Hindawi Publishing Corporation Journal of Astrophysics Volume 2015, Article ID 205367, 30 pages http://dx.doi.org/10.1155/2015/205367

Research Article Growth of Accreting Supermassive Black Hole Seeds and Neutrino Radiation

Gagik Ter-Kazarian

Division of Theoretical Astrophysics, Ambartsumian Byurakan Astrophysical Observatory, Byurakan, 378433 Aragatsotn, Armenia

Correspondence should be addressed to Gagik Ter-Kazarian; gago [email protected]

Received 1 May 2014; Revised 26 June 2014; Accepted 27 June 2014

Academic Editor: Gary Wegner

Copyright Β© 2015 Gagik Ter-Kazarian. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In the framework of microscopic theory of black hole (MTBH), which explores the most important processes of rearrangement of vacuum state and spontaneous breaking of gravitation gauge symmetry at huge energies, we have undertaken a large series of numerical simulations with the goal to trace an evolution of the mass assembly history of 377 plausible accreting supermassive black hole seeds in active galactic nuclei (AGNs) to the present time and examine the observable signatures today. Given the , masses, and luminosities of these black holes at present time collected from the literature, we compute the initial redshifts and 𝑀 /𝑀 ≃ 1.1 Γ— 106 1.3 Γ— 1010 masses of the corresponding seed black holes. For the present masses BH βŠ™ to of 377 black holes, the 𝑀Seed/𝑀 ≃ 26.4 2.9Γ—105 computed intermediate seed masses are ranging from BH βŠ™ to . We also compute the fluxes of ultrahigh energy (UHE) neutrinos produced via simple or modified URCA processes in superdense protomatter nuclei. The AGNs are favored as promising pure UHE neutrino sources, because the computed neutrino fluxes are highly beamed along the plane of accretion disk, peaked at high energies, and collimated in smaller opening angle (πœƒβ‰ͺ1).

1. Introduction visibleuniverseshouldthereforecontainatleast100billion supermassive black holes. A complex study of evolution of ∼ 45βˆ’48 βˆ’1 With typical bolometric luminosities 10 erg s ,the AGNs requires an answer to the key questions such as how did AGNsareamongstthemostluminousemittersintheuni- the first black holes form, how did massive black holes getto verse, particularly at high energies (gamma-rays) and radio the centers, and how did they grow in accreting mass, wavelengths. From its historical development, up to current namely, an understanding of the important phenomenon of interests, the efforts in the AGN physics have evoked the study mass assembly history of accreting supermassive black hole of a major unsolved problem of how efficiently such huge seeds. The observations support the idea that black holes energies observed can be generated. This energy scale severely grow in tandem with their hosts throughout cosmic history, challenges conventional source models. The huge energy starting from the earliest times. While the exact mechanism release from compact regions of AGN requires extremely for the formation of the first black holes is not currently β‰₯ high efficiency (typically 10 per cent) of conversion of rest known, there are several prevailing theories [4]. However, mass to other forms of energy. This serves as the main each proposal towards formation and growth of initial seed argument in favour of supermassive black holes, with masses black holes has its own advantage and limitations in proving of millions to billions of times the mass of the Sun, as central the whole view of the issue. In this report we review the mass engines of massive AGNs. The astrophysical black holes come assembly history of 377 plausible accreting supermassive in a wide range of masses, from β‰₯3π‘€βŠ™ for stellar mass black 10 black hole seeds in AGNs and their neutrino radiation in holes [1]to∼10 π‘€βŠ™ for supermassive black holes [2, 3]. the framework of gravitation theory, which explores the most Demography of local suggests that most galaxies important processes of rearrangement of vacuum state and harbour quiescent supermassive black holes in their nuclei a spontaneous breaking of gravitation gauge symmetry at at the present time and that the mass of the hosted black huge energies. We will proceed according to the following hole is correlated with properties of the host bulge. The structure. Most observational, theoretical, and computational 2 Journal of Astrophysics aspects of the growth of black hole seeds are summarized result is independent of obscuration. Natarajan [13]has in Section 2. The other important phenomenon of ultrahigh reported that the initial black hole seeds form at extremely energy cosmic rays, in relevance to AGNs, is discussed in high redshifts from the direct collapse of pregalactic gas Section 3. The objectives of suggested approach are outlined discs. Populating dark matter halos with seeds formed in in Section 4.InSection 5 we review the spherical accretion this fashion and using a Monte-Carlo merger tree approach, on superdense protomatter nuclei, in use. In Section 6 we he has predicted the black hole mass function at high discuss the growth of the seed black hole at accretion and redshifts and at the present time. The most aspects of the derive its intermediate mass, initial , and neutrino models that describe the growth and accretion history of preradiation time (PRT). Section 7 isdevotedtotheneutrino supermassive black holes and evolution of this scenario have radiation produced in superdense protomatter nuclei. The been presented in detail by [9, 10]. In these models, at early simulation results of the seed black hole intermediate masses, times the properties of the assembling black hole seeds are PRTs, seed redshifts, and neutrino fluxes for 377 AGN black more tightly coupled to properties of the dark matter halo holes are brought in Section 8. The concluding remarks are as their growth is driven by the merger history of halos. given in Section 9. We will refrain from providing lengthy While a clear picture of the history of black hole growth is details of the proposed gravitation theory at huge energies emerging, significant uncertainties still remain14 [ ], and in and neutrino flux computations. For these the reader is spite of recent advances [6, 13],theoriginoftheseedblack invited to visit the original papers and appendices of the holes remains an unsolved problem at present. The NuSTAR present paper. In the latter we also complete the spacetime deep high-energy observations will enable obtaining a nearly deformation theory, in the model context of gravitation, by complete AGN survey, including heavily obscured Compton- new investigation of building up the complex of distortion thicksources,upto𝑧 ∼ 1.5 [22]. A similar mission, ASTRO- (DC) of spacetime continuum and showing how it restores H[23], will be launched by Japan in 2014. These observations the world-deformation tensor,whichstillhasbeenputinby in combination with observations at longer wavelengths will hand. Finally, note that we regard the considered black holes allow for the detection and identification of most growing only as the potential neutrino sources. The obtained results, supermassive black holes at π‘§βˆΌ1. The ultradeep X-ray and 2 however, may suffer if not all live black holes at present reside near-infrared surveys covering at least ∼1 deg are required in final stage of their growth driven by the formation of to constrain the formation of the first black hole seeds. This protomatter disk at accretion and they radiate neutrino. We will likely require the use of the next generation of space- often suppress the indices without notice. Unless otherwise based observatories such as the James Webb Space Telescope stated, we take geometrized units throughout this paper. and the International X-ray Observatory. The superb spatial resolutionandsensitivityoftheAtacamaLargeMillimeter 2. A Breakthrough in Observational and Array (ALMA) [24] will revolutionize our understanding of galaxy evolution. Combining these new data with existing Computational Aspects on Growth of Black multiwavelength information will finally allow astrophysi- Hole Seeds cists to pave the way for later efforts by pioneering some of thecensusofsupermassiveblackholegrowth,inusetoday. Significantprogresshasbeenmadeinthelastfewyearsin understanding how supermassive black holes form and grow. 6βˆ’9 Given the current masses of 10 π‘€βŠ™,mostblackholegrowth 3. UHE Cosmic-Ray Particles happens in the AGN phase. A significant fraction of the total black hole growth, 60% [6], happens in the most luminous The galactic sources like supernova remnants (SNRs) or ∼ 8 microquasars are thought to accelerate particles at least up AGN, quasars. In an AGN phase, which lasts 10 years, the 15 7βˆ’8 to energies of 3Γ—10 eV. The ultrahigh energy cosmic- centralsupermassiveblackholecangainupto∼10 π‘€βŠ™, so even the most massive galaxies will have only a few of ray (UHECR) particles with even higher energies have since these events over their lifetime. Aforesaid gathers support been detected (comprehensive reviews can be found in [25– especially from a breakthrough made in recent observational, 29]). The accelerated protons or heavier nuclei up to energies 1020 theoretical, and computational efforts in understanding of exceeding eVarefirstlyobservedby[30]. The cosmic- ray events with the highest energies so far detected have evolution of black holes and their host galaxies, particularly 11 11 energies of 2Γ—10 GeV [31]and3Γ—10 GeV [32]. These through self-regulated growth and feedback from accretion- 7 powered outflows; see, for example,4 [ , 7–18]. Whereas the energies are 10 times higher than the most energetic man- multiwavelength methods are used to trace the growth of made accelerator, the LHC at CERN. These highest energies seed BHs, the prospects for future observations are reviewed. are believed to be reached in extragalactic sources like AGNs The observations provide strong support for the existence or gamma-ray bursts (GRBs). During propagation of such of a correlation between supermassive black holes and their energetic particles through the universe, the threshold for pion photoproduction on the microwave background is ∼2 hosts out to the highest redshifts. The observations of the 10 11 quasar luminosity function show that the most supermassive Γ— 10 GeV, and at ∼3 Γ— 10 GeV the energy-loss distance is black holes get most of their mass at high redshift, while about 20 Mpc. Propagation of cosmic rays over substantially at low redshift only low mass black holes are still growing larger distances gives rise to a cutoff in the spectrum at ∼ 11 [19].Thisisobservedinbothoptical[20]andhardX- 10 GeVaswasfirstshownby[33, 34], the GZK cutoff. ray luminosity functions [19, 21], which indicates that this The recent confirmation [35, 36] of GZK suppression in the Journal of Astrophysics 3 cosmic-ray energy spectrum indicates that the cosmic rays then raised: where in the Cosmos are these neutrinos coming 𝐸 ∼40 with energies above the GZK cutoff, GZK EeV, mostly from?Itturnsoutthatcurrently,atenergiesinexcessof π‘Ÿ ∼ 19 come from relatively close (within the GZK radius, GZK 10 eV, there are only two good candidate source classes for 100 Mpc) extragalactic sources. However, despite the detailed UHE neutrinos: AGNs and GRBs. The AGNs as significant measurements of the cosmic-ray spectrum, the identification point sources of neutrinos were analyzed in [50, 55, 56]. of the sources of the cosmic-ray particles is still an open Whilehardtodetect,neutrinoshavetheadvantageofrepre- question as they are deflected in the galactic and extragalactic senting aforesaid unique fingerprints of hadron interactions magnetic fields and hence have lost all information about and, therefore, of the sources of cosmic rays. Two basic theiroriginwhenreachingEarth.Onlyatthehighestenergies event topologies can be distinguished: track-like patterns of 19.6 beyond ∼10 GeV cosmic-ray particles may retain enough detected Cherenkov light (hits) which originate from muons directional information to locate their sources. The latter produced in charged-current interactions of muon neutrinos mustbepowerfulenoughtosustaintheenergydensityin (muon channel); spherical hit patterns which originate from βˆ’19 βˆ’3 extragalactic cosmic rays of about 3Γ—10 erg cm which is the hadronic cascade at the vertex of neutrino interactions 44 βˆ’3 βˆ’1 equivalent to ∼8 Γ— 10 erg Mpc yr . Though it has not been or the electromagnetic cascade of electrons from charged- possible up to now to identify the sources of galactic or extra- current interactions of electron neutrinos (cascade channel). galactic cosmic rays, general considerations allow limiting If the charged-current interaction happens inside the detector potential source classes. For example, the existing data on the or in case of charged-current tau-neutrino interactions, these cosmic-ray spectrum and on the isotropic 100 MeV gamma- two topologies overlap which complicates the reconstruc- ray background limit significantly the parameter space in tion. At the relevant energies, the neutrino is approximately which topological defects can generate the flux of the highest collinear with the muon and, hence, the muon channel is energy cosmic rays and rule out models with the standard the prime channel for the search for point-like sources of 16 X-particle mass of 10 GeV and higher [37]. Eventually, the cosmic neutrinos. On the other hand, cascades deposit all neutrinos will serve as unique astronomical messengers, and of their energy inside the detector and therefore allow for they will significantly enhance and extend our knowledge a much better energy reconstruction with a resolution of a on galactic and extragalactic sources of the UHE universe. few 10%. Finally, numerous reports are available at present Indeed, except for oscillations induced by transit in a vacuum in literature on expected discovery potential and sensitivity Higgs field, neutrinos can penetrate cosmological distances of experiments to neutrino point-like sources. Currently and their trajectories are not deflected by magnetic fields operating high energy neutrino telescopes attempt to detect as they are neutral, providing powerful probes of high UHE neutrinos, such as ANTARES [57, 58]whichisthemost energy astrophysics in ways which no other particle can. sensitive neutrino telescope in the Northern Hemisphere, Ice- Moreover, the flavor composition of neutrinos originating at Cube [35, 59–64] which is worldwide largest and hence most astrophysical sources can serve as a probe of new physics sensitive neutrino telescope in the Southern Hemisphere, in the electroweak sector. Therefore, an appealing possibility BAIKAL [65], as well as the CR extended experiments of The among the various hypotheses of the origin of UHECR is Telescope Array [66], Pierre Auger Observatory [67, 68], and so-called Z-burst scenario [38–51]. This suggests that if ZeV JEM-EUSO mission [69]. The JEM-EUSO mission, which astrophysical neutrino beam is sufficiently strong, it can is planned to be launched by a H2B rocket around 2015- produce a large fraction of observed UHECR particles within 2016, is designed to explore the extremes in the universe and 100 Mpc by hitting local light relic neutrinos clustered in dark fundamental physics through the detection of the extreme 𝐸>1020 halos and form UHECR through the hadronic Z (s-channel energy ( eV) cosmic rays. The possible origins production) and W-bosons (t-channel production) decays by ofthesoon-to-befamous28IceCubeneutrino-PeVevents [59–61] are the first hint for astrophysical neutrino signal. weak interactions. The discovery of UHE neutrino sources ∼ would also clarify the production mechanism of the GeV-TeV Aartsen et al. have published an observation of two 1PeV neutrinos, with a 𝑃 value 2.8𝜎 beyond the hypothesis that gamma rays observed on Earth [43, 52, 53]asTeVphotons these events were atmospherically generated [59]. The anal- arealsoproducedintheup-scatteringofphotonsinreactions ysis revealed an additional 26 neutrino candidates depositing to accelerated electrons (inverse-Compton scattering). The β€œelectromagnetic equivalent energies” ranging from about direct link between TeV gamma-ray photons and neutrinos 30 TeV up to 250 TeV [61]. New results were presented at the through the charged and neutral pion production, which is IceCube Particle Astrophysics Symposium (IPA 2013) [62– well known from particle physics, allows for a quite robust 64]. If cosmic neutrinos are primarily of extragalactic origin, prediction of the expected neutrino fluxes provided that then the 100 GeV gamma ray flux observed by Fermi-LAT thesourcesaretransparentandtheobservedgammarays constrains the normalization at PeV energies at injection, originate from pion decay. The weakest link in the Z-burst which in turn demands a neutrino spectral index Ξ“ < 2.1 [70]. hypothesis is probably both unknown boosting mechanism of the primary neutrinos up to huge energies of hundreds ZeV and their large flux required at the resonant energy 𝐸] ≃ 2 21 4. MTBH, Revisited: Preliminaries 𝑀𝑍/(2π‘š]) ≃ 4.2 Γ— 10 eV (eV/π‘š]) well above the GZK cutoff. Such a flux severely challenges conventional source For the benefit of the reader, a brief outline of the key ideas models. Any concomitant photon flux should not violate behind the microscopic theory of black hole, as a guiding existing upper limits [37, 48, 49, 54]. The obvious question is principle,isgiveninthissectiontomaketherestofthe 4 Journal of Astrophysics paper understandable. There is a general belief reinforced by The black hole models presented in phenomenological and statements in textbooks that, according to general relativity microscopic frameworks have been schematically plotted in (GR), a long-standing standard phenomenological black hole Figure 1, to guide the eye. A crucial point of the MTBH is model (PBHM)β€”namely, the most general Kerr-Newman that a central singularity cannot occur, which is now replaced black hole model, with parameters of mass (𝑀), angular by finite though unbelievably extreme conditions held in the momentum (𝐽), and charge (𝑄), still has to be put in by SPC, where the static observers existed. The SPC surrounded handβ€”can describe the growth of accreting supermassive by the accretion disk presents the microscopic model of blackholeseed.However,suchbeliefsaresuspectandshould AGN. The SPC accommodates the highest energy scale up to be critically reexamined. The PBHM cannot be currently hundreds of ZeV in central protomatter core which accounts accepted as convincing model for addressing the afore- for the spectral distribution of the resulting radiation of mentioned problems, because in this framework the very galactic nuclei. External physics of accretion onto the black sourceofgravitationalfieldoftheblackholeisakindof hole in earlier part of its lifetime is identical to the processes curvature singularity at the center of the stationary black in Schwarzschild’s model. However, a strong difference in hole. A meaningless central singularity develops which is the model context between the phenomenological black hole hidden behind the event horizon. The theory breaks down andtheSPCisarisinginthesecondpartofitslifetime inside the event horizon which is causally disconnected from (see Section 6). The seed black hole might grow up driven the exterior world. Either the Kruskal continuation of the by the accretion of outside matter when it was getting Schwarzschild (𝐽=0, 𝑄=0) metric, or the Kerr (𝑄=0) most of its mass. An infalling matter with time forms the metric, or the Reissner-Nordstrom (𝐽=0)metric,shows protomatter disk around the protomatter core tapering off that the static observers fail to exist inside the horizon. faster at reaching out the thin edge of the event horizon. At Any object that collapses to form a black hole will go on this, metric singularity inevitably disappears (see appendices) to collapse to a singularity inside the black hole. Thereby and the neutrinos may escape through vista to outside any timelike worldline must strike the central singularity world, even after the neutrino trapping. We study the growth which wholly absorbs the infalling matter. Therefore, the of protomatter disk and derive the intermediate mass and ultimate fate of collapsing matter once it has crossed the initial redshift of seed black hole and examine luminosities, black hole surface is unknown. This, in turn, disables any neutrino surfaces for the disk. In this framework, we have accumulation of matter in the central part and, thus, neither computed the fluxes of UHE neutrinos75 [ ], produced in the the growth of black holes nor the increase of their mass- medium of the SPC via simple (quark and pionic reactions) or energy density could occur at accretion of outside matter, modified URCA processes, even after the neutrino trapping or by means of merger processes. As a consequence, the (G.GamowwasinspiredtonametheprocessURCAafter mass and angular momentum of black holes will not change the name of a casino in Rio de Janeiro, when M. Schenberg over the lifetime of the universe. But how can one be sure remarked to him that β€œthe energy disappears in the nucleus that some hitherto unknown source of pressure does not of the supernova as quickly as the money disappeared at that become important at huge energies and halt the collapse? To roulette table”).Theβ€œtrapping”isduetothefactthatas fill the void which the standard PBHM presents, one plausible theneutrinosareformedinprotomattercoreatsuperhigh idea to innovate the solution to alluded key problems would densities they experience greater difficulty escaping from the appear to be the framework of microscopic theory of black protomatter core before being dragged along with the matter; hole. This theory has been originally proposed71 by[ ]and namely, the neutrinos are β€œtrapped” comove with matter. references therein and thoroughly discussed in [72–75]. The part of neutrinos annihilates to produce, further, the Here we recount some of the highlights of the MTBH, secondary particles of expected ultrahigh energies. In this which is the extension of PBHM and rather completes it by model, of course, a key open question is to enlighten the exploring the most important processes of rearrangement mechanisms that trigger the activity, and how a large amount of vacuum state and a spontaneous breaking of gravitation ofmattercanbesteadilyfunneledtothecentralregionstofuel gauge symmetry at huge energies [71, 74, 76]. We will not this activity. In high luminosity AGNs the large-scale internal be concerned with the actual details of this framework but gravitational instabilities drive gas towards the nucleus which only use it as a backdrop to validate the theory with some trigger big starbursts, and the coeval compact cluster just observational tests. For details, the interested reader is invited formed.Itseemedtheyhavesomeconnectiontothenuclear to consult the original papers. Discussed gravitational theory fueling through mass loss of young as well as their tidal is consistent with GR up to the limit of neutron stars. But disruption and supernovae. Note that we regard the UHECR this theory manifests its virtues applied to the physics of particles as a signature of existence of superdence protomatter internal structure of galactic nuclei. In the latter a significant sources in the universe. Since neutrino events are expected to change of properties of spacetime continuum, so-called be of sufficient intensity, our estimates can be used to guide inner distortion (ID), arises simultaneously with the strong investigations of neutrino detectors for the distant future. gravity at huge energies (see Appendix A). Consequently the matter undergoes phase transition of second kind, which 5. Spherical Accretion onto SPC supplies a powerful pathway to form a stable superdense protomatter core (SPC) inside the event horizon. Due to this, Asalludedtoabove,theMTBHframeworksupportstheidea the stable equilibrium holds in outward layers too and, thus, of accreting supermassive black holes which link to AGNs. an accumulation of matter is allowed now around the SPC. In order to compute the mass accretion rate 𝑀̇ ,inuse,itis Journal of Astrophysics 5

