2017 Geotechnical Engineering Manual Geotechnical Engineering Section

Total Page:16

File Type:pdf, Size:1020Kb

2017 Geotechnical Engineering Manual Geotechnical Engineering Section 2017 Geotechnical Engineering Manual Geotechnical Engineering Section 1/19/2017 MnDOT Geotechnical Manual ii 2017 GEOTECHNICAL ENGINEERING MANUAL ..................................................................................................... I GEOTECHNICAL ENGINEERING SECTION ............................................................................................................... I 1 PURPOSE & OVERVIEW OF MANUAL ........................................................................................................ 8 1.1 PURPOSE ............................................................................................................................................................ 8 1.2 GEOTECHNICAL ENGINEERING ................................................................................................................................. 8 1.3 OVERVIEW OF THE GEOTECHNICAL SECTION .............................................................................................................. 8 1.4 MANUAL DESCRIPTION AND DEVELOPMENT .............................................................................................................. 9 2 GEOTECHNICAL PLANNING ....................................................................................................................... 12 2.1 PURPOSE, SCOPE, RESPONSIBILITY ......................................................................................................................... 12 2.2 PPMS AND PROGRAMMED PROJECTS .................................................................................................................... 13 2.3 GEOTECHNICAL REQUEST FORM ............................................................................................................................ 14 2.4 OFFICE REVIEW .................................................................................................................................................. 14 2.4.1 Geologic Maps ..................................................................................................................................... 14 2.4.2 Existing Borings .................................................................................................................................... 15 2.4.3 Hydraulics Reports ............................................................................................................................... 15 2.4.4 Site Visit ............................................................................................................................................... 15 2.4.5 Boring and In Situ Test Frequency ........................................................................................................ 15 2.4.6 Subsurface Investigation Plan .............................................................................................................. 19 3 FIELD INVESTIGATIONS ............................................................................................................................. 23 3.1 UTILITY CLEARANCE ............................................................................................................................................ 24 3.2 PROPERTY ACCESS .............................................................................................................................................. 24 3.3 ROADWAY SAFETY AND TRAFFIC CONTROL .............................................................................................................. 24 3.3.1 Location Surveys .................................................................................................................................. 24 3.3.2 Site Clean-Up ........................................................................................................................................ 24 3.4 SUBSURFACE INVESTIGATIONS ............................................................................................................................... 25 3.4.1 Diamond Core Drilling .......................................................................................................................... 25 3.4.2 Soil Sampling ........................................................................................................................................ 26 3.4.3 Continuous Soil Sampling ..................................................................................................................... 27 3.4.4 Boring Depths ...................................................................................................................................... 27 3.4.5 Field Logs ............................................................................................................................................. 28 3.4.6 Borehole Sealing .................................................................................................................................. 31 3.4.7 Special Well Construction Areas .......................................................................................................... 33 3.4.8 Transporting and Storing Samples ....................................................................................................... 33 3.5 IN SITU MEASUREMENTS ..................................................................................................................................... 33 3.5.1 In Situ Rock Measurements .................................................................................................................. 34 3.5.2 Standard Penetration Test (SPT) .......................................................................................................... 34 3.5.3 MnDOT Modified Standard Penetration Test (SPT) ............................................................................. 37 3.5.4 Cone Penetration Test (CPT) ................................................................................................................ 38 3.5.5 Flat Plate Dilatometer (DMT) (ASTM D6635-01) ............................................................................... 40 3.5.6 Pressuremeter Test (PMT) (ASTM D4719) .......................................................................................... 41 3.5.7 Test Pits ................................................................................................................................................ 42 3.5.8 Geophysical Methods ........................................................................................................................... 42 3.6 GROUNDWATER INVESTIGATIONS .......................................................................................................................... 45 3.6.1 Borings & Soundings ............................................................................................................................ 45 3.6.2 Piezometers.......................................................................................................................................... 46 3.6.3 In-Situ Testing ...................................................................................................................................... 46 4 LABORATORY TESTING ............................................................................................................................. 48 4.1 MINIMUM TESTING RATES ................................................................................................................................... 48 4.2 MOISTURE CONTENT TESTS .................................................................................................................................. 48 1/19/2017 MnDOT Geotechnical Manual iii 4.3 UNCONFINED COMPRESSION TESTS ....................................................................................................................... 48 4.4 ONE DIMENSIONAL CONSOLIDATION TESTS ............................................................................................................. 49 4.5 TRIAXIAL COMPRESSION TESTS .............................................................................................................................. 49 4.6 UNIT WEIGHT TESTS ........................................................................................................................................... 49 4.7 SPECIFIC GRAVITY ............................................................................................................................................... 50 4.8 ENGINEERING PROPERTIES ................................................................................................................................... 50 4.8.1 Atterberg Limit Tests ............................................................................................................................ 50 4.8.2 In-place Volume and Weight Relationships ......................................................................................... 51 4.8.3 Grain Size Analysis ............................................................................................................................... 53 4.8.4 Organic Content Tests .......................................................................................................................... 54 4.8.5 Unconfined Compression Tests for Rock .............................................................................................. 54 5 SOIL & ROCK CLASSIFICATION AND LOGGING ........................................................................................... 55 5.1 FIELD IDENTIFICATION ........................................................................................................................................
