 253 @ Preflight
    221ST MEETING OF THE AMERICAN ASTRONOMICAL SOCIETY 6-10 January 2013 LONG BEACH, CALIFORNIA Scientific sessions will be held at the: Long Beach Convention Center 300 E. Ocean Blvd. COUNCIL.......................... 2 Long Beach, CA 90802 AAS Paper Sorters EXHIBITORS..................... 4 Aubra Anthony ATTENDEE Alan Boss SERVICES.......................... 9 Blaise Canzian Joanna Corby SCHEDULE.....................12 Rupert Croft Shantanu Desai SATURDAY.....................28 Rick Fienberg Bernhard Fleck SUNDAY..........................30 Erika Grundstrom Nimish P. Hathi MONDAY........................37 Ann Hornschemeier Suzanne H. Jacoby TUESDAY........................98 Bethany Johns Sebastien Lepine WEDNESDAY.............. 158 Katharina Lodders Kevin Marvel THURSDAY.................. 213 Karen Masters Bryan Miller AUTHOR INDEX ........ 245 Nancy Morrison Judit Ries Michael Rutkowski Allyn Smith Joe Tenn Session Numbering Key 100’s Monday 200’s Tuesday 300’s Wednesday 400’s Thursday Sessions are numbered in the Program Book by day and time. Changes after 27 November 2012 are included only in the online program materials. 1 AAS Officers & Councilors Officers Councilors President (2012-2014) (2009-2012) David J. Helfand Quest Univ. Canada Edward F. Guinan Villanova Univ. [email protected] [email protected] PAST President (2012-2013) Patricia Knezek NOAO/WIYN Observatory Debra Elmegreen Vassar College [email protected] [email protected] Robert Mathieu Univ. of Wisconsin Vice President (2009-2015) [email protected] Paula Szkody University of Washington [email protected] (2011-2014) Bruce Balick Univ. of Washington Vice-President (2010-2013) [email protected] Nicholas B. Suntzeff Texas A&M Univ. suntzeff@aas.org Eileen D. Friel Boston Univ. [email protected] Vice President (2011-2014) Edward B. Churchwell Univ. of Wisconsin Angela Speck Univ. of Missouri [email protected] [email protected] Treasurer (2011-2014) (2012-2015) Hervey (Peter) Stockman STScI Nancy S.
    [Show full text]
  • 2012 Annual Progress Report and 2013 Program Plan of the Gemini Observatory
    2012 Annual Progress Report and 2013 Program Plan of the Gemini Observatory Association of Universities for Research in Astronomy, Inc. Table of Contents 0 Executive Summary ....................................................................................... 1 1 Introduction and Overview .............................................................................. 5 2 Science Highlights ........................................................................................... 6 2.1 Highest Resolution Optical Images of Pluto from the Ground ...................... 6 2.2 Dynamical Measurements of Extremely Massive Black Holes ...................... 6 2.3 The Best Standard Candle for Cosmology ...................................................... 7 2.4 Beginning to Solve the Cooling Flow Problem ............................................... 8 2.5 A Disappearing Dusty Disk .............................................................................. 9 2.6 Gas Morphology and Kinematics of Sub-Millimeter Galaxies........................ 9 2.7 No Intermediate-Mass Black Hole at the Center of M71 ............................... 10 3 Operations ...................................................................................................... 11 3.1 Gemini Publications and User Relationships ............................................... 11 3.2 Science Operations ........................................................................................ 12 3.2.1 ITAC Software and Queue Filling Results ..................................................