AGN AGN

AD AD

AD AD

∞ PC PD

EH

SPC EH (a) (b)

Figure 1: (a) The phenomenological model of AGN with the central stationary black hole. The meaningless singularity occurs at the center inside the black hole. (b) The microscopic model of AGN with the central stable SPC. In due course, the neutrinos of huge energies may escape through the vista to outside world. Accepted notations: EH = event horizon, AD = accretion disk, SPC = superdense protomatter core, PC = protomatter core. necessary to study the accretion onto central supermassive is the projection of the 4-momentum along the time basis SPC. The main features of spherical accretion can be briefly vector. The Euler-Lagrange equations show that if we orient summed up in the following three idealized models that the coordinate system as initially the particle is moving in the Μƒ ΜƒΜ‡ illustrate some of the associated physics [72]. equatorial plane (i.e., πœƒ=πœ‹/2, πœƒ=0), then the particle always remains in this plane. There are two constants of the motion Μƒ 5.1. Free Radial Infall. We examine the motion of freely corresponding to the ignorable coordinates ̃𝑑 and πœ™,namely, moving test particle by exploring the external geometry of the the 𝐸-β€œenergy-at-infinity” and the 𝑙-angular momentum. We SPC, with the line element (A.7),atπ‘₯=0. Let us denote the 4- πœ‡ πœ‡ πœ‡ Μƒ conclude that the free radial infall of a particle from the vector of velocity of test particle V =𝑑π‘₯Μƒ /𝑑̃𝑠, π‘₯Μƒ =(̃𝑑, Μƒπ‘Ÿ, πœƒ, πœ‘)Μƒ , 2 3 infinity up to the moment of crossing the EH sphere, as and consider it initially for simplest radial infall V = V = well as at reaching the surface of central body, is absolutely Μ‚π‘Ÿ 0. We determine the value of local velocity V <0of the the same as in the Schwarzschild geometry of black hole particle for the moment of crossing the EH sphere, as well as (Figure 2(a)). We clear up a general picture of orbits just at reaching the surface of central stable SPC. The equation of outside the event horizon by considering the Euler-Lagrange geodesics is derived from the variational principle π›Ώβˆ«π‘‘π‘†=0, equation for radial component with β€œeffective potential.” The which is the extremum of the distance along the wordline for circular orbits are stable if 𝑉 is concave up, namely, at Μƒπ‘Ÿ>4𝑀̃, the Lagrangian at hand where 𝑀̃ is the mass of SPC. The binding energy per unit Μƒπ‘Ÿ=4𝑀̃ 2 mass of a particle in the last stable circular orbit at 2 2 2 2 2 Μ‡ 2𝐿 = (1 βˆ’ π‘₯ ) ̃𝑑̇ βˆ’(1+π‘₯ ) Μƒπ‘ŸΜ‡ βˆ’ Μƒπ‘Ÿ2 2πœƒΜƒπœ‘ΜƒΜ‡ βˆ’ Μƒπ‘Ÿ2πœƒΜƒ , (1) 𝐸̃ =(π‘šβˆ’πΈ)/𝑀̃ ≃ 1 βˆ’ (27/32)1/2 0 0 sin is bind . Namely, this is the fraction of rest-mass energy released when test particle Μ‡ where ̃𝑑≑𝑑̃𝑑/π‘‘πœ† is the 𝑑-component of 4-momentum and πœ† originally at rest at infinity spirals slowly toward the SPC to is the affine parameter along the worldline. We are using an the innermost stable circular orbit and then plunges into it. σΈ€  affine parametrization (by a rescaling πœ† β†’πœ†(πœ† ))suchthat Thereby one of the important parameters is the capture cross 𝜎 =πœ‹π‘2 𝐿=const is constant along the curve. A static observer makes section for particles falling in from infinity: capt max, measurements with local orthonormal tetrad: where 𝑏max is the maximum impact parameter of a particle that is captured. 󡄨 σ΅„¨βˆ’1 βˆ’1 𝑒̂𝑑⃗ = 󡄨1βˆ’π‘₯0󡄨 𝑒𝑑⃗ , π‘’Μ‚π‘Ÿβƒ— =(1+π‘₯0) π‘’π‘Ÿβƒ— , (2) βˆ’1 Μƒ βˆ’1 π‘’πœƒβƒ—Μ‚ = Μƒπ‘Ÿ π‘’πœƒβƒ— , π‘’πœ‘βƒ—Μ‚ =(Μƒπ‘Ÿ sin πœƒ) π‘’πœƒβƒ— . 5.2. Collisionless Accretion. The distribution function for a collisionless gas is determined by the collisionless Boltzmann Μƒ Μƒ The Euler-Lagrange equations for πœƒ, πœ™,and̃𝑑 can be derived equation or Vlasov equation. For the stationary and spherical from the variational principle. A local measurement of the flow we obtain then particle’s energy made by a static observer in the equatorial plane gives the time component of the 4-momentum as 2 βˆ’1 βˆ’2 𝑀̇ (𝐸>0) = 16πœ‹ (𝐺𝑀̃) 𝜌 V 𝑐 , (3) measured in the observer’s local orthonormal frame. This ∞ ∞ 6 Journal of Astrophysics

AGN SPC t=∞ )

3 2.5 βˆ’

r r

v <0 v =0 g cm ( r=∞ βˆ’40 x0 =0 1.5 Μƒ nΓ—10

1.0 EH 1βˆ’ 1 1+ x0 =2 x0 =1 x0 (a) (b)

Figure 2: (a) The free radial infall of a particle from the infinity to EH sphere(π‘₯0 =1), which is similar to the Schwarzschild geometry of BH. Crossing the EH sphere, a particle continues infall reaching finally the surfaceπ‘₯ ( 0 =2) of the stable SPC. (b) Approaching the EH sphere (π‘₯0 =1), the particle concentration increases asymptotically until the threshold value of protomatter. Then, due to the action of cutoff effect, the metric singularity vanishes and the particles well pass EH sphere.

σΈ€  where the particle density 𝜌∞ is assumed to be uniform at where prime ( )𝑠 denotes differentiation with respect to Μƒπ‘Ÿ at far from the SPC and the particle speed is V∞ β‰ͺ1.During the point π‘Ÿπ‘ .Thegascompressioncanbeestimatedas the accretion process the particles approaching the EH become relativistic. Approaching event horizon, the particle 1/2 5/2 σΈ€  concentration increases asymptotically as (𝑛(Μƒ Μƒπ‘Ÿ)/π‘›βˆž)π‘₯ β†’1 β‰ˆ 𝑛̃ π‘Ÿ (ln 𝑔̃ ) 0 β‰ˆ 𝑠 [ 00 𝑠 ] . βˆ’1/3 2 π‘Ÿπ‘Ÿ (5) βˆ’(ln 𝑔̃00)/2 V∞,uptotheIDthresholdvalue𝑛̃𝑑(Μƒπ‘Ÿ) = π‘›βˆž 2π‘Ÿ 1+𝑔̃ (Μƒπ‘Ÿ) 0.4 fm (Figure 2(b)). Due to the action of cutoff effect, the metric singularity then vanishes and the particles well pass EH sphere (π‘₯0 =1)andinthesequelformtheprotomatter The approximate equality between the sound speed and the disk around the protomatter core. mean particle speed implies that the hydrodynamic accretion rate is larger than the collisionless accretion rate by the large 9 factor β‰ˆ10 . 5.3. Hydrodynamic Accretion. For real dynamical conditions found in considered superdense medium, it is expected that themeanfreepathforcollisionswillbemuchshorterthanthe 6. The Intermediate Mass, PRT, and Initial characteristic length scale; that is, the accretion of ambient Redshift of Seed Black Hole gas onto a stationary, nonrotating compact SPC will be hydrodynamical in nature. For any equation of state obeying The key objectives of the MTBH framework are then an π‘Ž2 <1 the causality constraint the sound speed implies and increase of the mass, 𝑀Seed, gravitational radius, 𝑅Seed,and π‘Ÿ BH 𝑔 theflowmustpassthroughacriticalsonicpoint 𝑠 outside the Seed event horizon. The locally measured particle velocity reads of the seed black hole, BH , at accretion of outside matter. Μ‚π‘Ÿ 2 2 1/2 Thereby an infalling matter forms protomatter disk around V =(1βˆ’π‘”Μƒ00/𝐸 ),where𝐸=𝐸∞/π‘š = (𝑔̃00/(1 βˆ’ 𝑒 )) and 𝐸 protomatter core tapering off faster at reaching the thin edge ∞ is the energy at infinity of individual particle of the mass Seed Μ‚π‘Ÿ of event horizon. So, a practical measure of growth BH β†’ π‘š.Thus,theproperflowvelocityV =𝑒 β†’0and is subsonic. BHmaymostusefullybetheincreaseofgravitationalradius At Μƒπ‘Ÿ=𝑅𝑔/2, the proper velocity equals the speed of light Μ‚π‘Ÿ or mass of black hole: |V |=𝑒=1>π‘Žandtheflowissupersonic.Thiscondition is independent of the magnitude of 𝑒 and is not sufficient by 2𝐺 2𝐺 Δ𝑅 =𝑅BH βˆ’π‘…Seed = 𝑀 = 𝜌 𝑉 , itself to guarantee that the flow passes through a critical point 𝑔 𝑔 𝑔 𝑐2 𝑑 𝑐2 𝑑 𝑑 outside EH. For large Μƒπ‘Ÿβ‰₯π‘Ÿπ‘ , it is expected that the particles be π‘Žβ‰€π‘Ž β‰ͺ1 𝑇β‰ͺπ‘šπ‘2/𝐾 = 1013 𝐾) Δ𝑅 (6) nonrelativistic with 𝑠 (i.e., , Δ𝑀 =𝑀 βˆ’π‘€Seed =𝑀Seed 𝑔 , as they were nonrelativistic at infinity (π‘Žβˆž β‰ͺ1). Considering BH BH BH BH Seed 𝑅𝑔 the equation of accretion onto superdense protomatter core, which is an analogue of Bondi equations for spherical, steady- state adiabatic accretion onto the SPC, we determine a mass where 𝑀𝑑, πœŒπ‘‘,and𝑉𝑑,respectively,arethetotalmass, accretion rate Μ‚BH density, and volume of protomatter disk. At the value 𝑅𝑔 σΈ€  of gravitational radius, when protomatter disk has finally 𝑀̇ = 2πœ‹π‘šπ‘› π‘Ÿ5/2 ( 𝑔̃ ) , 𝑠 𝑠 ln 00 𝑠 (4) reached the event horizon of grown-up supermassive black Journal of Astrophysics 7

𝑇 Z 6.2. PRT. The PRT is referred to as a lapse of time BH from πœ‘ the birth of black hole till neutrino radiation, the earlier 𝑇 =𝑀/𝑀̇ 𝑀̇ part of the lifetime. That is, BH 𝑑 ,where is the accretion rate. In approximation at hand 𝑅𝑑 β‰ͺ𝑅𝑔,thePRT Z0 πœ€d =d/2Rg β‰ˆπœƒ Z1 πœƒ d reads PD PC 𝜌 𝜌 𝜌0 1 2 Rd 𝑅 𝑅 Seed 𝑉𝑑 15 βˆ’3 𝑑 𝑔 BH EH RSPC Seed 𝑇 =πœŒπ‘‘ ≃9.33β‹…10 [gcm ] . (11) EH Rg BH BH Μ‡ Μ‡ Rg 𝑀 𝑀

Figure 3: A schematic cross section of the growth of supermassive In case of collisionless accretion, (3) and (11) give black hole driven by the formation of protomatter disk at accretion, 𝑅 10βˆ’24 βˆ’3 V when protomatter disk has finally reached the event horizon of 𝑇 ≃ 2.6 β‹… 1016 𝑑 gcm ∞ . BH βˆ’1 yr (12) grown-up supermassive black hole. cm 𝜌∞ 10 km 𝑠