Recommended publications
  • Water Well Drilling for the Prospective Owner
    WATER WELL DRILLING FOR THE PROSPECTIVE WELL OWNER (INDIVIDUAL, DOMESTIC USE) WATER WELL DRILLING FOR THE PROSPECTIVE WELL OWNER (INDIVIDUAL, DOMESTIC USE) This pamphlet was compiled by the Board of Water Well Contractors primarily to assist prospective owners of non-public wells. While much of the information is also useful for community, multi-family, or public water supply wells; there are additional considerations, not discussed in this publication, that need to be addressed. If you are the current or prospective owner of a community, multi- family, or public water supply well; please contact the Dept. of Environmental Quality, Public Water Supply Division for assistance. Contact information can be found at the end of this publication. Revised 2007 How Much Water Do I Need? You will need a dependable water supply for your present and future uses. An average household uses approximately 200-400 gallons of water per day. For a family of four, this means that a domestic well should provide a dependable yield of 10 to 25 gallons per minute (gpm) to adequately supply all needs, including lawn and garden watering. Much smaller yields may be acceptable, if adequate storage tanks are used. Most mortgage companies require a well yield of at least 5 gpm. More specific information is available from county sanitarians, engineering firms, water well contractors, or pump installers. Before you have your well drilled, find out from a local drilling contractor, the Montana Department of Natural Resources and Conservation (DNRC), or the Montana Bureau of Mines and Geology (MBMG) how much water can be produced from the aquifers in your area, the chemical quality of that water, and the depth to the water supply.
    [Show full text]
  • Well Foundation Is the Most Commonly Adopted Foundation for Major Bridges in India
    Well foundation is the most commonly adopted foundation for major bridges in India. Since then many major bridges across wide rivers have been founded on wells. Well foundation is preferable to pile foundation when foundation has to resist large lateral forces. The construction principles of well foundation are similar to the conventional wells sunk for underground water. But relatively rigid and engineering behaviour. Well foundations have been used in India for centuries. The famous Taj Mahal at Agra stands on well foundation. To know the construction of well foundation. To know the different types and shapes of well foundations. To know which type of well foundation is suitable for different types of soil strata. Wells have different shapes and accordingly they are named as:- 1. Circular well, 2. Double D well, 3. Twin circular well, 4. Double octagonal well, 5. Rectangular well. . Open caisson or well Well Box Caisson Pneumatic Caisson Open caisson or well: The top and bottom of the caisson is open during construction. It may have any shape in plan. Box caisson: It is open at the top but closed at the bottom. Pneumatic caisson: It has a working chamber at the bottom of the caisson which is kept dry by forcing out water under pressure, thus permitting excavation under dry conditions. . Well foundation construction in bouldery bed strata Pasighat Bridge Andhra Pradesh The Important Factors of the bridge were as follows.. Length of the bridge - 704 mts. Foundation:- i. Type -Circular Well. ii. Outer Diameter -11.7 mtrs. iii. Inner Dia. -6.64 mtrs iv. Steining thickness -2.53 mtrs.