    [Show full text]
  • The Stellar Content of the Quintuplet Cluster Donald
    THE STELLAR CONTENT OF THE QUINTUPLET CLUSTER DONALD F. FIGER, IAN S. MCLEAN AND MARK MORRIS University of California, Los Angeles Division of Astronomy, Department of Physics and Astronomy, Los Angeles, CA 90095-1562 AND FRANCISCO NAJARRO Institut für Astronomie und Astrophysik der Universität München Scheinerstr. 1, D-81679 München, Germany Abstract. The Quintuplet cluster contains over two dozen post main sequence descendants of massive O-stars, including Wolf-Rayet and OBI stars. The five Quintuplet-proper members (QPMs) may be dusty late-type Wolf-Rayet carbon stars (DWCLs), and the Pistol star may have a very high luminosity, « io6,7±0*5 L®. Coupled with its rather cool temperature, 12—23 kK, the Pistol Star is well in violation of the Humphreys—Davidson limit. We argue that the surrounding "Pistol" nebula was ejected from the star a few thousand years ago. The cluster stars imply the following approximate cluster properties: 4 7 3±α2 49 9 1 tage - 2 to 7 Myrs, M ~ 10 M®, L ~ 10 · L®, and NL2/,C > 10 · s" . The "Sickle" (GO.18-0.04) radio feature and the mid-IR ring (seen in MSX images) may naturally be explained by the presence of a young cluster and a nearby molecular cloud. 1. The Quintuplet Cluster We have used K-band spectra to identify the following cluster stars: 14 OBI, 2 Ofpe/WN9, 4 WN, 4 WC, 1 LBV candidate, 1 red supergiant (RSG), and 5 possible DWCLs (Figer, Morris, & McLean 1996). The ages are between 2 to 7 Myrs according to recent stellar evolution models (Meynet 1995); the low (high) end of the range applies to the OBI stars (RSG).
    [Show full text]
  • Massive Stars in the Galactic Center Quintuplet Cluster
    Institut für Physik und Astronomie Astrophysik Massive stars in the Galactic Center Quintuplet cluster Dissertation zur Erlangung des akademischen Grades Doktor der Naturwissenschaften (Dr. rer. nat.) eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Potsdam von Adriane Liermann Potsdam, Juni 2009 This work is licensed under a Creative Commons License: Attribution - Noncommercial - No Derivative Works 3.0 Germany To view a copy of this license visit http://creativecommons.org/licenses/by-nc-nd/3.0/de/deed.en Published online at the Institutional Repository of the University of Potsdam: URL http://opus.kobv.de/ubp/volltexte/2009/3722/ URN urn:nbn:de:kobv:517-opus-37223 [http://nbn-resolving.org/urn:nbn:de:kobv:517-opus-37223] Summary The presented thesis describes the observations of the Galactic center Quintuplet cluster, the spectral analysis of the cluster Wolf-Rayet stars of the nitrogen sequence to determine their fundamental stellar parameters, and discusses the obtained results in a general context. The Quintuplet cluster was discovered in one of the first infrared surveys of the Galactic center region (Okuda et al. 1987, 1989) and was observed for this project with the ESO-VLT near-infrared integral field instrument SINFONI-SPIFFI. The subsequent data reduction was performed in parts with a self-written pipeline to obtain flux-calibrated spectra of all objects detected in the imaged field of view. First results of the observation were compiled and published in a spectral catalog of 160 flux-calibrated K-band spectra in the range of 1.95 to 2.45 µm, containing 85 early-type (OB) stars, 62 late-type (KM) stars, and 13 Wolf-Rayet stars.
    [Show full text]
  • FY13 High-Level Deliverables
    National Optical Astronomy Observatory Fiscal Year Annual Report for FY 2013 (1 October 2012 – 30 September 2013) Submitted to the National Science Foundation Pursuant to Cooperative Support Agreement No. AST-0950945 13 December 2013 Revised 18 September 2014 Contents NOAO MISSION PROFILE .................................................................................................... 1 1 EXECUTIVE SUMMARY ................................................................................................ 2 2 NOAO ACCOMPLISHMENTS ....................................................................................... 4 2.1 Achievements ..................................................................................................... 4 2.2 Status of Vision and Goals ................................................................................. 5 2.2.1 Status of FY13 High-Level Deliverables ............................................ 5 2.2.2 FY13 Planned vs. Actual Spending and Revenues .............................. 8 2.3 Challenges and Their Impacts ............................................................................ 9 3 SCIENTIFIC ACTIVITIES AND FINDINGS .............................................................. 11 3.1 Cerro Tololo Inter-American Observatory ....................................................... 11 3.2 Kitt Peak National Observatory ....................................................................... 14 3.3 Gemini Observatory ........................................................................................