In case of hydrodynamic accretion, (4) and (11) yield Μ‚ hole, the volume 𝑉𝑑 can be calculated in polar coordinates 2 βˆ’3 𝑅𝑑𝑅 cm (𝜌, 𝑧,)from πœ‘ Figure 3: 𝑇 ≃8.8β‹…1038 𝑔 . BH 5/2 σΈ€  (13) π‘›π‘ π‘Ÿπ‘  (ln 𝑔00)𝑠 𝑅̂BH 2πœ‹ 𝑧 (𝜌) Μ‚ 𝑔 1 𝑉𝑑 = ∫ π‘‘πœŒ ∫ πœŒπ‘‘πœ™ ∫ 𝑑𝑧 Note that the spherical accretion onto black hole, in general, 𝜌 0 βˆ’π‘§ (𝜌) 0 1 is not necessarily an efficient mechanism for converting rest- 𝑅𝑑 2πœ‹ 𝑧0(𝜌) mass energy into radiation. Accretion onto black hole may βˆ’ ∫ π‘‘πœŒ ∫ πœŒπ‘‘πœ™ ∫ 𝑑𝑧 (7) be far from spherical accretion, because the accreted gas 𝜌 0 βˆ’π‘§ (𝜌) 0 0 possesses angular momentum. In this case, the gas will be Μ‚BH thrown into circular orbits about the black hole when cen- (𝑅𝑑β‰ͺ𝑅𝑔 ) √2πœ‹ 2 ≃ 𝑅 (𝑅̂BH) , trifugal forces will become significant before the gas plunges 3 𝑑 𝑔 through the event horizon. Assuming a typical mass-energy conversion efficiency of about πœ–βˆΌ10%, in approximation 𝑧 (𝜌) ≃ 𝑧 βˆ’π‘§ (𝜌 βˆ’ 𝜌 )/(𝑅̂BH βˆ’πœŒ) 𝑧 (𝜌) = βˆšπ‘…2 βˆ’πœŒ2 where 1 0 0 0 𝑔 0 , 0 𝑑 , 𝑅𝑑 β‰ͺ𝑅𝑔, according to (12) and (13), the resulting relationship Μ‚BH √ of typical PRT versus bolometric luminosity becomes andinapproximation𝑅𝑑 β‰ͺ 𝑅𝑔 we set 𝑧0(𝜌0)β‰ƒπœŒ0 ≃𝑅𝑑/ 2. 𝑅 𝑀 2 1039 π‘Š 𝑇 ≃0.32 𝑑 ( BH ) [ ]. BH yr (14) 6.1. The Intermediate Mass of Seed Black Hole. From the first π‘Ÿ π‘€βŠ™ 𝐿 line of (6),byvirtueof(7),weobtain OV bol We supplement this by computing neutrino fluxes in the next BH 2 section. 𝑅̂ =π‘˜(1±√1βˆ’ 𝑅Seed) , 𝑔 π‘˜ 𝑔 (8) 6.3. Redshift of Seed Black Hole. Interpreting the redshift where 2/π‘˜ = 8.73 [km]π‘…π‘‘πœŒπ‘‘/π‘€βŠ™.The(8) is valid at (2/ as a cosmological Doppler effect and that the Hubble law Seed π‘˜)𝑅𝑔 ≀1;namely, could most easily be understood in terms of expansion of the universe, we are interested in the purely academic question Seed Seed of principle to ask what could be the initial redshift, 𝑧 ,of 𝑅 [ ] 𝜌 𝑅𝑔 βŠ™ β‰₯ 2.09 km 𝑑 . (9) seed black hole if the mass, the luminosity, and the redshift, 𝑅 𝑅 𝜌 𝑅 𝑑 βŠ™ βŠ™ βŠ™ 𝑧, of black hole at present time are known. To follow the history of seed black hole to the present time, let us place 16 βˆ’3 Seed For the values πœŒπ‘‘ = 2.6Γ—10 [gcm] (see below) and 𝑅𝑔 ≃ ourselves at the origin of coordinates π‘Ÿ=0(according to 3 6 2.95 [km](10 to 10 ),inequality(9) is reduced to π‘…βŠ™/𝑅𝑑 β‰₯ the Cosmological Principle, this is mere convention) and 8 3 βˆ’2 consider a light traveling to us along the βˆ’π‘Ÿ direction, with 2.34 Γ— 10 (1 to 10 ) or [cm]/𝑅𝑑 β‰₯ 0.34(10 to 10).This angular variables fixed. If the light has left a seed black hole, condition is always satisfied, because for considered 377 black π‘Ÿ πœƒ πœ‘ 𝑑 𝑀 /𝑀 ≃ 1.1 Γ— 106 1.3 Γ— 1010 located at 𝑠, 𝑠,and 𝑠,attime 𝑠,andithastoreachusat holes, with the masses BH βŠ™ to , 𝑑 𝑅 /π‘Ÿ ≃10βˆ’10 10βˆ’7 atime 0, then a power series for the redshift as a function we approximately have 𝑑 OV to [71]. Note 𝑧Seed =𝐻(𝑑 βˆ’π‘‘) + β‹…β‹…β‹… 𝑑 that Woo and Urry [5] collect and compare all the AGN/BH ofthetimeofflightis 0 0 𝑠 ,where 0 is the present moment and 𝐻0 is Hubble’s constant. Similar mass and luminosity estimates from the literature. According 𝑧=𝐻(𝑑 βˆ’π‘‘ )+β‹…β‹…β‹… to (6), the intermediate mass of seed black hole reads expression, 0 0 1 ,canbewrittenforthecurrent black hole, located at π‘Ÿ1, πœƒ1,andπœ‘1,attime𝑑1,where𝑑1 = 𝑑 +𝑇 𝑀Seed 𝑀 𝑅 𝑀 𝑠 BH, as seed black hole is an object at early times. Hence, BH ≃ BH (1 βˆ’ 1.68 Γ— 10βˆ’6 𝑑 BH ). (10) in the first-order approximation by Hubble’s constant, we may 𝑀 𝑀 [ ] 𝑀 βŠ™ βŠ™ cm βŠ™ obtain the following relation between the redshifts of seed 8 Journal of Astrophysics

𝑧Seed ≃𝑧+𝐻𝑇 and present black holes: 0 BH. This relation is in 7.2. Pionic Reactions. The pionic reactions, occurring in the agreement with the scenario of a general recession of distant superdense protomatter medium of SPC, allow both the galaxies away from us in all directions, the furthest naturally distorted energy and momentum to be conserved. This is the being those moving the fastest. This relation, incorporating analogue of the simple URCA processes: 𝐻 =70[ ]/[ ] with (14),forthevalue 0 km sMpc favored today βˆ’ βˆ’ βˆ’ βˆ’ yields πœ‹ +𝑛󳨀→𝑛+𝑒 + ]𝑒,πœ‹+𝑛󳨀→𝑛+πœ‡ + ]πœ‡ (19)

2 28 𝑅 𝑀 π‘Š and the two inverse processes. As in the modified URCA 𝑧Seed ≃ 𝑧 + 2.292 Γ— 10 𝑑 ( BH ) . (15) π‘Ÿ 𝑀 𝐿 reactions, the total rate for all four processes is essentially four OV βŠ™ bol times the rate of each reaction alone. The muons are already present when pions appear. The neutrino luminosity of the 7. UHE Neutrino Fluxes SPC of given mass, 𝑀̃, by pionic reactions reads [75] 𝐽 = Thefluxcanbewrittenintermsofluminosityas ]πœ€ 𝑀 1.75 Μƒ 2 Μƒπœ‹ 58 βŠ™ βˆ’1 𝐿]πœ€/4πœ‹π· (𝑧)(1 + 𝑧),where𝑧 is the redshift and 𝐷𝐿(𝑧) is the 𝐿]πœ€ = 5.78 Γ— 10 πœ€π‘‘ ( ) [erg s ]. (20) 𝐿 𝑀̃ luminosity distance depending on the cosmological model. βˆ’1 The (1 + 𝑧) isduetothefactthateachneutrinowithenergy Then, the UHE neutrino total flux is ΜƒσΈ€  σΈ€  𝐸] if observed near the place and time of emission 𝑑 will be 1.75 σΈ€  σΈ€  πœ‹ πœ€π‘‘ π‘€βŠ™ βˆ’2 βˆ’1 βˆ’1 𝐸̃ = 𝐸̃ 𝑅(𝑑 )/𝑅(𝑑 )=𝐸̃ (1 + 𝑧)βˆ’1 𝐽 ≃ 7.91 ( ) [erg cm s sr ] . red-shifted to energy ] ] 1 0 ] of ]πœ€ 𝐼2 (𝑧)(1+𝑧) 𝑀̃ the neutrino observed at time 𝑑 after its long journey to us, (21) where 𝑅(𝑑) is the cosmic scale factor. Computing the UHE neutrino fluxes in the framework of MTBH, we choose the The resulting total energy-loss rate will then be dramatically cosmological model favored today, with a flat universe, filled larger due to the pionic reactions (19) rather than the Ξ© =𝜌 /𝜌 Ξ© = with matter 𝑀 𝑀 𝑐 and vacuum energy densities 𝑉 modified URCA processes. πœŒπ‘‰/πœŒπ‘,therebyΩ𝑉 +Ω𝑀 =1, where the critical energy density 2 πœŒπ‘ =3𝐻0 /(8πœ‹πΊπ‘) is defined through the Hubble parameter 𝐻 7.3. Quark Reactions. In the superdense protomatter medium 0 [77]: the distorted quark Fermi energies are far below the charmed (1+𝑧) 𝑐 1+𝑧 𝑑π‘₯ c-, t-, and b-quark production thresholds. Therefore, only 𝐷𝐿 (𝑧) = ∫ up-, down-, and strange quarks are present. The 𝛽 equilibrium 𝐻0βˆšΞ©π‘€ 1 √Ω /Ξ© +π‘₯3 𝑉 𝑀 (16) is maintained by reactions like 28 𝑑󳨀→𝑒+π‘’βˆ’ + ] ,𝑒+π‘’βˆ’ 󳨀→𝑑 + ] , = 2.4 Γ— 10 𝐼 (𝑧) cm. 𝑒 𝑒 (22) βˆ’ βˆ’ 1+𝑧 𝑠󳨀→𝑒+𝑒 + ] ,𝑒+𝑒󳨀→𝑠 + ] , 𝐼(𝑧) = (1+𝑧) ∫ 𝑑π‘₯/√2.3 + π‘₯3 𝐻 = 𝑒 𝑒 (23) Here 1 ,wesetthevalues 0 70 km/sMpc,Ω𝑉 = 0.7 and Ω𝑀 = 0.3. which are 𝛽 decay and its inverse. These reactions constitute simple URCA processes, in which there is a net loss of a ]𝑙]𝑙 7.1. URCA Reactions. The neutrino luminosity of SPC of pair at nonzero temperatures. In this application a sufficient 𝛽 given mass, 𝑀̃, by modified URCA reactions with no muons accuracy is obtained by assuming -equilibrium and that Ξ› reads [75] the neutrinos are not retained in the medium of -like protomatter. The quark reactions (22) and (23) proceed at 𝑀 1.75 𝛽 ΜƒURCA 50 βŠ™ βˆ’1 equal rates in equilibrium, where the participating quarks 𝐿 = 3.8 Γ— 10 πœ€π‘‘ ( ) [erg s ], (17) ]πœ€ 𝑀̃ must reside close to their Fermi surface. Hence, the total energy of flux due to simple URCA processes is rather twice where πœ€π‘‘ =𝑑/2𝑅𝑔 and 𝑑 is the thickness of the protomatter than that of (22) or (23) alone. For example, the spectral fluxes disk at the edge of even horizon. The resulting total UHE of the UHE antineutrinos and neutrinos for different redshifts neutrino flux of cooling of the SPC can be obtained as from quark reactions are plotted, respectively, in Figures 4 and 5 [75]. The total flux of UHE neutrino can be written as 𝐽URCA ≃ 5.22 Γ— 10βˆ’8 ]πœ€ 1.75 π‘ž πœ€π‘‘ π‘€βŠ™ βˆ’2 βˆ’1 βˆ’1 1.75 𝐽]πœ€ ≃ 70.68 ( ) [erg cm s sr ] . πœ€π‘‘ π‘€βŠ™ βˆ’2 βˆ’1 βˆ’1 𝐼2 (𝑧)(1+𝑧) 𝑀̃ Γ— ( ) [erg cm s sr ], 𝐼2 (𝑧)(1+𝑧) 𝑀̃ (24) (18) 8. Simulation where the neutrino is radiated in a cone with the beaming 1+𝑧 πœƒβˆΌπœ€ β‰ͺ1𝐼(𝑧) = (1 + 𝑧)∫ 𝑑π‘₯/√2.3 + π‘₯3 angle 𝑑 , 1 .Asitis For simulation we use the data of AGN/BH mass and seen, the nucleon modified URCA reactions can contribute luminosity estimates for 377 black holes presented by [5]. efficiently only to extragalactic objects with enough small These masses are mostly based on the virial assumption for redshift 𝑧β‰ͺ1. the broad emission lines, with the broad-line region size Journal of Astrophysics 9

3E7

50000 z = 0.07

2.5E7 z = 0.01 z = 0.1 ) ) 1 1 βˆ’ βˆ’ sr sr

1 40000 1 βˆ’ βˆ’ s s 2 2 2E7 βˆ’ βˆ’

erg cm 30000 erg cm 1.5E7 (0.41 (0.41 d d )/πœ€ )/πœ€

2 20000 2 1E7 /dy /dy q πœ€ q πœ€ z = 0.02 (dJ (dJ 10000 5E6 z = 0.03 z = 0.5 z = 0.7 z = 0.05 0 0 0 481216 0 4 8 12 16 20 Z y =E/100 ZeV y2 =E /100 eV 2

Figure 4: The spectral fluxes of UHE antineutrinos for different redshifts from quark reactions.

2.8E5 z = 0.07 2E8 z = 0.01 )

1 2.4E5 z = 0.1 ) βˆ’ 1 βˆ’ sr 1 sr βˆ’ 1 s βˆ’

1.5E8 2 s

βˆ’ 2E5 2 βˆ’ erg cm

erg cm 1.6E5 (0.1 (0.1 1E8 d d )/πœ€

1 1.2E5 )/πœ€ 1 /dy /dy q πœ€

q πœ€ 80000

z = 0.02 (dJ

(dJ 5E7

z = 0.03 40000 z = 0.5 z = 0.05 z = 0.7 0 0 0 481216 0 4 8 12 16 20

y1 =E /100 ZeV y1 =E /100 ZeV

Figure 5: The spectral fluxes of UHE neutrinos for different redshifts from quark reactions. determined from either reverberation mapping or optical required central values of particle concentration 𝑛(0)Μƒ and ID- luminosity. Additional black hole mass estimates based on field π‘₯(0), for which the integrated total mass of configuration 𝑀 properties of the host galaxy bulges, either using the observed has to be equal to the black hole mass BH given from stellar velocity dispersion or using the fundamental plane observations. Along with all integral characteristics, the relation.Sincetheaimistohavemorethanathousandof radius 𝑅𝑑 is also computed, which is further used in (10), (14), realizations, each individual run is simplified, with a use 𝑀Seed 𝑇 𝑧Seed (15), (18), (21),and(24) for calculating BH , BH, ,and of previous algorithm of the SPC-configurations [71]asa 𝑖 𝐽 , respectively. The results are summed up in Tables 1, 2, 3, 4 working model, given in Appendix G. Computing the cor- ]πœ€ 𝑀Seed/𝑀 responding PRTs, seed black hole intermediate masses, and and 5. Figure 6 gives the intermediate seed masses BH βŠ™ 𝑀 /𝑀 total neutrino fluxes, a main idea comes to solving an inverse versus the present masses BH βŠ™ of 337 black holes, on 𝑀 /𝑀 ≃ 1.1 Γ— problem. Namely, by the numerous reiterating integrations of logarithmic scales. For the present masses BH βŠ™ 6 10 the state equations of SPC-configurations we determine those 10 to 1.3 Γ— 10 , the computed intermediate seed masses 10 Journal of Astrophysics

𝑀 /𝑀 ≃1.1Γ—106 1.3 Γ— 1010 6 BH βŠ™ to mass range at present reside in final stage of their growth, when the protomatter 5