    [Show full text]
  • Basic Soil Science W
    Basic Soil Science W. Lee Daniels See http://pubs.ext.vt.edu/430/430-350/430-350_pdf.pdf for more information on basic soils! [email protected]; 540-231-7175 http://www.cses.vt.edu/revegetation/ Well weathered A Horizon -- Topsoil (red, clayey) soil from the Piedmont of Virginia. This soil has formed from B Horizon - Subsoil long term weathering of granite into soil like materials. C Horizon (deeper) Native Forest Soil Leaf litter and roots (> 5 T/Ac/year are “bio- processed” to form humus, which is the dark black material seen in this topsoil layer. In the process, nutrients and energy are released to plant uptake and the higher food chain. These are the “natural soil cycles” that we attempt to manage today. Soil Profiles Soil profiles are two-dimensional slices or exposures of soils like we can view from a road cut or a soil pit. Soil profiles reveal soil horizons, which are fundamental genetic layers, weathered into underlying parent materials, in response to leaching and organic matter decomposition. Fig. 1.12 -- Soils develop horizons due to the combined process of (1) organic matter deposition and decomposition and (2) illuviation of clays, oxides and other mobile compounds downward with the wetting front. In moist environments (e.g. Virginia) free salts (Cl and SO4 ) are leached completely out of the profile, but they accumulate in desert soils. Master Horizons O A • O horizon E • A horizon • E horizon B • B horizon • C horizon C • R horizon R Master Horizons • O horizon o predominantly organic matter (litter and humus) • A horizon o organic carbon accumulation, some removal of clay • E horizon o zone of maximum removal (loss of OC, Fe, Mn, Al, clay…) • B horizon o forms below O, A, and E horizons o zone of maximum accumulation (clay, Fe, Al, CaC03, salts…) o most developed part of subsoil (structure, texture, color) o < 50% rock structure or thin bedding from water deposition Master Horizons • C horizon o little or no pedogenic alteration o unconsolidated parent material or soft bedrock o < 50% soil structure • R horizon o hard, continuous bedrock A vs.
    [Show full text]
  • Engineering Bulletin 07-009
    To: New York State Department of EB Transportation ENGINEERING 07-009 BULLETIN Expires one year after issue unless replaced sooner Title: HIGHWAY DESIGN MANUAL (HDM) REVISION NO. 52 CHAPTER 9 - SOILS, WALLS, AND FOUNDATIONS CHAPTER 20.00 –CANTILEVER AND GRAVITY WALLS Distribution: Approved: Manufacturers (18) Surveyors (33) Local Govt. (31) Consultants (34) Agencies (32) Contractors (39) /s/Daniel D’Angelo________________ 3/2/07____ ____________( ) Daniel D’Angelo, P.E. Date Deputy Chief Engineer, Design ADMINISTRATIVE INFORMATION: Effective Date: This Engineering Bulletin (EB) is effective upon signature. Superseded Issuance(s): No Engineering Instructions or EBs are superseded by this EB. PURPOSE: To announce the availability of Revision No. 52 to the HDM and to rescind HDM Chapter 20.00 –Cantilever and Gravity Walls. TECHNICAL INFORMATION: Chapter 9. HDM users should replace their entire existing Chapter 9 dated June 7, 1995, and revised July 9, 2004, with the updated version dated March 2, 2007. Chapter 9 has been revised to clarify, update, and add material. Although the entire chapter is being issued, not all material has been revised. Noteworthy changes are as follows: . Section 9.3 “Soil and Foundation Considerations” was expanded to include the following: “Embankment Foundation.” This subsection combines previous subsections including “Unsuitable Material” and “Unstable Material.” “Water Quality.” This subsection replaces the previous “Erosion and Sedimentation” subsection. “Excavation Protection and Support.” This subsection replaces the previous “Trench, Culvert, and Structure Excavation” subsection. “Controlled Low-Strength Material (CLSM).” This is a new subsection. “Contract Information” was moved from Section 9.4 to Section 9.7 and Section 9.4 is retitled “Retaining Walls and Reinforced Soil Slopes and Walls.” This section incorporates the former HDM Chapter 20.00 “Cantilever and Gravity Walls.” .