    [Show full text]
  • Metallicity in the GC Roberta M
    Journal of Physics: Conference Series OPEN ACCESS Related content - Massive stars in galaxies. Metallicity in the GC Roberta M. Humphreys - Do Voids Cluster? To cite this article: Francisco Najarro 2006 J. Phys.: Conf. Ser. 54 036 S. Haque-Copilah and D. Basu - Near-Infrared Spectra of Galactic Stellar Clusters Detected on Spitzer/GLIMPSE Images Maria Messineo, Ben Davies, Valentin D. View the article online for updates and enhancements. Ivanov et al. Recent citations - Atmospheric NLTE models for the spectroscopic analysis of blue stars with winds J. Puls et al - Mass loss from hot massive stars Joachim Puls et al - Two extremely luminous WN stars in the Galactic center with circumstellar emission from dust and gas A. Barniske et al This content was downloaded from IP address 161.111.20.207 on 22/07/2021 at 11:58 Institute of Physics Publishing Journal of Physics: Conference Series 54 (2006) 224–232 doi:10.1088/1742-6596/54/1/036 Galaxy Center Workshop 2006 Metallicity in the GC Francisco Najarro1 1 Instituto de Estructura de la Materia, CSIC, Serrano 121, 29006 Madrid, Spain E-mail: [email protected] Abstract. We review quantitative spectroscopic studies of massive stars in the three Galactic Center clusters: Quintuplet, Arches and Central cluster. Thanks to the impressive evolution of IR detectors and the new generation of line blanketed models for the extended atmospheres of hot stars we are able to accurately derive the physical properties and metallicity estimates of the massive stars in these clusters. For the Quintuplet cluster our analysis of the LBVs provides a direct estimate of α-elements and Fe chemical abundances in these objects.
    [Show full text]
  • Arxiv:1601.03395V2 [Astro-Ph.SR] 12 Feb 2016 Telescope (Houck Et Al
    Astronomy & Astrophysics manuscript no. wr102c_arxiv c ESO 2016 February 15, 2016 Analysis of the WN star WR 102c, its WR nebula, and the associated cluster of massive stars in the Sickle Nebula? M. Steinke1; 2, L. M. Oskinova1, W.-R. Hamann1, A. Sander1, A. Liermann3, and H. Todt1 1 Institute of Physics and Astronomy, University of Potsdam, 14476 Potsdam, Germany e-mail: [email protected], [email protected] 2 I. Physikalisches Institut der Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany 3 Leibniz Institute for Astrophysics Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany Received 04 November 2015; accepted ABSTRACT Context. The massive Wolf-Rayet type star WR 102c is located near the Quintuplet Cluster, one of the three massive star clusters in the Galactic Centre region. Previous studies indicated that WR 102c may have a dusty circumstellar nebula and is among the main ionising sources of the Sickle Nebula associated with the Quintuplet Cluster. Aims. The goals of our study are to derive the stellar parameters of WR 102c from the analysis of its spectrum and to investigate its stellar and nebular environment. Methods. We obtained observations with the ESO VLT integral field spectrograph SINFONI in the K-band, extracted the stellar spectra, and analysed them by means of stellar atmosphere models. Results. Our new analysis supersedes the results previously reported for WR 102c. We significantly decrease its bolometric luminosity and hydrogen content. We detect four early OB type stars close to WR 102c. These stars have radial velocities similar to that of WR 102c.