) disk driven by accretion has reached the event horizon. βŠ™

/M 4 Seed BH

M 3 Appendices log ( 2 A. Outline of the Key Points of Proposed Gravitation Theory at Huge Energies 1 6 7891011The proposed gravitation theory explores the most important log ( MBH/MβŠ™) processes of rearrangement of vacuum state and a spon- 𝑀Seed/𝑀 𝑀 /𝑀 taneous breaking of gravitation gauge symmetry at huge Figure 6: The BH βŠ™- BH βŠ™ relation on logarithmic scales of 337 black holes from [5]. The solid line is the best fit to data of energies. From its historical development, the efforts in gauge samples. treatment of gravity mainly focus on the quantum gravity and microphysics, with the recent interest, for example, in the theory of the quantum superstring or, in the very early Seed 5 universe,intheinflationarymodel.Thepapersonthegauge are ranging from 𝑀 /π‘€βŠ™ ≃ 26.4 to 2.9 Γ— 10 .The BH treatment of gravity provide a unified picture of gravity computed neutrino fluxes are ranging from (1) (quark π‘ž βˆ’2 βˆ’1 βˆ’1 βˆ’16 modified models based on several Lie groups. However, reactions)—𝐽]πœ€/πœ€π‘‘ [erg cm s sr ] ≃ 8.29Γ—10 to 3.18Γ— βˆ’4 π‘ž βˆ’10 βˆ’2 βˆ’1 βˆ’1 currentlynosingletheoryhasbeenuniquelyacceptedasthe 10 ,withtheaverage𝐽]πœ€ ≃ 5.53Γ—10 πœ€π‘‘ [erg cm s sr ]; πœ‹ π‘ž convincing gauge theory of gravitation which could lead to a (2) (pionic reactions)—𝐽]πœ€ ≃ 0.112𝐽]πœ€,withtheaverage πœ‹ βˆ’11 βˆ’2 βˆ’1 βˆ’1 consistent quantum theory of gravity. They have evoked the 𝐽]πœ€ ≃ 3.66 Γ— 10 πœ€π‘‘ [erg cm s sr ]; and (3) (modified possibilitythatthetreatmentofspacetimemightinvolvenon- URCA βˆ’11 π‘ž URCA processes)—𝐽]πœ€ ≃ 7.39 Γ— 10 𝐽]πœ€,withtheaverage Riemannian features on the scale of the Planck length. This URCA βˆ’20 βˆ’2 βˆ’1 βˆ’1 necessitates the study of dynamical theories involving post- 𝐽]πœ€ ≃ 2.41 Γ— 10 πœ€π‘‘ [erg cm s sr ]. In accordance, the AGNs are favored as promising pure neutrino sources Riemannian geometries. It is well known that the notions of because the computed neutrino fluxes are highly beamed space and connections should be separated; see, for example, along the plane of accretion disk and peaked at high energies [78–81]. The curvature and torsion are in fact properties of a connection, and many different connections are allowed andcollimatedinsmalleropeningangleπœƒβˆΌπœ€π‘‘ =𝑑/2π‘Ÿπ‘” β‰ͺ1. To render our discussion here a bit more transparent and to to exist in the same spacetime. Therefore, when considering several connections with different curvature and torsion, one obtain some feeling for the parameter πœ€π‘‘ we may estimate βˆ’10 takes spacetime simply as a manifold and connections as πœ€π‘‘ ≃ 1.69Γ—10 , just for example, only, for the suppermassive 9 14 additional structures. From this view point in a recent paper black hole of typical mass ∼10 π‘€βŠ™(2 𝑅𝑔 = 5.9 Γ— 10 cm),and [82]wetackletheproblemofspacetimedeformation.This so π‘‘βˆΌ1km. But the key problem of fixing the parameter theory generalizes and, in particular cases, fully recovers the πœ€π‘‘ more accurately from experiment would be an important results of the conventional theory. Conceptually and tech- topic for another investigation elsewhere. niquewisethistheoryisversatileandpowerfulandmanifests its practical and technical virtue in the fact that through a 9. Conclusions nontrivial choice of explicit form of the world-deformation tensor, which we have at our disposal, in general, we have The growth of accreting supermassive black hole seeds and a way to deform the spacetime which displayed different their neutrino radiation are found to be common phenom- connections, which may reveal different post-Riemannian ena in the AGNs. In this report, we further expose the spacetime structures as corollary. All the fundamental grav- assertions made in the framework of microscopic theory itational structures in factβ€”the metric as much as the of black hole via reviewing the mass assembly history of coframes and connectionsβ€”acquire a spacetime deformation 377 plausible accreting supermassive black hole seeds. After induced theoretical interpretation. There is another line of the numerous reiterating integrations of the state equations reasoning which supports the side of this method. We address of SPC-configurations, we compute their intermediate seed the theory of teleparallel gravity and construct a consistent 𝑀Seed 𝑧Seed masses, BH , PRTs, initial redshifts, , and neutrino Einstein-Cartan (EC) theory with the dynamical torsion. fluxes. All the results are presented in Tables 1–5. Figure 6 We show that the equations of the standard EC theory, in 𝑀Seed/𝑀 gives the intermediate seed masses BH βŠ™ versus the which the equation defining torsion is the algebraic type 𝑀 /𝑀 present masses BH βŠ™ of 337 black holes, on logarithmic and, in fact, no propagation of torsion is allowed, can be scales. In accordance, the AGNs are favored as promising equivalently replaced by the set of modified Einstein-Cartan pure UHE neutrino sources. Such neutrinos may reveal clues equations in which the torsion, in general, is dynamical. on the puzzle of origin of UHE cosmic rays. We regard Moreover, the special physical constraint imposed upon the the considered black holes only as the potential neutrino spacetime deformations yields the short-range propagating sources. The obtained results, however, may suffer and that spin-spin interaction. For the self-contained arguments in would be underestimated if not all 377 live black holes in the Appendix A.1 and Appendices B and C we complete the Journal of Astrophysics 11

Table 1: Seed black hole intermediate masses, preradiation times, redshifts, and neutrino fluxes from spatially resolved kinematics. Columns: βˆ’ (1) name, (2) redshift, (3) AGN type: SY2: Seyfert 2, (4) log of the bolometric luminosity (ergs 1), (5) log of the radius of protomatter core in special unit π‘Ÿ = 13.68 km, (6) log of the black hole mass in solar masses, (7) log of the seed black hole intermediate mass in OV 𝑖=π‘ž 𝑖= 𝑖=πœ‹ solar masses, (8) log of the neutrino preradiation time (yrs), (9) redshift of seed black hole, (10) 𝐽 , (11) 𝐽 URCA,and(12)𝐽 ,where 𝑖 𝑖 βˆ’2 βˆ’1 βˆ’1 𝐽 ≑ log(𝐽Vπœ€/πœ€π‘‘ erg cm s sr ). 𝑅 𝑀 𝑀Seed 𝑧 𝐿 ( 𝑑 ) ( BH ) ( BH ) 𝑇 𝑧Seed π½π‘ž 𝐽URCA π½πœ‹ Name Type log bol log π‘Ÿ log 𝑀 log 𝑀 log BH ov βŠ™ βŠ™ NGC 1068 0.004 SY2 44.98 βˆ’7.59201 7.23 2.5922 8.02 0.006 βˆ’5.49 βˆ’15.62 βˆ’6.44 NGC 4258 0.001 SY2 43.45 βˆ’7.98201 7.62 2.9822 10.33 0.148 βˆ’4.97 βˆ’15.10 βˆ’5.92

Table 2: Seed black hole intermediate masses, preradiation times, redshifts, and neutrino fluxes from reverberation mapping. Columns: (1) βˆ’1 name, (2) redshift, (3) AGN type: SY2: Seyfert 2, (4) log of the bolometric luminosity (ergs ), (5) log of the radius of protomatter core in special π‘Ÿ unit OV = 13.68 km, (6) log of the black hole mass in solar masses, (7) log of the seed black hole intermediate mass in solar masses, (8) log of 𝑖=π‘ž 𝑖=URCA 𝑖=πœ‹ 𝑖 𝑖 βˆ’2 βˆ’1 βˆ’1 the neutrino preradiation time (yrs), (9) redshift of seed black hole, (10) 𝐽 , (11) 𝐽 ,and(12)𝐽 ,where𝐽 ≑ log(𝐽Vπœ€/πœ€π‘‘ erg cm s sr ) . 𝑅 𝑀 𝑀Seed 𝑧 𝐿 ( 𝑑 ) ( BH ) ( BH ) 𝑇 𝑧Seed π½π‘ž 𝐽URCA π½πœ‹ Name Type log bol log π‘Ÿ log 𝑀 log 𝑀 log BH ov βŠ™ βŠ™ 3C 120 0.033 SY1 45.34 βˆ’7.78201 7.42 2.7822 8.04 0.034 βˆ’7. 6 9 βˆ’17.82 βˆ’8.64 3C 390.3 0.056 SY1 44.88 βˆ’8.91201 8.55 3.9122 10.76 0.103 βˆ’10.15 βˆ’20.28 βˆ’11.10 Akn 120 0.032 SY1 44.91 βˆ’8.63201 8.27 3.6322 10.17 0.055 βˆ’9.15 βˆ’19.28 βˆ’10.10 F9 0.047 SY1 45.23 βˆ’8.27201 7.91 3.2722 9.13 0.052 βˆ’8.87 βˆ’19.00 βˆ’9.82 IC 4329A 0.016 SY1 44.78 βˆ’7.13201 6.77 2.1322 7.30 0.017 βˆ’5.91 βˆ’16.04 βˆ’6.86 Mrk 79 0.022 SY1 44.57 βˆ’8.22201 7.86 3.2222 9.69 0.041 βˆ’8.10 βˆ’18.23 βˆ’9.05 Mrk 110 0.035 SY1 44.71 βˆ’7.18201 6.82 2.1822 7.47 0.036 βˆ’6.69 βˆ’16.82 βˆ’7. 6 4 Mrk 335 0.026 SY1 44.69 βˆ’7.05201 6.69 2.0522 7.23 0.027 βˆ’6.20 βˆ’16.33 βˆ’7. 1 5 Mrk 509 0.034 SY1 45.03 βˆ’8.22201 7.86 3.2222 9.23 0.041 βˆ’8.49 βˆ’18.62 βˆ’9.44 Mrk 590 0.026 SY1 44.63 βˆ’7.56201 7.20 2.5622 8.31 0.030 βˆ’7. 0 9 βˆ’17.22 βˆ’8.04 Mrk 817 0.032 SY1 44.99 βˆ’7.96201 7.60 2.9622 8.75 0.036 βˆ’7.98 βˆ’18.11 βˆ’8.93 NGC 3227 0.004 SY1 43.86 βˆ’8.00201 7.64 3.0022 9.96 0.064 βˆ’6.21 βˆ’16.34 βˆ’7. 1 6 NGC 3516 0.009 SY1 44.29 βˆ’7.72201 7.36 2.7222 8.97 0.021 βˆ’6.43 βˆ’16.56 βˆ’7. 3 8 NGC 3783 0.010 SY1 44.41 βˆ’7.30201 6.94 2.3022 8.01 0.013 βˆ’5.79 βˆ’15.92 βˆ’6.74 NGC 4051 0.002 SY1 43.56 βˆ’6.49201 6.13 1.4922 7.24 0.006 βˆ’2.96 βˆ’13.10 βˆ’3.91 NGC 4151 0.003 SY1 43.73 βˆ’7.49201 7.13 2.4922 9.07 0.028 βˆ’5.07 βˆ’15.20 βˆ’6.02 NGC 4593 0.009 SY1 44.09 βˆ’7.27201 6.91 2.2722 8.27 0.016 βˆ’5.64 βˆ’15.77 βˆ’6.59 NGC 5548 0.017 SY1 44.83 βˆ’8.39201 8.03 3.3922 9.77 0.033 βˆ’8.16 βˆ’18.30 βˆ’9.11 NGC 7469 0.016 SY1 45.28 βˆ’7.20201 6.84 2.2022 6.94 0.016 βˆ’6.03 βˆ’16.16 βˆ’6.98 PG 0026 + 129 0.142 RQQ 45.39 βˆ’7.94201 7.58 2.9422 8.31 0.144 βˆ’9.35 βˆ’19.48 βˆ’10.30 PG 0052 + 251 0.155 RQQ 45.93 βˆ’8.77201 8.41 3.7722 9.43 0.158 βˆ’10.89 βˆ’21.02 βˆ’11.84 PG 0804 + 761 0.100 RQQ 45.93 βˆ’8.60201 8.24 3.6022 9.09 0.102 βˆ’10.16 βˆ’20.29 βˆ’11.11 PG 0844 + 349 0.064 RQQ 45.36 βˆ’7.74201 7.38 2.7422 7.94 0.065 βˆ’8.23 βˆ’18.36 βˆ’9.18 PG 0953 + 414 0.239 RQQ 46.16 βˆ’8.60201 8.24 3.6022 8.86 0.240 βˆ’11.04 βˆ’21.17 βˆ’11.99 PG 1211 + 143 0.085 RQQ 45.81 βˆ’7.85201 7.49 2.8522 7.71 0.085 βˆ’8.69 βˆ’18.82 βˆ’9.64 PG 1229 + 204 0.064 RQQ 45.01 βˆ’8.92201 8.56 3.9222 10.65 0.099 βˆ’10.29 βˆ’20.42 βˆ’11.24 PG 1307 + 085 0.155 RQQ 45.83 βˆ’8.26201 7.90 3.2622 8.51 0.156 βˆ’9.99 βˆ’20.12 βˆ’10.94 PG 1351 + 640 0.087 RQQ 45.50 βˆ’8.84201 8.48 3.8422 10.00 0.097 βˆ’10.44 βˆ’20.57 βˆ’11.39 PG 1411 + 442 0.089 RQQ 45.58 βˆ’7.93201 7.57 2.9322 8.10 0.090 βˆ’8.87 βˆ’19.00 βˆ’9.82 PG 1426 + 015 0.086 RQQ 45.19 βˆ’8.28201 7.92 3.2822 9.19 0.091 βˆ’9.45 βˆ’19.58 βˆ’10.40 PG 1613 + 658 0.129 RQQ 45.66 βˆ’8.98201 8.62 3.9822 10.12 0.138 βˆ’11.07 βˆ’21.20 βˆ’12.02 PG 1617 + 175 0.114 RQQ 45.52 βˆ’8.24201 7.88 3.2422 8.78 0.116 βˆ’9.65 βˆ’19.78 βˆ’10.60 PG 1700 + 518 0.292 RQQ 46.56 βˆ’8.67201 8.31 3.6722 8.60 0.293 βˆ’11.38 βˆ’21.51 βˆ’12.33 PG 2130 + 099 0.061 RQQ 45.47 βˆ’8.10201 7.74 3.1022 8.55 0.063 βˆ’8.81 βˆ’18.94 βˆ’9.76 PG 1226 + 023 0.158 RLQ 47.35 βˆ’7.58201 7.22 2.5822 5.63 0.158 βˆ’8.82 βˆ’18.95 βˆ’9.77 PG 1704 + 608 0.371 RLQ 46.33 βˆ’8.59201 8.23 3.5922 8.67 0.372 βˆ’11.50 βˆ’21.64 βˆ’12.45 12 Journal of Astrophysics