    [Show full text]
  • Porosity and Permeability Lab
    Mrs. Keadle JH Science Porosity and Permeability Lab The terms porosity and permeability are related. porosity – the amount of empty space in a rock or other earth substance; this empty space is known as pore space. Porosity is how much water a substance can hold. Porosity is usually stated as a percentage of the material’s total volume. permeability – is how well water flows through rock or other earth substance. Factors that affect permeability are how large the pores in the substance are and how well the particles fit together. Water flows between the spaces in the material. If the spaces are close together such as in clay based soils, the water will tend to cling to the material and not pass through it easily or quickly. If the spaces are large, such as in the gravel, the water passes through quickly. There are two other terms that are used with water: percolation and infiltration. percolation – the downward movement of water from the land surface into soil or porous rock. infiltration – when the water enters the soil surface after falling from the atmosphere. In this lab, we will test the permeability and porosity of sand, gravel, and soil. Hypothesis Which material do you think will have the highest permeability (fastest time)? ______________ Which material do you think will have the lowest permeability (slowest time)? _____________ Which material do you think will have the highest porosity (largest spaces)? _______________ Which material do you think will have the lowest porosity (smallest spaces)? _______________ 1 Porosity and Permeability Lab Mrs. Keadle JH Science Materials 2 large cups (one with hole in bottom) water marker pea gravel timer yard soil (not potting soil) calculator sand spoon or scraper Procedure for measuring porosity 1.
    [Show full text]
  • Determination of Geotechnical Properties of Clayey Soil From
    DETERMINATION OF GEOTECHNICAL PROPERTIES OF CLAYEY SOIL FROM RESISTIVITY IMAGING (RI) by GOLAM KIBRIA Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE IN CIVIL ENGINEERING THE UNIVERSITY OF TEXAS AT ARLINGTON August 2011 Copyright © by Golam Kibria 2011 All Rights Reserved ACKNOWLEDGEMENTS I would like express my sincere gratitude to my supervising professor Dr. Sahadat Hos- sain for the accomplishment of this work. It was always motivating for me to work under his sin- cere guidance and advice. The completion of this work would not have been possible without his constant inspiration and feedback. I would also like to express my appreciation to Dr. Laureano R. Hoyos and Dr. Moham- mad Najafi for accepting to serve in my committee. I would also like to thank for their valuable time, suggestions and advice. I wish to acknowledge Dr. Harold Rowe of Earth and Environmental Science Department in the University of Texas at Arlington for giving me the opportunity to work in his laboratory. Special thanks goes to Jubair Hossain, Mohammad Sadik Khan, Tashfeena Taufiq, Huda Shihada, Shahed R Manzur, Sonia Samir,. Noor E Alam Siddique, Andrez Cruz,,Ferdous Intaj, Mostafijur Rahman and all of my friends for their cooperation and assistance throughout my Mas- ter’s study and accomplishment of this work. I wish to acknowledge the encouragement of my parents and sisters during my Master’s study. Without their constant inspiration, support and cooperation, it would not be possible to complete the work.