    [Show full text]
  • On the Fine Structure of the Cepheid Metallicity Gradient
    A&A 566, A37 (2014) Astronomy DOI: 10.1051/0004-6361/201323198 & c ESO 2014 Astrophysics On the fine structure of the Cepheid metallicity gradient in the Galactic thin disk, K. Genovali1, B. Lemasle2,G.Bono1,3, M. Romaniello4, M. Fabrizio5, I. Ferraro3,G.Iannicola3,C.D.Laney6,7, M. Nonino8, M. Bergemann9,10, R. Buonanno1,5, P. François11,12, L. Inno1,4, R.-P. Kudritzki13,14,9, N. Matsunaga15, S. Pedicelli1, F. Primas4, and F. Thévenin16 1 Dipartimento di Fisica, Università di Roma Tor Vergata, via della Ricerca Scientifica 1, 00133 Rome, Italy e-mail: [email protected] 2 Astronomical Institute Anton Pannekoek, Science Park 904, PO Box 94249, 1090 GE Amsterdam, The Netherlands 3 INAF – Osservatorio Astronomico di Roma, via Frascati 33, Monte Porzio Catone, Rome, Italy 4 European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching bei Munchen, Germany 5 INAF – Osservatorio Astronomico di Collurania, via M. Maggini, 64100 Teramo, Italy 6 Department of Physics and Astronomy, N283 ESC, Brigham Young University, Provo, UT 84601, USA 7 South African Astronomical Observatory, PO Box 9, Observatory 7935, South Africa 8 INAF – Osservatorio Astronomico di Trieste, via G.B. Tiepolo 11, 40131 Trieste, Italy 9 Max-Planck-Institut fur Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching, Germany 10 Institute of Astronomy, University of Cambridge, Madingley Road, CB3 0HA, Cambridge, UK 11 GEPI – Observatoire de Paris, 64 avenue de l’Observatoire, 75014 Paris, France 12 UPJV – Université de Picardie Jules Verne, 80000 Amiens, France 13 Institute for Astronomy, University of Hawai’i, 2680 Woodlawn Dr, Honolulu, HI 96822, USA 14 University Observatory Munich, Scheinerstr.
    [Show full text]
  • ASTRONOMİ Terimleri
    A tayf türü yıldızlar (Alm. Sterne von Typ A, pl; Fr. étoiles de type A, pl; İng. A type stars) ast. Etkin sıcaklıkları 7.500 ile 10.000 K, anakolda olanların kütlesi 1,6 ile 2,5 Güneş kütlesi aralığında olan, tayflarında güçlü hidrojen ve iyonlaşmış ağır element çizgileri görülen açık mavi yıldızlar. aa indeksi (Alm. aa Index, m; Fr. indice aa; İng. aa index) ast. Yaklaşık zıt kutuplarda 50 derece enlemlerinde bulunan iki istasyondan elde edilen K jeomanyetik aktivite indisinden hesaplanan günlük ya da yarım günlük jeomanyetik aktivite indeksi. Abell kataloğu (Alm. Abell-Katalog, m; Fr. catalogue Abell, m; İng. Abell catalogue) ast. 1958 yılında George O. Abell tarafından yayınlanan, 2712 yakın gökada kümesini içeren, her bir kümenin en az 50 gökada içermesi, Abell yarıçapı içinde bulunacak kadar derlitoplu olmaları, 33 ile 330 megaparsek arasındaki uzaklıklarda bulunmaları gibi kriterleri sağlayan gökadalar kataloğu. Abell yarıçapı (Alm. Abell-Radius, m; Fr. rayon d'Abel, m; İng. Abell radius) ast. Abell kataloğundaki gökada kümelerinden hareketle, uzunluğu 2,14 megaparsek kabul edilen, tipik bir gökada kümesinin yarıçapı. açık evren (Alm. offenes Universum, n; Fr. univers ouvert, m; İng. open universe) ast. Ortalama madde yoğunluğunun kritik madde yoğunluğuna oranı birden küçük olduğunda, uzayın geometrik şeklinin bir eyer yüzeyi gibi açık olduğunu, bir üçgenin iç açılarının toplamının 180 dereceden küçük olduğunu, kesişmeyen doğruların her noktada eşit uzaklıkta olmadıklarını, evrenin hiperbolik şekilde olduğunu öngören evren modeli. açık yıldız kümesi (Alm. galaktischer Haufen, m; offener Sternhaufen, m; Fr. amas galactique ouvert, m; amas ouvert, m; İng. galactic cluster; open cluster) ast. Birbirlerine kütleçekim kuvveti ile zayıfça bağlı bir kaç on ila bir kaç yüz genç yıldızdan oluşan topluluk.
    [Show full text]