Table 3: Seed black hole intermediate masses, preradiation times, redshifts, and neutrino fluxes from optimal luminosity. Columns: (1) name, βˆ’1 (2) redshift, (3) AGN type: SY2: Seyfert 2, (4) log of the bolometric luminosity (ergs ), (5) log of the radius of protomatter core in special unit π‘Ÿ OV = 13.68 km, (6) log of the black hole mass in solar masses, (7) log of the seed black hole intermediate mass in solar masses, (8) log of the 𝑖=π‘ž 𝑖=URCA 𝑖=πœ‹ 𝑖 𝑖 βˆ’2 βˆ’1 βˆ’1 neutrino preradiation time (yrs), (9) redshift of seed black hole, (10) 𝐽 , (11) 𝐽 ,and(12)𝐽 ,where𝐽 ≑ log(𝐽Vπœ€/πœ€π‘‘ erg cm s sr ). 𝑅 𝑀 𝑀Seed 𝑧 𝐿 ( 𝑑 ) ( BH ) ( BH ) 𝑇 𝑧Seed π½π‘ž 𝐽URCA π½πœ‹ Name Type log bol log π‘Ÿ log 𝑀 log 𝑀 log BH ov βŠ™ βŠ™ Mrk 841 0.036 SY1 45.84 βˆ’8.46201 8.10 3.4622 8.90 0.038 βˆ’8.96 βˆ’19.09 βˆ’9.91 NGC 4253 0.013 SY1 44.40 βˆ’6.90201 6.54 1.9022 7.22 0.014 βˆ’5.32 βˆ’15.45 βˆ’6.27 NGC 6814 0.005 SY1 43.92 βˆ’7.64201 7.28 2.6422 9.18 0.028 βˆ’5.78 βˆ’15.91 βˆ’6.73 0054 + 144 0.171 RQQ 45.47 βˆ’9.26201 8.90 4.2622 10.87 0.198 βˆ’11.84 βˆ’21.97 βˆ’12.79 0157 + 001 0.164 RQQ 45.62 βˆ’8.06201 7.70 3.0622 8.32 0.165 βˆ’9.70 βˆ’19.83 βˆ’10.65 0204 + 292 0.109 RQQ 45.05 βˆ’7.03201 6.67 2.0322 6.83 0.109 βˆ’7. 4 9 βˆ’17.62 βˆ’8.44 0205 + 024 0.155 RQQ 45.45 βˆ’8.22201 7.86 3.2222 8.81 0.158 βˆ’9.92 βˆ’20.05 βˆ’10.87 0244 + 194 0.176 RQQ 45.51 βˆ’8.39201 8.03 3.3922 9.09 0.179 βˆ’10.35 βˆ’20.48 βˆ’11.30 0923 + 201 0.190 RQQ 46.22 βˆ’9.30201 8.94 4.3022 10.20 0.195 βˆ’12.02 βˆ’22.15 βˆ’12.97 1012 + 008 0.185 RQQ 45.51 βˆ’8.15201 7.79 3.1522 8.61 0.187 βˆ’9.98 βˆ’20.11 βˆ’10.93 1029 βˆ’ 140 0.086 RQQ 46.03 βˆ’9.44201 9.08 4.4422 10.67 0.097 βˆ’11.48 βˆ’21.61 βˆ’12.43 1116 + 215 0.177 RQQ 46.02 βˆ’8.57201 8.21 3.5722 8.94 0.179 βˆ’10.67 βˆ’20.80 βˆ’11.62 1202 + 281 0.165 RQQ 45.39 βˆ’8.65201 8.29 3.6522 9.73 0.173 βˆ’10.74 βˆ’20.87 βˆ’11.69 1309 + 355 0.184 RQQ 45.39 βˆ’8.36201 8.00 3.3622 8.91 0.186 βˆ’10.34 βˆ’20.47 βˆ’11.29 1402 + 261 0.164 RQQ 45.13 βˆ’7.65201 7.29 2.6522 7.99 0.165 βˆ’8.98 βˆ’19.11 βˆ’9.93 1444 + 407 0.267 RQQ 45.93 βˆ’8.42201 8.06 3.4222 8.73 0.268 βˆ’10.84 βˆ’20.97 βˆ’11.79 1635 + 119 0.146 RQQ 45.13 βˆ’8.46201 8.10 3.4622 9.61 0.155 βˆ’10.28 βˆ’20.41 βˆ’11.23 0022 βˆ’ 297 0.406 RLQ 44.98 βˆ’8.27201 7.91 3.2722 9.38 0.414 βˆ’11.05 βˆ’21.18 βˆ’12.00 0024 + 348 0.333 RLQ 45.31 βˆ’6.73201 6.37 1.7322 5.97 0.333 βˆ’8.13 βˆ’18.26 βˆ’9.08 0056 βˆ’ 001 0.717 RLQ 46.54 βˆ’9.07201 8.71 4.0722 9.42 0.718 βˆ’13.13 βˆ’23.26 βˆ’14.08 0110 + 495 0.395 RLQ 45.78 βˆ’8.70201 8.34 3.7022 9.44 0.399 βˆ’11.77 βˆ’21.90 βˆ’12.72 0114 + 074 0.343 RLQ 44.02 βˆ’7.16201 6.80 2.1622 8.12 0.349 βˆ’8.91 βˆ’19.04 βˆ’9.86 0119 + 041 0.637 RLQ 45.57 βˆ’8.74201 8.38 3.7422 9.73 0.643 βˆ’12.41 βˆ’22.54 βˆ’13.36 0133 + 207 0.425 RLQ 45.83 βˆ’9.88201 9.52 4.8822 11.75 0.474 βˆ’13.92 βˆ’24.05 βˆ’14.87 0133 + 476 0.859 RLQ 46.69 βˆ’9.09201 8.73 4.0922 9.31 0.860 βˆ’13.40 βˆ’23.53 βˆ’14.35 0134 + 329 0.367 RLQ 46.44 βˆ’9.10201 8.74 4.1022 9.58 0.369 βˆ’12.38 βˆ’22.52 βˆ’13.33 0135 βˆ’ 247 0.831 RLQ 46.64 βˆ’9.49201 9.13 4.4922 10.16 0.834 βˆ’14.06 βˆ’24.19 βˆ’15.01 0137 + 012 0.258 RLQ 45.22 βˆ’8.93201 8.57 3.9322 10.46 0.280 βˆ’11.70 βˆ’21.83 βˆ’12.65 0153 βˆ’ 410 0.226 RLQ 44.74 βˆ’7.92201 7.56 2.9222 8.92 0.233 βˆ’9.79 βˆ’19.92 βˆ’10.74 0159 βˆ’ 117 0.669 RLQ 46.84 βˆ’9.63201 9.27 4.6322 10.24 0.672 βˆ’14.03 βˆ’24.16 βˆ’14.98 0210 + 860 0.186 RLQ 44.92 βˆ’6.90201 6.54 1.9022 6.70 0.186 βˆ’7. 8 0 βˆ’17.93 βˆ’8.75 0221 + 067 0.510 RLQ 44.94 βˆ’7.65201 7.29 2.6522 8.18 0.512 βˆ’10.23 βˆ’20.36 βˆ’11.18 0237 βˆ’ 233 2.224 RLQ 47.72 βˆ’8.88201 8.52 3.8822 7.86 2.224 βˆ’14.39 βˆ’24.52 βˆ’15.34 0327 βˆ’ 241 0.888 RLQ 46.01 βˆ’8.96201 8.60 3.9622 9.73 0.892 βˆ’13.22 βˆ’23.35 βˆ’14.17 0336 βˆ’ 019 0.852 RLQ 46.32 βˆ’9.34201 8.98 4.3422 10.18 0.857 βˆ’13.83 βˆ’23.96 βˆ’14.78 0403 βˆ’ 132 0.571 RLQ 46.47 βˆ’9.43201 9.07 4.4322 10.21 0.575 βˆ’13.48 βˆ’23.61 βˆ’14.43 0405 βˆ’ 123 0.574 RLQ 47.40 βˆ’9.83201 9.47 4.8322 10.08 0.575 βˆ’14.19 βˆ’24.32 βˆ’15.14 0420 βˆ’ 014 0.915 RLQ 47.00 βˆ’9.39201 9.03 4.3922 9.60 0.916 βˆ’14.01 βˆ’24.14 βˆ’14.96 0437 + 785 0.454 RLQ 46.15 βˆ’9.15201 8.79 4.1522 9.97 0.458 βˆ’12.72 βˆ’22.85 βˆ’13.67 0444 + 634 0.781 RLQ 46.12 βˆ’8.89201 8.53 3.8922 9.48 0.784 βˆ’12.93 βˆ’23.06 βˆ’13.88 0454 βˆ’ 810 0.444 RLQ 45.32 βˆ’8.49201 8.13 3.4922 9.48 0.450 βˆ’11.54 βˆ’21.67 βˆ’12.49 0454 + 066 0.405 RLQ 45.12 βˆ’7.78201 7.42 2.7822 8.26 0.407 βˆ’10.19 βˆ’20.32 βˆ’11.14 0502 + 049 0.954 RLQ 46.36 βˆ’9.24201 8.88 4.2422 9.94 0.957 βˆ’13.80 βˆ’23.93 βˆ’14.75 0514 βˆ’ 459 0.194 RLQ 45.36 βˆ’7.91201 7.55 2.9122 8.28 0.196 βˆ’9.61 βˆ’19.74 βˆ’10.56 0518 + 165 0.759 RLQ 46.34 βˆ’8.89201 8.53 3.8922 9.26 0.761 βˆ’12.89 βˆ’23.02 βˆ’13.84 0538 + 498 0.545 RLQ 46.43 βˆ’9.94201 9.58 4.9422 11.27 0.559 βˆ’14.32 βˆ’24.45 βˆ’15.27 0602 βˆ’ 319 0.452 RLQ 45.69 βˆ’9.38201 9.02 4.3822 10.89 0.473 βˆ’13.11 βˆ’23.25 βˆ’14.07 Journal of Astrophysics 13

Table 3: Continued. 𝑅 𝑀 𝑀Seed 𝑧 𝐿 ( 𝑑 ) ( BH ) ( BH ) 𝑇 𝑧Seed π½π‘ž 𝐽URCA π½πœ‹ Name Type log bol log π‘Ÿ log 𝑀 log 𝑀 log BH ov βŠ™ βŠ™ 0607 βˆ’ 157 0.324 RLQ 46.30 βˆ’9.04201 8.68 4.0422 9.60 0.326 βˆ’12.14 βˆ’22.27 βˆ’13.09 0637 βˆ’ 752 0.654 RLQ 47.16 βˆ’9.77201 9.41 4.7722 10.20 0.656 βˆ’14.24 βˆ’24.37 βˆ’15.19 0646 + 600 0.455 RLQ 45.58 βˆ’9.10201 8.74 4.1022 10.44 0.469 βˆ’12.63 βˆ’22.76 βˆ’13.58 0723 + 679 0.846 RLQ 46.41 βˆ’9.03201 8.67 4.0322 9.47 0.848 βˆ’13.27 βˆ’23.41 βˆ’14.23 0736 + 017 0.191 RLQ 46.41 βˆ’8.36201 8.00 3.3622 8.57 0.192 βˆ’10.38 βˆ’20.51 βˆ’11.33 0738 + 313 0.631 RLQ 46.94 βˆ’9.76201 9.40 4.7622 10.40 0.634 βˆ’14.18 βˆ’24.31 βˆ’15.13 0809 + 483 0.871 RLQ 46.54 βˆ’8.32201 7.96 3.3222 7.92 0.871 βˆ’12.07 βˆ’22.20 βˆ’13.02 0838 + 133 0.684 RLQ 46.23 βˆ’8.88201 8.52 3.8822 9.35 0.686 βˆ’12.74 βˆ’22.87 βˆ’13.69 0906 + 430 0.668 RLQ 45.99 βˆ’8.26201 7.90 3.2622 8.35 0.669 βˆ’11.63 βˆ’21.76 βˆ’12.58 0912 + 029 0.427 RLQ 45.26 βˆ’8.08201 7.72 3.0822 8.72 0.430 βˆ’10.77 βˆ’20.90 βˆ’11.72 0921 βˆ’ 213 0.052 RLQ 44.63 βˆ’8.50201 8.14 3.5022 10.19 0.084 βˆ’9.36 βˆ’19.50 βˆ’10.32 0923 + 392 0.698 RLQ 46.26 βˆ’9.64201 9.28 4.6422 10.84 0.708 βˆ’14.10 βˆ’24.23 βˆ’15.05 0925 βˆ’ 203 0.348 RLQ 46.35 βˆ’8.82201 8.46 3.8222 9.11 0.349 βˆ’11.83 βˆ’21.97 βˆ’12.78 0953 + 254 0.712 RLQ 46.59 βˆ’9.36201 9.00 4.3622 9.95 0.715 βˆ’13.63 βˆ’23.76 βˆ’14.58 0954 + 556 0.901 RLQ 46.54 βˆ’8.43201 8.07 3.4322 8.14 0.901 βˆ’12.31 βˆ’22.44 βˆ’13.26 1004 + 130 0.240 RLQ 46.21 βˆ’9.46201 9.10 4.4622 10.53 0.248 βˆ’12.55 βˆ’22.68 βˆ’13.50 1007 + 417 0.612 RLQ 46.71 βˆ’9.15201 8.79 4.1522 9.41 0.613 βˆ’13.08 βˆ’23.21 βˆ’14.03 1016 βˆ’ 311 0.794 RLQ 46.63 βˆ’9.25201 8.89 4.2522 9.69 0.796 βˆ’13.58 βˆ’23.71 βˆ’14.53 1020 βˆ’ 103 0.197 RLQ 44.87 βˆ’8.72201 8.36 3.7222 10.39 0.228 βˆ’11.04 βˆ’21.18 βˆ’11.99 1034 βˆ’ 293 0.312 RLQ 46.20 βˆ’9.11201 8.75 4.1122 9.84 0.316 βˆ’12.22 βˆ’22.35 βˆ’13.17 1036 βˆ’ 154 0.525 RLQ 44.55 βˆ’8.16201 7.80 3.1622 9.59 0.543 βˆ’11.16 βˆ’21.29 βˆ’12.11 1045 βˆ’ 188 0.595 RLQ 45.80 βˆ’7.19201 6.83 2.1922 6.40 0.595 βˆ’9.61 βˆ’19.74 βˆ’10.56 1100 + 772 0.311 RLQ 46.49 βˆ’9.67201 9.31 4.6722 10.67 0.318 βˆ’13.20 βˆ’23.33 βˆ’14.15 1101 βˆ’ 325 0.355 RLQ 46.33 βˆ’8.97201 8.61 3.9722 9.43 0.357 βˆ’12.12 βˆ’22.25 βˆ’13.07 1106 + 023 0.157 RLQ 44.97 βˆ’7.86201 7.50 2.8622 8.57 0.160 βˆ’9.31 βˆ’19.44 βˆ’10.26 1107 βˆ’ 187 0.497 RLQ 44.25 βˆ’7.26201 6.90 2.2622 8.09 0.501 βˆ’9.52 βˆ’19.65 βˆ’10.47 1111 + 408 0.734 RLQ 46.26 βˆ’10.18201 9.82 5.1822 11.92 0.770 βˆ’15.11 βˆ’25.24 βˆ’16.06 1128 βˆ’ 047 0.266 RLQ 44.08 βˆ’7.08201 6.72 2.0822 7.90 0.270 βˆ’8.49 βˆ’18.62 βˆ’9.44 1136 βˆ’ 135 0.554 RLQ 46.78 βˆ’9.14201 8.78 4.1422 9.32 0.555 βˆ’12.94 βˆ’23.07 βˆ’13.89 1137 + 660 0.656 RLQ 46.85 βˆ’9.72201 9.36 4.7222 10.41 0.659 βˆ’14.16 βˆ’24.29 βˆ’15.11 1150 + 497 0.334 RLQ 45.98 βˆ’9.09201 8.73 4.0922 10.02 0.340 βˆ’12.26 βˆ’22.39 βˆ’13.21 1151 βˆ’ 348 0.258 RLQ 45.56 βˆ’9.38201 9.02 4.3822 11.02 0.287 βˆ’12.26 βˆ’22.39 βˆ’13.21 1200 βˆ’ 051 0.381 RLQ 46.41 βˆ’8.77201 8.41 3.7722 8.95 0.382 βˆ’12.26 βˆ’22.39 βˆ’13.21 1202 βˆ’ 262 0.789 RLQ 45.81 βˆ’9.36201 9.00 4.3622 10.73 0.804 βˆ’13.76 βˆ’23.89 βˆ’14.71 1217 + 023 0.240 RLQ 45.83 βˆ’8.77201 8.41 3.7722 9.53 0.244 βˆ’11.34 βˆ’21.47 βˆ’12.29 1237 βˆ’ 101 0.751 RLQ 46.63 βˆ’9.64201 9.28 4.6422 10.47 0.755 βˆ’14.19 βˆ’24.32 βˆ’15.14 1244 βˆ’ 255 0.633 RLQ 46.48 βˆ’9.40201 9.04 4.4022 10.14 0.637 βˆ’13.55 βˆ’23.69 βˆ’14.51 1250 + 568 0.321 RLQ 45.61 βˆ’8.78201 8.42 3.7822 9.77 0.327 βˆ’11.67 βˆ’21.81 βˆ’12.62 1253 βˆ’ 055 0.536 RLQ 46.10 βˆ’8.79201 8.43 3.7922 9.30 0.538 βˆ’12.28 βˆ’22.42 βˆ’13.24 1254 βˆ’ 333 0.190 RLQ 45.52 βˆ’9.19201 8.83 4.1922 10.68 0.210 βˆ’11.83 βˆ’21.96 βˆ’12.78 1302 βˆ’ 102 0.286 RLQ 45.86 βˆ’8.66201 8.30 3.6622 9.28 0.289 βˆ’11.34 βˆ’21.47 βˆ’12.29 1352 βˆ’ 104 0.332 RLQ 45.81 βˆ’8.51201 8.15 3.5122 9.03 0.334 βˆ’11.24 βˆ’21.37 βˆ’12.19 1354 + 195 0.720 RLQ 47.11 βˆ’9.80201 9.44 4.8022 10.31 0.722 βˆ’14.42 βˆ’24.55 βˆ’15.37 1355 βˆ’ 416 0.313 RLQ 46.48 βˆ’10.09201 9.73 5.0922 11.52 0.331 βˆ’13.94 βˆ’24.07 βˆ’14.89 1359 βˆ’ 281 0.803 RLQ 46.19 βˆ’8.43201 8.07 3.4322 8.49 0.804 βˆ’12.16 βˆ’22.29 βˆ’13.11 1450 βˆ’ 338 0.368 RLQ 43.94 βˆ’6.82201 6.46 1.8222 7.52 0.371 βˆ’8.40 βˆ’18.53 βˆ’9.35 1451 βˆ’ 375 0.314 RLQ 46.16 βˆ’9.18201 8.82 4.1822 10.02 0.319 βˆ’12.35 βˆ’22.48 βˆ’13.30 1458 + 718 0.905 RLQ 46.93 βˆ’9.34201 8.98 4.3422 9.57 0.906 βˆ’13.91 βˆ’24.04 βˆ’14.86 1509 + 022 0.219 RLQ 44.54 βˆ’8.35201 7.99 3.3522 9.98 0.247 βˆ’10.51 βˆ’20.64 βˆ’11.46 1510 βˆ’ 089 0.361 RLQ 46.38 βˆ’9.01201 8.65 4.0122 9.46 0.363 βˆ’12.21 βˆ’22.34 βˆ’13.16 14 Journal of Astrophysics