    [Show full text]
  • Geotechnical Investigation Across a Failed Hill Slope in Uttarakhand – a Case Study
    Indian Geotechnical Conference 2017 GeoNEst 14-16 December 2017, IIT Guwahati, India Geotechnical Investigation across a Failed Hill Slope in Uttarakhand – A Case Study Ravi Sundaram Sorabh Gupta Swapneel Kalra CengrsGeotechnica Pvt. Ltd., A-100 Sector 63, Noida, U.P. -201309 E-mail :[email protected]; [email protected]; [email protected] Lalit Kumar Feedback Infra Private Limited, 15th Floor Tower 9B, DLF cyber city Phase-III, Gurgaon, Haryana-122002 E-mail: [email protected] ABSTRACT: A landslide triggered by a cloudburst in 2013 had blocked a major highway in Uttarakhand. The paper presents details of the geotechnical and geophysical investigations done to evaluate the failure and to develop remedial measures. Seismic refraction test has been effectively used to characterize the landslide and assess the extent of the loose disturbed zone. The probable causes of failure and remedial measures are discussed. Keywords: geotechnical investigation; seismic refraction test; slope failure; landslide assessment 1. Introduction 2.2 Site Conditions Fragility of terrain is often reflected in the form of The rock mass in the area has unfavorable dip towards disasters in the hilly state of Uttarakhand. Geotectonic the valley side. In a 100-150 m stretch, the gabion wall configuration of the rocks and the high relative relief on the down-hill side of the highway, showed extensive make the area inherently unstable and vulnerable to mass distress. The overburden of boulders and soil had slid movement. The hilly terrain is faced with the dilemma of down, probably due to buildup of water pressure behind maintaining balance between environmental protection the gabion wall during heavy rains.
    [Show full text]
  • Guidelines for Sealing Geotechnical Exploratory Holes
    Missouri University of Science and Technology Scholars' Mine International Conference on Case Histories in (1998) - Fourth International Conference on Geotechnical Engineering Case Histories in Geotechnical Engineering 10 Mar 1998, 2:30 pm - 5:30 pm Guidelines for Sealing Geotechnical Exploratory Holes Cameran Mirza Strata Engineering Corporation, North York, Ontario, Canada Robert K. Barrett TerraTask (MSB Technologies), Grand Junction, Colorado Follow this and additional works at: https://scholarsmine.mst.edu/icchge Part of the Geotechnical Engineering Commons Recommended Citation Mirza, Cameran and Barrett, Robert K., "Guidelines for Sealing Geotechnical Exploratory Holes" (1998). International Conference on Case Histories in Geotechnical Engineering. 7. https://scholarsmine.mst.edu/icchge/4icchge/4icchge-session07/7 This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in International Conference on Case Histories in Geotechnical Engineering by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. 927 Proceedings: Fourth International Conference on Case Histories in Geotechnical Engineering, St. Louis, Missouri, March 9-12, 1998. GUIDELINES FOR SEALING GEOTECHNICAL EXPLORATORY HOLES Cameran Mirza Robert K. Barrett Paper No. 7.27 Strata Engineering Corporation TerraTask (MSB Technologies) North York, ON Canada M2J 2Y9 Grand Junction CO USA 81503 ABSTRACT A three year research project was sponsored by the Transportation Research Board (TRB) in 1991 to detennine the best materials and methods for sealing small diameter geotechnical exploratory holes.
    [Show full text]
  • Manual Borehole Drilling As a Cost-Effective Solution for Drinking
    water Review Manual Borehole Drilling as a Cost-Effective Solution for Drinking Water Access in Low-Income Contexts Pedro Martínez-Santos 1,* , Miguel Martín-Loeches 2, Silvia Díaz-Alcaide 1 and Kerstin Danert 3 1 Departamento de Geodinámica, Estratigrafía y Paleontología, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain; [email protected] 2 Departamento de Geología, Geografía y Medio Ambiente, Facultad de Ciencias Ambientales, Universidad de Alcalá, Campus Universitario, Alcalá de Henares, 28801 Madrid, Spain; [email protected] 3 Ask for Water GmbH, Zürcherstr 204F, 9014 St Gallen, Switzerland; [email protected] * Correspondence: [email protected]; Tel.: +34-659-969-338 Received: 7 June 2020; Accepted: 7 July 2020; Published: 13 July 2020 Abstract: Water access remains a challenge in rural areas of low-income countries. Manual drilling technologies have the potential to enhance water access by providing a low cost drinking water alternative for communities in low and middle income countries. This paper provides an overview of the main successes and challenges experienced by manual boreholes in the last two decades. A review of the existing methods is provided, discussing their advantages and disadvantages and comparing their potential against alternatives such as excavated wells and mechanized boreholes. Manual boreholes are found to be a competitive solution in relatively soft rocks, such as unconsolidated sediments and weathered materials, as well as and in hydrogeological settings characterized by moderately shallow water tables. Ensuring professional workmanship, the development of regulatory frameworks, protection against groundwater pollution and standards for quality assurance rank among the main challenges for the future.