Table 3: Continued. 𝑅 𝑀 𝑀Seed 𝑧 𝐿 ( 𝑑 ) ( BH ) ( BH ) 𝑇 𝑧Seed π½π‘ž 𝐽URCA π½πœ‹ Name Type log bol log π‘Ÿ log 𝑀 log 𝑀 log BH ov βŠ™ βŠ™ 1545 + 210 0.266 RLQ 45.86 βˆ’9.29201 8.93 4.2922 10.54 0.278 βˆ’12.36 βˆ’22.49 βˆ’13.31 1546 + 027 0.412 RLQ 46.00 βˆ’9.08201 8.72 4.0822 9.98 0.417 βˆ’12.48 βˆ’22.61 βˆ’13.43 1555 βˆ’ 140 0.097 RLQ 44.94 βˆ’7.61201 7.25 2.6122 8.10 0.099 βˆ’8.39 βˆ’18.53 βˆ’9.34 1611 + 343 1.401 RLQ 46.99 βˆ’9.93201 9.57 4.9322 10.69 1.405 βˆ’15.54 βˆ’25.67 βˆ’16.49 1634 + 628 0.988 RLQ 45.47 βˆ’7.64201 7.28 2.6422 7.63 0.989 βˆ’11.05 βˆ’21.18 βˆ’12.00 1637 + 574 0.750 RLQ 46.68 βˆ’9.54201 9.18 4.5422 10.22 0.753 βˆ’14.01 βˆ’24.14 βˆ’14.96 1641 + 399 0.594 RLQ 46.89 βˆ’9.78201 9.42 4.7822 10.49 0.597 βˆ’14.14 βˆ’24.27 βˆ’15.09 1642 + 690 0.751 RLQ 45.78 βˆ’8.12201 7.76 3.1222 8.28 0.752 βˆ’11.53 βˆ’21.66 βˆ’12.48 1656 + 053 0.879 RLQ 47.21 βˆ’9.98201 9.62 4.9822 10.57 0.882 βˆ’14.99 βˆ’25.12 βˆ’15.94 1706 + 006 0.449 RLQ 44.01 βˆ’6.99210 6.63 2.9922 7.79 0.453 βˆ’8.92 βˆ’19.06 βˆ’9.87 1721 + 343 0.206 RLQ 45.63 βˆ’8.40201 8.04 3.4022 8.99 0.209 βˆ’10.53 βˆ’20.66 βˆ’11.48 1725 + 044 0.293 RLQ 46.07 βˆ’8.43201 8.07 3.4322 8.61 0.294 βˆ’10.96 βˆ’21.09 βˆ’11.91

πœ‡ Μƒ spacetime deformation theory [82] by new investigation of displacement 𝑑π‘₯Μƒ on the M4 in terms of the spacetime building up the distortion-complex of spacetime continuum structures of 𝑀4 and showing how it restores the world-deformation tensor, Μƒ Μƒ Μƒπœ‡ π‘š 𝑙 Μƒ which still has been put in by hand. We extend neces- 𝑖𝑑=Μƒπ‘’πœ—=Μƒπ‘’πœ‡ βŠ— πœ— =Ξ© π‘™π‘’π‘š βŠ—πœ— ∈ M4. (A.2) sary geometrical ideas of spacetime deformation in concise Μƒ form, without going into the subtleties, as applied to the A deformation Ξ©:𝑀4 β†’ M4 comprises the following ∘ Μ† gravitation theory which underlies the MTBH framework. I two 4D deformations Ξ©:𝑀4 →𝑉4 and Ξ©:𝑉4 β†’ have attempted to maintain a balance between being overly Μƒ ∘ 𝑀4,where𝑉4 is the semi-Riemannian space and Ξ© and detailed and overly schematic. Therefore the text in the Ξ©Μ† are the corresponding world deformation tensors. The appendices should resemble a β€œhybrid” of a new investigation key points of the theory of spacetime deformation are and some issues of proposed gravitation theory. outlined further in Appendix B. Finally, to complete this theory we need to determine 𝐷̃ and πœ“Μƒ, figured in (A.1).In A.1. A First Glance at Spacetime Deformation. Consider a the standard theory of gravitation they can be determined Ξ©:𝑀 β†’ MΜƒ smooth deformation map 4 4,written from the standard field equations by means of the general in terms of the world-deformation tensor (Ξ©), the general Μƒ linear frames (C.10).However,itshouldbeemphasizedthat (M4), and flat (𝑀4) smooth differential 4D-manifolds. The the standard Riemannian space interacting quantum field following notational conventions will be used throughout theory cannot be a satisfactory ground for addressing the Μƒ the appendices. All magnitudes related to the space, M4, most important processes of rearrangement of vacuum state will be denoted by an over β€œΜƒβ€. We use the Greek alphabet and gauge symmetry breaking in gravity at huge energies. (πœ‡, ],𝜌,... = 0,1,2,3) to denote the holonomic world The difficulties arise there because Riemannian geometry, Μƒ indices related to M4 and the second half of Latin alphabet in general, does not admit a group of isometries, and it (𝑙,π‘š,π‘˜,...= 0,1,2,3)todenotetheworldindicesrelatedto is impossible to define energy-momentum as Noether local Μƒ π‘š 𝑀4.Thetensor,Ξ©,canbewrittenintheformΞ©=π·πœ“(Ξ©Μƒ 𝑙 = currents related to exact symmetries. This, in turn, posed Μƒπ‘š Μƒ πœ‡ severe problem of nonuniqueness of the physical vacuum and π·πœ‡ πœ“π‘™ ), where the DC-members are the invertible distortion π‘š 𝐷(Μƒ 𝐷̃ ) πœ“(Μƒ πœ“Μƒ πœ‡ β‰‘πœ•π‘₯Μƒπœ‡ πœ• =πœ•/πœ•π‘₯𝑙 theassociatedFockspace.Adefinitionofpositivefrequency matrix πœ‡ and the tensor 𝑙 𝑙 and 𝑙 ). modes cannot, in general, be unambiguously fixed in the past (Ξ©) The principle foundation of the world-deformation tensor and future, which leads to |in⟩ =|ΜΈ out⟩, because the state |in⟩ 𝑒 comprises the following two steps: (1) the basis vectors π‘š at is unstable against decay into many particle |out⟩ states due to π‘βˆˆπ‘€ given point ( 4) undergo the distortion transformations interaction processes allowed by lack of Poincareinvariance.Β΄ Μƒ πœ‡ by means of 𝐷; and (2) the diffeomorphism π‘₯Μƒ (π‘₯) :4 𝑀 β†’ A nontrivial Bogolubov transformation between past and Μƒ 𝑀4 is constructed by seeking new holonomic coordinates future positive frequency modes implies that particles are πœ‡ π‘₯Μƒ (π‘₯) as the solutions of the first-order partial differential createdfromthevacuumandthisisoneofthereasonsfor equations. Namely, |in⟩ =|ΜΈ out⟩. Μƒ ̃𝑙 Μƒ Μƒ πœ‡ π‘š π‘’πœ‡ = π·πœ‡π‘’π‘™, π‘’πœ‡πœ“π‘™ =Ξ© π‘™π‘’π‘š, (A.1) A.2. General Gauge Principle. Keeping in mind the aforesaid, we develop the alternative framework of the general gauge πœ• πœ“πœ‡ =πœ•πœ“πœ‡ where the conditions of integrability, π‘˜ 𝑙 𝑙 π‘˜ ,and principle (GGP), which is the distortion gauge induced fiber- nondegeneracy, β€–πœ“β€– =0ΜΈ ,necessarilyhold[83, 84]. For bundle formulation of gravitation. As this principle was in reasons that will become clear in the sequel, next we write useasaguideinconstructingourtheory,webrieflydiscuss Μƒ the norm 𝑑̃𝑠≑𝑖𝑑 (see Appendix B) of the infinitesimal its general implications in Appendix D. The interested reader Journal of Astrophysics 15

Table 4: Seed black hole intermediate masses, preradiation times, redshifts, and neutrino fluxes from observed stellar velocity dispersions. βˆ’1 Columns: (1) name, (2) redshift, (3) AGN type: SY2: Seyfert 2, (4) log of the bolometric luminosity (ergs ), (5) log of the radius of protomatter core in special unit π‘Ÿ = 13.68 km, (6) log of the black hole mass in solar masses, (7) log of the seed black hole intermediate mass in OV 𝑖=π‘ž 𝑖= 𝑖=πœ‹ solar masses, (8) log of the neutrino preradiation time (yrs), (9) redshift of seed black hole, (10) 𝐽 , (11) 𝐽 URCA,and(12)𝐽 ,where 𝑖 𝑖 βˆ’2 βˆ’1 βˆ’1 𝐽 ≑ log(𝐽Vπœ€/πœ€π‘‘ erg cm s sr ). 𝑅 𝑀 𝑀Seed 𝑧 𝐿 ( 𝑑 ) ( BH ) ( BH ) 𝑇 𝑧Seed π½π‘ž 𝐽URCA π½πœ‹ Name Type log bol log π‘Ÿ log 𝑀 log 𝑀 log BH ov βŠ™ βŠ™ NGC 1566 0.005 SY1 44.45 βˆ’7.28201 6.92 2.2822 7.93 0.008 βˆ’5.15 βˆ’15.28 βˆ’6.10 NGC 2841 0.002 SY1 43.67 βˆ’8.57201 8.21 3.5722 11.29 0.347 βˆ’6.60 βˆ’16.74 βˆ’7. 5 5 NGC 3982 0.004 SY1 43.54 βˆ’6.45201 6.09 1.45220 7.18 0.008 βˆ’3.50 βˆ’13.63 βˆ’4.45 NGC 3998 0.003 SY1 43.54 βˆ’9.31201 8.95 4.3122 12.90 2.561 βˆ’8.25 βˆ’18.38 βˆ’9.20 Mrk 10 0.029 SY1 44.61 βˆ’7.83291 7.47 4.7908 8.87 0.036 βˆ’7. 6 6 βˆ’17.79 βˆ’8.61 UGC 3223 0.016 SY1 44.27 βˆ’7.38201 7.02 2.3822 8.31 0.022 βˆ’6.34 βˆ’16.47 βˆ’7. 2 9 NGC 513 0.002 SY2 42.52 βˆ’8.01201 7.65 3.0122 11.32 1.345 βˆ’5.62 βˆ’15.76 βˆ’6.57 NGC 788 0.014 SY2 44.33 βˆ’7.87201 7.51 2.8722 9.23 0.029 βˆ’7. 0 8 βˆ’17.21 βˆ’8.03 NGC 1052 0.005 SY2 43.84 βˆ’8.55201 8.19 3.5522 11.08 0.228 βˆ’7. 3 7 βˆ’17.50 βˆ’8.32 NGC 1275 0.018 SY2 45.04 βˆ’8.87201 8.51 3.8722 10.52 0.047 βˆ’9.05 βˆ’19.19 βˆ’10.01 NGC 1320 0.009 SY2 44.02 βˆ’7.54201 7.18 2.5422 8.88 0.023 βˆ’6.12 βˆ’16.25 βˆ’7.07 NGC 1358 0.013 SY2 44.37 βˆ’8.24201 7.88 3.2422 9.93 0.045 βˆ’7. 6 6 βˆ’17.80 βˆ’8.62 NGC 1386 0.003 SY2 43.38 βˆ’7.60201 7.24 2.6022 9.64 0.075 βˆ’0.020 βˆ’15.39 βˆ’6.21 NGC 1667 0.015 SY2 44.69 βˆ’8.24201 7.88 3.2422 9.61 0.030 βˆ’7. 7 9 βˆ’17.92 βˆ’8.74 NGC 2110 0.008 SY2 44.10 βˆ’8.66201 8.30 3.6622 11.04 0.166 βˆ’7.97 βˆ’18.10 βˆ’8.92 NGC 2273 0.006 SY2 44.05 βˆ’7.66201 7.30 2.6622 9.09 0.024 βˆ’5.97 βˆ’16.10 βˆ’6.92 NGC 2992 0.008 SY2 43.92 βˆ’8.08201 7.72 3.0822 10.06 0.071 βˆ’6.96 βˆ’17.09 βˆ’7. 9 1 NGC 3185 0.004 SY2 43.08 βˆ’6.42201 6.06 1.4222 7.58 0.014 βˆ’3.45 βˆ’13.58 βˆ’4.40 NGC 3362 0.028 SY2 44.27 βˆ’7.13201 6.77 2.1322 7.81 0.031 βˆ’6.40 βˆ’16.54 βˆ’7. 3 6 NGC 3786 0.009 SY2 43.47 βˆ’7.89201 7.53 2.8922 10.13 0.123 βˆ’6.73 βˆ’16.86 βˆ’7. 6 8 NGC 4117 0.003 SY2 43.64 βˆ’7.19201 6.83 2.1922 8.56 0.018 βˆ’4.54 βˆ’14.67 βˆ’5.49 NGC 4339 0.004 SY2 43.38 βˆ’7.76201 7.40 2.7622 9.96 0.108 βˆ’5.79 βˆ’15.92 βˆ’6.74 NGC 5194 0.002 SY2 43.79 βˆ’7.31201 6.95 2.3122 8.65 0.016 βˆ’4.40 βˆ’14.53 βˆ’5.35 NGC 5252 0.023 SY2 45.39 βˆ’8.40201 8.04 3.4022 9.23 0.027 βˆ’8.45 βˆ’18.58 βˆ’9.40 NGC 5273 0.004 SY2 43.03 βˆ’6.87201 6.51 1.8722 8.53 0.034 βˆ’4.23 βˆ’14.36 βˆ’5.18 NGC 5347 0.008 SY2 43.81 βˆ’7.15201 6.79 2.1522 8.31 0.018 βˆ’5.33 βˆ’15.46 βˆ’6.28 NGC 5427 0.009 SY2 44.12 βˆ’6.75201 6.39 1.7522 7.20 0.011 βˆ’4.73 βˆ’14.86 βˆ’5.68 NGC 5929 0.008 SY2 43.04 βˆ’7.61201 7.25 2.6122 10.00 0.169 βˆ’6.13 βˆ’16.27 βˆ’7. 0 9 NGC 5953 0.007 SY2 44.05 βˆ’7.30201 6.94 2.3022 8.37 0.015 βˆ’5.48 βˆ’15.61 βˆ’6.43 NGC 6104 0.028 SY2 43.60 βˆ’7.96201 7.60 2.9622 10.14 0.128 βˆ’7. 8 6 βˆ’17.99 βˆ’8.81 NGC 7213 0.006 SY2 44.30 βˆ’8.35201 7.99 3.3522 10.22 0.055 βˆ’7. 1 8 βˆ’17.31 βˆ’8.13 NGC 7319 0.023 SY2 44.19 βˆ’7.74201 7.38 2.7422 9.11 0.038 βˆ’7. 3 0 βˆ’17.43 βˆ’8.25 NGC 7603 0.030 SY2 44.66 βˆ’8.44201 8.08 3.4422 10.04 0.056 βˆ’8.76 βˆ’18.89 βˆ’9.71 NGC 7672 0.013 SY2 43.86 βˆ’7.24201 6.88 2.2422 8.44 0.023 βˆ’5.91 βˆ’16.05 βˆ’6.87 NGC 7682 0.017 SY2 43.93 βˆ’7.64201 7.28 2.6422 9.17 0.039 βˆ’6.85 βˆ’16.98 βˆ’7. 8 0 NGC 7743 0.006 SY2 43.60 βˆ’6.95201 6.59 1.9522 8.12 0.016 βˆ’4.73 βˆ’14.86 βˆ’5.68 Mrk 1 0.016 SY2 44.20 βˆ’7.52201 7.16 2.5222 8.66 0.025 βˆ’6.59 βˆ’16.72 βˆ’7. 5 4 Mrk 3 0.014 SY2 44.54 βˆ’9.01201 8.65 4.0122 11.30 0.142 βˆ’9.08 βˆ’19.21 βˆ’10.03 Mrk 78 0.037 SY2 44.59 βˆ’8.23201 7.87 3.2322 9.69 0.056 βˆ’8.58 βˆ’18.71 βˆ’9.53 Mrk 270 0.010 SY2 43.37 βˆ’7.96201 7.60 2.9622 10.37 0.179 βˆ’6.94 βˆ’17.07 βˆ’7. 8 9 Mrk 348 0.015 SY2 44.27 βˆ’7.57201 7.21 2.5722 8.69 0.024 βˆ’6.62 βˆ’16.75 βˆ’7. 5 7 Mrk 533 0.029 SY2 45.15 βˆ’7.92201 7.56 2.9222 8.51 0.032 βˆ’7. 8 2 βˆ’17.95 βˆ’8.77 Mrk 573 0.017 SY2 44.44 βˆ’7.64201 7.28 2.6422 8.66 0.024 βˆ’6.85 βˆ’16.98 βˆ’7. 8 0 Mrk 622 0.023 SY2 44.52 βˆ’7.28201 6.92 2.2822 7.86 0.026 βˆ’6.49 βˆ’16.62 βˆ’7. 4 4 Mrk 686 0.014 SY2 44.11 βˆ’7.92201 7.56 2.9222 9.55 0.042 βˆ’7. 1 7 βˆ’17.30 βˆ’8.12 Mrk 917 0.024 SY2 44.75 βˆ’7.98201 7.62 2.9822 9.03 0.031 βˆ’7. 7 5 βˆ’17.89 βˆ’8.70 Mrk 1018 0.042 SY2 44.39 βˆ’8.45201 8.09 3.4522 10.33 0.092 βˆ’9.08 βˆ’19.21 βˆ’10.03 16 Journal of Astrophysics

Table 4: Continued. 𝑅 𝑀 𝑀Seed 𝑧 𝐿 ( 𝑑 ) ( BH ) ( BH ) 𝑇 𝑧Seed π½π‘ž 𝐽URCA π½πœ‹ Name Type log bol log π‘Ÿ log 𝑀 log 𝑀 log BH ov βŠ™ βŠ™ Mrk 1040 0.017 SY2 44.53 βˆ’8.00201 7.64 3.0022 9.29 0.030 βˆ’7. 4 8 βˆ’17.61 βˆ’8.43 Mrk 1066 0.012 SY2 44.55 βˆ’7.37201 7.01 2.3722 8.01 0.015 βˆ’6.07 βˆ’16.20 βˆ’7. 02 Mrk 1157 0.015 SY2 44.27 βˆ’7.19201 6.83 2.1922 7.93 0.019 βˆ’5.95 βˆ’16.08 βˆ’6.90 Akn 79 0.018 SY2 45.24 βˆ’7.90201 7.54 2.9022 8.38 0.020 βˆ’7. 3 6 βˆ’17.49 βˆ’8.31 Akn 347 0.023 SY2 44.84 βˆ’8.36201 8.00 3.3622 9.70 0.037 βˆ’8.38 βˆ’18.51 βˆ’9.33 IC 5063 0.011 SY2 44.53 βˆ’8.10201 7.74 3.1022 9.49 0.027 βˆ’7. 2 7 βˆ’17.40 βˆ’8.22 II ZW55 0.025 SY2 44.54 βˆ’8.59201 8.23 3.5922 10.46 0.074 βˆ’8.86 βˆ’18.99 βˆ’9.81 F 341 0.016 SY2 44.13 βˆ’7.51201 7.15 2.5122 8.71 0.026 βˆ’6.57 βˆ’16.70 βˆ’7. 52 UGC 3995 0.016 SY2 44.39 βˆ’8.05201 7.69 3.0522 9.53 0.036 βˆ’7. 52 βˆ’17.65 βˆ’8.47 UGC 6100 0.029 SY2 44.48 βˆ’8.06201 7.70 3.0622 9.46 0.046 βˆ’8.06 βˆ’18.20 βˆ’9.01 1ES 1959 + 65 0.048 BLL β€” βˆ’10.39501 8.09 3.4522 7.79 0.052 βˆ’9.20 βˆ’19.34 βˆ’10.15 Mrk 180 0.045 BLL β€” βˆ’10.51501 8.21 3.5722 7.91 0.051 βˆ’9.35 βˆ’19.49 βˆ’10.31 Mrk 421 0.031 BLL β€” βˆ’10.59501 8.29 3.6522 7.99 0.038 βˆ’9.16 βˆ’19.29 βˆ’10.11 Mrk 501 0.034 BLL β€” βˆ’11.51501 9.21 4.5722 8.91 0.092 βˆ’10.85 βˆ’20.98 βˆ’11.80 I Zw 187 0.055 BLL β€” βˆ’10.16501 7.86 3.2222 7.56 0.058 βˆ’8.93 βˆ’19.06 βˆ’9.88 3C 371 0.051 BLL β€” βˆ’10.81501 8.51 3.8722 8.21 0.063 βˆ’9.99 βˆ’20.13 βˆ’10.95 1514 βˆ’ 241 0.049 BLL β€” βˆ’10.40501 8.10 3.4622 7.80 0.054 βˆ’9.24 βˆ’19.37 βˆ’10.19 0521 βˆ’ 365 0.055 BLL β€” βˆ’10.95501 8.65 4.0122 8.35 0.071 βˆ’10.31 βˆ’20.44 βˆ’11.26 0548 βˆ’ 322 0.069 BLL β€” βˆ’10.45501 8.15 3.5122 7.85 0.074 βˆ’9.65 βˆ’19.78 βˆ’10.60 0706 + 591 0.125 BLL β€” βˆ’10.56501 8.26 3.6222 7.96 0.132 βˆ’10.41 βˆ’20.54 βˆ’11.36 2201 + 044 0.027 BLL β€” βˆ’10.40501 8.10 3.4622 7.80 0.032 βˆ’8.70 βˆ’18.83 βˆ’9.65 2344 + 514 0.044 BLL β€” βˆ’11.10501 8.80 4.1622 8.50 0.067 βˆ’10.37 βˆ’20.50 βˆ’11.32 3C 29 0.045 RG β€” βˆ’10.50501 8.20 3.5622 7.90 0.051 βˆ’9.34 βˆ’19.47 βˆ’10.29 3C 31 0.017 RG β€” βˆ’10.80501 8.50 3.8622 8.20 0.028 βˆ’8.99 βˆ’19.12 βˆ’9.94 3C 33 0.059 RG β€” βˆ’10.68501 8.38 3.7422 8.08 0.068 βˆ’9.90 βˆ’20.03 βˆ’10.85 3C 40 0.018 RG β€” βˆ’10.16501 7.86 3.2222 7.56 0.021 βˆ’7. 9 2 βˆ’18.05 βˆ’8.87 3C 62 0.148 RG β€” βˆ’10.97501 8.67 4.0322 8.37 0.165 βˆ’11.29 βˆ’21.43 βˆ’12.25 3C 76.1 0.032 RG β€” βˆ’10.43501 8.13 3.4922 7.83 0.037 βˆ’8.90 βˆ’19.04 βˆ’9.86 3C 78 0.029 RG β€” βˆ’10.90501 8.60 3.9622 8.30 0.043 βˆ’9.64 βˆ’19.77 βˆ’10.59 3C 84 0.017 RG β€” βˆ’10.79501 8.49 3.8522 8.19 0.028 βˆ’8.97 βˆ’19.10 βˆ’9.92 3C 88 0.030 RG β€” βˆ’10.33501 8.03 3.3922 7.73 0.034 βˆ’8.67 βˆ’18.80 βˆ’9.62 3C 89 0.139 RG β€” βˆ’10.82501 8.52 3.8822 8.22 0.151 βˆ’10.97 βˆ’21.10 βˆ’11.92 3C 98 0.031 RG β€” βˆ’10.18501 7.88 3.2422 7.58 0.034 βˆ’8.44 βˆ’18.57 βˆ’9.39 3C 120 0.033 RG β€” βˆ’10.43501 8.13 3.4922 7.83 0.038 βˆ’8.93 βˆ’19.06 βˆ’9.88 3C 192 0.060 RG β€” βˆ’10.36501 8.06 3.4222 7.76 0.064 βˆ’9.36 βˆ’19.49 βˆ’10.31 3C 196.1 0.198 RG β€” βˆ’10.51501 8.21 3.5722 7.91 0.204 βˆ’10.79 βˆ’20.92 βˆ’11.74 3C 223 0.137 RG β€” βˆ’10.45501 8.15 3.5122 7.85 0.142 βˆ’10.31 βˆ’20.44 βˆ’11.26 3C 293 0.045 RG β€” βˆ’10.29501 7.99 3.3522 7.69 0.048 βˆ’8.97 βˆ’19.10 βˆ’9.92 3C 305 0.041 RG β€” βˆ’10.22501 7.92 3.2822 7.62 0.044 βˆ’8.76 βˆ’18.89 βˆ’9.71 3C 338 0.030 RG β€” βˆ’11.08501 8.78 4.1422 8.48 0.052 βˆ’9.98 βˆ’20.12 βˆ’10.93 3C 388 0.091 RG β€” βˆ’11.48501 9.18 4.5422 8.88 0.145 βˆ’11.71 βˆ’21.84 βˆ’12.66 3C 444 0.153 RG β€” βˆ’9.98501 7.68 3.0422 7.38 0.155 βˆ’9.60 βˆ’19.73 βˆ’10.55 3C 449 0.017 RG β€” βˆ’10.63501 8.33 3.6922 8.03 0.025 βˆ’8.69 βˆ’18.82 βˆ’9.64 gin 116 0.033 RG β€” βˆ’11.05501 8.75 4.1122 8.45 0.053 βˆ’10.02 βˆ’20.15 βˆ’10.97 NGC 315 0.017 RG β€” βˆ’11.20501 8.90 4.2622 8.60 0.045 βˆ’9.69 βˆ’19.82 βˆ’10.64 NGC 507 0.017 RG β€” βˆ’11.30501 9.00 4.3622 8.70 0.053 βˆ’9.86 βˆ’19.99 βˆ’10.81 NGC 708 0.016 RG β€” βˆ’10.76501 8.46 3.8222 8.16 0.026 βˆ’8.86 βˆ’18.99 βˆ’9.81 NGC 741 0.018 RG β€” βˆ’11.02501 8.72 4.0822 8.42 0.037 βˆ’9.42 βˆ’19.55 βˆ’10.37 NGC 4839 0.023 RG β€” βˆ’10.78501 8.48 3.8422 8.18 0.034 βˆ’9.22 βˆ’19.35 βˆ’10.17 NGC 4869 0.023 RG β€” βˆ’10.42501 8.12 3.4822 7.82 0.028 βˆ’8.59 βˆ’18.72 βˆ’9.54 Journal of Astrophysics 17

Table 4: Continued. 𝑅 𝑀 𝑀Seed 𝑧 𝐿 ( 𝑑 ) ( BH ) ( BH ) 𝑇 𝑧Seed π½π‘ž 𝐽URCA π½πœ‹ Name Type log bol log π‘Ÿ log 𝑀 log 𝑀 log BH ov βŠ™ βŠ™ NGC 4874 0.024 RG β€” βˆ’10.93501 8.63 3.9922 8.33 0.039 βˆ’9.52 βˆ’19.65 βˆ’10.47 NGC 6086 0.032 RG β€” βˆ’11.26501 8.96 4.3222 8.66 0.065 βˆ’10.36 βˆ’20.49 βˆ’11.31 NGC 6137 0.031 RG β€” βˆ’11.11501 8.81 4.1722 8.51 0.054 βˆ’10.07 βˆ’20.20 βˆ’11.02 NGC 7626 0.025 RG β€” βˆ’11.27501 8.97 4.3322 8.67 0.058 βˆ’10.15 βˆ’20.28 βˆ’11.10 0039 βˆ’ 095 0.000 RG β€” βˆ’11.02501 8.72 4.0822 8.42 0.019 βˆ’2.89 βˆ’13.02 βˆ’3.84 0053 βˆ’ 015 0.038 RG β€” βˆ’11.12501 8.82 4.1822 8.52 0.062 βˆ’10.27 βˆ’20.40 βˆ’11.22 0053 βˆ’ 016 0.043 RG β€” βˆ’10.81501 8.51 3.8722 8.21 0.055 βˆ’9.84 βˆ’19.97 βˆ’10.79 0055 βˆ’ 016 0.045 RG β€” βˆ’11.15501 8.85 4.2122 8.55 0.070 βˆ’10.47 βˆ’20.61 βˆ’11.43 0110 + 152 0.044 RG β€” βˆ’10.39501 8.09 3.4522 7.79 0.048 βˆ’9.12 βˆ’19.26 βˆ’10.07 0112 βˆ’ 000 0.045 RG β€” βˆ’10.83501 8.53 3.8922 8.23 0.057 βˆ’9.91 βˆ’20.05 βˆ’10.87 0112 + 084 0.000 RG β€” βˆ’11.48501 9.18 4.5422 8.88 0.054 βˆ’3.70 βˆ’13.83 βˆ’4.65 0147 + 360 0.018 RG β€” βˆ’10.76501 8.46 3.8222 8.16 0.028 βˆ’3.70 βˆ’13.83 βˆ’4.65 0131 βˆ’ 360 0.030 RG β€” βˆ’10.83501 8.53 3.8922 8.23 0.042 βˆ’9.55 βˆ’19.68 βˆ’10.50 0257 βˆ’ 398 0.066 RG β€” βˆ’10.59501 8.29 3.6522 7.99 0.073 βˆ’9.85 βˆ’19.98 βˆ’10.80 0306 + 237 0.000 RG β€” βˆ’10.81501 8.51 3.8722 8.21 0.012 βˆ’2.52 βˆ’12.66 βˆ’3.48 0312 βˆ’ 343 0.067 RG β€” βˆ’10.87501 8.57 3.9322 8.27 0.080 βˆ’10.35 βˆ’20.48 βˆ’11.30 0325 + 024 0.030 RG β€” βˆ’10.59501 8.29 3.6522 7.99 0.037 βˆ’9.13 βˆ’19.26 βˆ’10.08 0431 βˆ’ 133 0.033 RG β€” βˆ’10.95501 8.65 4.0122 8.35 0.049 βˆ’9.84 βˆ’19.97 βˆ’10.79 0431 βˆ’ 134 0.035 RG β€” βˆ’10.61501 8.31 3.6722 8.01 0.042 βˆ’9.30 βˆ’19.43 βˆ’10.25 0449 βˆ’ 175 0.031 RG β€” βˆ’10.02501 7.72 3.0822 7.42 0.033 βˆ’8.16 βˆ’18.29 βˆ’9.11 0546 βˆ’ 329 0.037 RG β€” βˆ’11.59501 9.29 4.6522 8.99 0.107 βˆ’11.07 βˆ’21.20 βˆ’12.02 0548 βˆ’ 317 0.034 RG β€” βˆ’9.58501 7.28 2.6422 6.98 0.035 βˆ’7. 4 7 βˆ’17.60 βˆ’8.42 0634 βˆ’ 206 0.056 RG β€” βˆ’10.39501 8.09 3.4522 7.79 0.060 βˆ’9.35 βˆ’19.48 βˆ’10.30 0718 βˆ’ 340 0.029 RG β€” βˆ’11.31501 9.01 4.3722 8.71 0.066 βˆ’10.36 βˆ’20.49 βˆ’11.31 0915 βˆ’ 118 0.054 RG β€” βˆ’10.99501 8.69 4.0522 8.39 0.072 βˆ’10.36 βˆ’20.49 βˆ’11.31 0940 βˆ’ 304 0.038 RG β€” βˆ’11.59501 9.29 4.6522 8.99 0.108 βˆ’11.09 βˆ’21.22 βˆ’12.04 1043 βˆ’ 290 0.060 RG β€” βˆ’10.67501 8.37 3.7322 8.07 0.068 βˆ’9.90 βˆ’20.03 βˆ’10.85 1107 βˆ’ 372 0.010 RG β€” βˆ’11.11501 8.81 4.1722 8.51 0.033 βˆ’9.06 βˆ’19.19 βˆ’10.01 1123 βˆ’ 351 0.032 RG β€” βˆ’11.83501 9.53 4.8922 9.23 0.153 βˆ’11.35 βˆ’21.49 βˆ’12.31 1258 βˆ’ 321 0.015 RG β€” βˆ’10.91501 8.61 3.9722 8.31 0.030 βˆ’9.07 βˆ’19.20 βˆ’10.02 1333 βˆ’ 337 0.013 RG β€” βˆ’11.07501 8.77 4.1322 8.47 0.034 βˆ’9.22 βˆ’19.35 βˆ’10.17 1400 βˆ’ 337 0.014 RG β€” βˆ’11.19501 8.89 4.2522 8.59 0.042 βˆ’9.50 βˆ’19.63 βˆ’10.45 1404 βˆ’ 267 0.022 RG β€” βˆ’11.11505 8.81 4.8798 8.51 0.045 βˆ’9.76 βˆ’19.89 βˆ’10.71 1510 + 076 0.053 RG β€” βˆ’11.33501 9.03 4.3922 8.73 0.091 βˆ’10.94 βˆ’21.07 βˆ’11.89 1514 + 072 0.035 RG β€” βˆ’10.95501 8.65 4.0122 8.35 0.051 βˆ’9.90 βˆ’20.03 βˆ’10.85 1520 + 087 0.034 RG β€” βˆ’10.59501 8.29 3.6522 7.99 0.041 βˆ’9.24 βˆ’19.37 βˆ’10.19 1521 βˆ’ 300 0.020 RG β€” βˆ’10.10501 7.80 3.1622 7.50 0.022 βˆ’7. 9 1 βˆ’18.04 βˆ’8.86 1602 + 178 0.041 RG β€” βˆ’10.54501 8.24 3.6022 7.94 0.047 βˆ’9.32 βˆ’19.45 βˆ’10.27 1610 + 296 0.032 RG β€” βˆ’11.26501 8.96 4.3222 8.66 0.065 βˆ’10.36 βˆ’20.49 βˆ’11.31 2236 βˆ’ 176 0.070 RG β€” βˆ’10.79501 8.49 3.8522 8.19 0.081 βˆ’10.25 βˆ’20.39 βˆ’11.20 2322 + 143 0.045 RG β€” βˆ’10.47501 8.17 3.5322 7.87 0.050 βˆ’9.28 βˆ’19.42 βˆ’10.24 2322 βˆ’ 122 0.082 RG β€” βˆ’10.63501 8.33 3.6922 8.03 0.090 βˆ’10.12 βˆ’20.25 βˆ’11.07 2333 βˆ’ 327 0.052 RG β€” βˆ’10.95501 8.65 4.0122 8.35 0.068 βˆ’10.26 βˆ’20.39 βˆ’11.21 2335 + 267 0.030 RG β€” βˆ’11.38501 9.08 4.4422 8.78 0.073 βˆ’10.51 βˆ’20.64 βˆ’11.46 is invited to consult the original paper [74] for details. We assume that a distortion massless gauge field π‘Ž(π‘₯) (≑ In this, we restrict ourselves to consider only the simplest π‘Žπ‘›(π‘₯)) has to act on the external spacetime groups. This Μƒ Μ† πœ‡ spacetime deformation map, Ξ©:𝑀4 →𝑉4 (Ξ© ] ≑ field takes values in the Lie algebra of the abelian group πœ‡ π‘ˆloc 𝛿] ). This theory accounts for the gravitation gauge group .Wepursueaprinciplegoalofbuildinguptheworld- loc Ξ©(𝐹)Μƒ = 𝐷(π‘Ž)Μƒ πœ“(π‘Ž)Μƒ 𝐹 𝐺𝑉 generated by the hidden local internal symmetry π‘ˆ . deformation tensor, ,where is the 18 Journal of Astrophysics