    [Show full text]
  • Geotechnical Manual 2013 (PDF)
    2013 Geotechnical Engineering Manual Geotechnical Engineering Section Minnesota Department of Transportation 12/11/13 MnDOT Geotechnical Manual ii 2013 GEOTECHNICAL ENGINEERING MANUAL ..................................................................................................... I GEOTECHNICAL ENGINEERING SECTION ............................................................................................................... I MINNESOTA DEPARTMENT OF TRANSPORTATION ............................................................................................... I 1 PURPOSE & OVERVIEW OF MANUAL ........................................................................................................ 8 1.1 PURPOSE ............................................................................................................................................................ 8 1.2 GEOTECHNICAL ENGINEERING ................................................................................................................................. 8 1.3 OVERVIEW OF THE GEOTECHNICAL SECTION .............................................................................................................. 8 1.4 MANUAL DESCRIPTION AND DEVELOPMENT .............................................................................................................. 9 2 GEOTECHNICAL PLANNING ....................................................................................................................... 11 2.1 PURPOSE, SCOPE, RESPONSIBILITY ........................................................................................................................
    [Show full text]
  • Foundation Reuse for Highway Bridges
    Publication No. FHWA-HIF-18-055 Infrastructure Office of Bridges and Structures November 2018 Foundation Reuse for Highway Bridges Existing New Ground Improvement Turner-Fairbank Highway Research Center U.S. Department of Transportation 6300 Georgetown Pike Federal Highway Administration McLean, VA 22101-2296 FOREWORD Given the high percentage of deteriorated or obsolete bridges in the national bridge inventory, the reuse of bridge foundations may be a viable option that can present a significant cost savings in bridge replacement and rehabilitation efforts. The potential time savings associated with foundation reuse can, in turn, reduce mobility impacts and increase the economic viability and sustainability of a project. However, existing foundations may have uncertain material properties, geometry, or details that impact the risks associated with reuse. Unlike a new foundation, an existing foundation may have been damaged, may not have sufficient capacity, and may have limited remaining service life due to deterioration. Assessment of these issues as well as foundation strengthening and repair measures and innovative approaches to optimize loading are discussed in this report. To better demonstrate the engineering assessment of key integrity, durability and load carrying capacity issues, the report contains fifteen (15) case examples where foundation was reused by the owner agencies. On new construction, the report looks ahead and includes discussions on foundation design with consideration for reuse. Cheryl Allen Richter, P.E., Ph.D. Director, Office of Infrastructure Research and Development Notice This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in this document.
    [Show full text]
  • Reconnaissance Borehole Geophysical, Geological, And
    Reconnaissance Borehole Geophysical, Geological, and Hydrological Data from the Proposed Hydrodynamic Compartments of the Culpeper Basin in Loudoun, Prince William, Culpeper, Orange, and Fairfax Counties, Virginia [Version 1.0] By Michael P. Ryan, Herbert A. Pierce, Carole D. Johnson, David M. Sutphin, David L. Daniels, Joseph P. Smoot, John K. Costain, Cahit Çoruh, and George E. Harlow Open–File Report 2006-1203 U.S. Department of the Interior U.S. Geological Survey Reconnaissance Borehole Geophysical, Geological, and Hydrological Data from the Proposed Hydrodynamic Compartments of the Culpeper Basin in Loudoun, Prince William, Culpeper, Orange, and Fairfax Counties, Virginia [Version 1.0] By Michael P. Ryan, Herbert A. Pierce, Carole D. Johnson, David M. Sutphin, David L. Daniels, Joseph P. Smoot, John K. Costain, Cahit Çoruh, and George E. Harlow Open-File Report 2006–1203 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior DIRK KEMPTHORNE, Secretary U.S. Geological Survey Mark D. Meyers, Director U.S. Geological Survey, Reston, Virginia: 2007 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS--the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report.
    [Show full text]