Table 5: Seed black hole intermediate masses, preradiation times, redshifts, and neutrino fluxes from fundamental plane-derived velocity βˆ’1 dispersions. Columns: (1) name, (2) redshift, (3) AGN type: SY2: Seyfert 2, (4) log of the bolometric luminosity (ergs ), (5) log of the radius of protomatter core in special unit π‘Ÿ = 13.68 km, (6) log of the black hole mass in solar masses, (7) log of the seed black hole intermediate OV 𝑖=π‘ž 𝑖= 𝑖=πœ‹ mass in solar masses, (8) log of the neutrino preradiation time (yrs), (9) redshift of seed black hole, (10) 𝐽 , (11) 𝐽 URCA,and(12)𝐽 ,where 𝑖 𝑖 βˆ’2 βˆ’1 βˆ’1 𝐽 ≑ log(𝐽Vπœ€/πœ€π‘‘ erg cm s sr ). 𝑅 𝑀 𝑀Seed 𝑧 ( 𝑑 ) ( BH ) ( BH ) 𝑇 𝑧Seed π½π‘ž 𝐽URCA π½πœ‹ Name Type log π‘Ÿ log 𝑀 log 𝑀 log BH ov βŠ™ βŠ™ 0122 + 090 0.339 BLL βˆ’11.12501 8.82 4.1822 8.52 0.363 βˆ’12.43 βˆ’22.57 βˆ’13.39 0145 + 138 0.124 BLL βˆ’10.72501 8.42 3.7822 8.12 0.133 βˆ’10.68 βˆ’20.81 βˆ’11.63 0158 + 001 0.229 BLL βˆ’10.38501 8.08 3.4422 7.78 0.233 βˆ’10.71 βˆ’20.84 βˆ’11.66 0229 + 200 0.139 BLL βˆ’11.54501 9.24 4.6022 8.94 0.201 βˆ’12.23 βˆ’22.36 βˆ’13.18 0257 + 342 0.247 BLL βˆ’10.96501 8.66 4.0222 8.36 0.263 βˆ’11.81 βˆ’21.94 βˆ’12.76 0317 + 183 0.190 BLL βˆ’10.25501 7.95 3.3122 7.65 0.193 βˆ’10.29 βˆ’20.42 βˆ’11.24 0331 βˆ’ 362 0.308 BLL βˆ’11.05501 8.75 4.1122 8.45 0.328 βˆ’12.21 βˆ’22.34 βˆ’13.16 0347 βˆ’ 121 0.188 BLL βˆ’10.95501 8.65 4.0122 8.35 0.204 βˆ’11.50 βˆ’21.63 βˆ’12.45 0350 βˆ’ 371 0.165 BLL βˆ’11.12501 8.82 4.1822 8.52 0.189 βˆ’11.67 βˆ’21.80 βˆ’12.62 0414 + 009 0.287 BLL βˆ’10.86501 8.56 3.9222 8.26 0.300 βˆ’11.80 βˆ’21.93 βˆ’12.75 0419 + 194 0.512 BLL βˆ’10.91501 8.61 3.9722 8.31 0.527 βˆ’12.54 βˆ’22.68 βˆ’13.50 0506 βˆ’ 039 0.304 BLL βˆ’11.05501 8.75 4.1122 8.45 0.324 βˆ’12.19 βˆ’22.32 βˆ’13.14 0525 + 713 0.249 BLL βˆ’11.33501 9.03 4.3922 8.73 0.287 βˆ’12.46 βˆ’22.60 βˆ’13.41 0607 + 710 0.267 BLL βˆ’10.95501 8.65 4.0122 8.35 0.283 βˆ’12.46 βˆ’22.60 βˆ’13.41 0737 + 744 0.315 BLL βˆ’11.24501 8.94 4.3022 8.64 0.346 βˆ’12.56 βˆ’22.69 βˆ’13.51 0922 + 749 0.638 BLL βˆ’11.91501 9.61 4.9722 9.31 0.784 βˆ’14.56 βˆ’24.69 βˆ’15.51 0927 + 500 0.188 BLL βˆ’10.64501 8.34 3.7022 8.04 0.196 βˆ’10.96 βˆ’21.09 βˆ’11.91 0958 + 210 0.344 BLL βˆ’11.33501 9.03 4.3922 8.73 0.382 βˆ’12.82 βˆ’22.95 βˆ’13.77 1104 + 384 0.031 BLL βˆ’11.69501 9.39 4.7522 9.09 0.119 βˆ’11.08 βˆ’21.21 βˆ’12.03 1133 + 161 0.460 BLL βˆ’10.62501 8.32 3.6822 8.02 0.467 βˆ’11.91 βˆ’22.04 βˆ’12.86 1136 + 704 0.045 BLL βˆ’11.25501 8.95 4.3122 8.65 0.077 βˆ’10.65 βˆ’20.78 βˆ’11.60 1207 + 394 0.615 BLL βˆ’11.40501 9.10 4.4622 8.80 0.660 βˆ’13.62 βˆ’23.76 βˆ’14.58 1212 + 078 0.136 BLL βˆ’11.29501 8.99 4.3522 8.69 0.171 βˆ’11.77 βˆ’21.90 βˆ’12.72 1215 + 303 0.130 BLL βˆ’10.42501 8.12 3.4822 7.82 0.135 βˆ’10.20 βˆ’20.33 βˆ’11.15 1218 + 304 0.182 BLL βˆ’10.88501 8.58 3.9422 8.28 0.196 βˆ’11.35 βˆ’21.48 βˆ’12.30 1221 + 245 0.218 BLL βˆ’10.27501 7.97 3.3322 7.67 0.221 βˆ’10.47 βˆ’20.60 βˆ’11.42 1229 + 643 0.164 BLL βˆ’11.71501 9.41 4.7722 9.11 0.256 βˆ’12.69 βˆ’22.82 βˆ’13.64 1248 βˆ’ 296 0.370 BLL βˆ’11.31501 9.01 4.3722 8.71 0.407 βˆ’12.87 βˆ’23.00 βˆ’13.82 1255 + 244 0.141 BLL βˆ’10.88501 8.58 3.9422 8.28 0.155 βˆ’11.09 βˆ’21.22 βˆ’12.04 1407 + 595 0.495 BLL βˆ’11.60501 9.30 4.6622 9.00 0.566 βˆ’13.71 βˆ’23.84 βˆ’14.66 1418 + 546 0.152 BLL βˆ’11.33501 9.03 4.3922 8.73 0.190 βˆ’11.95 βˆ’22.08 βˆ’12.90 1426 + 428 0.129 BLL βˆ’11.43501 9.13 4.4922 8.83 0.177 βˆ’11.96 βˆ’22.09 βˆ’12.91 1440 + 122 0.162 BLL βˆ’10.74501 8.44 3.8022 8.14 0.172 βˆ’10.98 βˆ’21.11 βˆ’11.93 1534 + 014 0.312 BLL βˆ’11.10501 8.80 4.1622 8.50 0.335 βˆ’12.31 βˆ’22.44 βˆ’13.26 1704 + 604 0.280 BLL βˆ’11.07501 8.77 4.1322 8.47 0.301 βˆ’12.14 βˆ’22.27 βˆ’13.09 1728 + 502 0.055 BLL βˆ’10.43501 8.13 3.4922 7.83 0.060 βˆ’9.40 βˆ’19.53 βˆ’10.35 1757 + 703 0.407 BLL βˆ’11.05501 8.75 4.1122 8.45 0.427 βˆ’12.52 βˆ’22.65 βˆ’13.47 1807 + 698 0.051 BLL βˆ’12.40501 10.10 5.4622 9.80 0.502 βˆ’12.78 βˆ’22.91 βˆ’13.73 1853 + 671 0.212 BLL βˆ’10.53501 8.23 3.5922 7.93 0.218 βˆ’10.89 βˆ’21.02 βˆ’11.84 2005 βˆ’ 489 0.071 BLL βˆ’11.33501 9.03 4.3922 8.73 0.109 βˆ’11.21 βˆ’21.34 βˆ’12.16 2143 + 070 0.237 BLL βˆ’10.76501 8.46 3.8222 8.16 0.247 βˆ’11.41 βˆ’21.54 βˆ’12.36 2200 + 420 0.069 BLL βˆ’10.53501 8.23 3.5922 7.93 0.075 βˆ’9.79 βˆ’19.92 βˆ’10.74 2254 + 074 0.190 BLL βˆ’10.92501 8.62 3.9822 8.32 0.205 βˆ’11.46 βˆ’21.59 βˆ’12.41 2326 + 174 0.213 BLL βˆ’11.04501 8.74 4.1022 8.44 0.233 βˆ’11.79 βˆ’21.92 βˆ’12.74 2356 βˆ’ 309 0.165 BLL βˆ’10.90501 8.60 3.9622 8.30 0.179 βˆ’11.28 βˆ’21.41 βˆ’12.23 0230 βˆ’ 027 0.239 RG βˆ’10.27501 7.97 3.3322 7.67 0.242 βˆ’10.56 βˆ’20.70 βˆ’11.52 0307 + 169 0.256 RG βˆ’10.96501 8.66 4.0222 8.36 0.272 βˆ’11.85 βˆ’21.98 βˆ’12.80 Journal of Astrophysics 19

Table 5: Continued. 𝑅 𝑀 𝑀Seed 𝑧 ( 𝑑 ) ( BH ) ( BH ) 𝑇 𝑧Seed π½π‘ž 𝐽URCA π½πœ‹ Name Type log π‘Ÿ log 𝑀 log 𝑀 log BH ov βŠ™ βŠ™ 0345 + 337 0.244 RG βˆ’9.42501 7.12 2.4822 6.82 0.244 βˆ’9.10 βˆ’19.23 βˆ’10.05 0917 + 459 0.174 RG βˆ’10.51501 8.21 3.5722 7.91 0.180 βˆ’10.65 βˆ’20.78 βˆ’11.60 0958 + 291 0.185 RG βˆ’10.23501 7.93 3.2922 7.63 0.188 βˆ’10.23 βˆ’20.36 βˆ’11.18 1215 βˆ’ 033 0.184 RG βˆ’10.23501 7.93 3.2922 7.63 0.187 βˆ’10.22 βˆ’20.35 βˆ’11.17 1215 + 013 0.118 RG βˆ’10.50501 8.20 3.5622 7.90 0.124 βˆ’10.25 βˆ’20.38 βˆ’11.20 1330 + 022 0.215 RG βˆ’10.12501 7.82 3.1822 7.52 0.217 βˆ’10.19 βˆ’20.32 βˆ’11.14 1342 βˆ’ 016 0.167 RG βˆ’10.71501 8.41 3.7722 8.11 0.176 βˆ’10.96 βˆ’21.09 βˆ’11.91 2141 + 279 0.215 RG βˆ’10.12501 7.82 3.1822 7.52 0.217 βˆ’10.19 βˆ’20.32 βˆ’11.14 0257 + 024 0.115 RQQ βˆ’11.05501 8.75 4.1122 8.45 0.135 βˆ’11.18 βˆ’21.32 βˆ’12.13 1549 + 203 0.250 RQQ βˆ’9.22501 6.92 2.2822 6.62 0.250 βˆ’8.78 βˆ’18.91 βˆ’9.73 2215 βˆ’ 037 0.241 RQQ βˆ’10.50501 8.20 3.5622 7.90 0.247 βˆ’10.98 βˆ’21.11 βˆ’11.93 2344 + 184 0.138 RQQ βˆ’9.37501 7.07 2.4322 6.77 0.138 βˆ’8.42 βˆ’18.56 βˆ’9.38 0958 + 291 0.185 RG βˆ’10.23501 7.93 3.2922 7.63 0.188 βˆ’10.23 βˆ’20.36 βˆ’11.18 1215 βˆ’ 033 0.184 RG βˆ’10.23501 7.93 3.2922 7.63 0.187 βˆ’10.22 βˆ’20.35 βˆ’11.17 1215 + 013 0.118 RG βˆ’10.50501 8.20 3.5622 7.90 0.124 βˆ’10.25 βˆ’20.38 βˆ’11.20 1330 + 022 0.215 RG βˆ’10.12501 7.82 3.1822 7.52 0.217 βˆ’10.19 βˆ’20.32 βˆ’11.14 1342 βˆ’ 016 0.167 RG βˆ’10.71501 8.41 3.7722 8.11 0.176 βˆ’10.96 βˆ’21.09 βˆ’11.91 2141 + 279 0.215 RG βˆ’10.12501 7.82 3.1822 7.52 0.217 βˆ’10.19 βˆ’20.32 βˆ’11.14 0257 + 024 0.115 RQQ βˆ’11.05501 8.75 4.1122 8.45 0.135 βˆ’11.18 βˆ’21.32 βˆ’12.13 1549 + 203 0.250 RQQ βˆ’9.22501 6.92 2.2822 6.62 0.250 βˆ’8.78 βˆ’18.91 βˆ’9.73 2215 βˆ’ 037 0.241 RQQ βˆ’10.50501 8.20 3.5622 7.90 0.247 βˆ’10.98 βˆ’21.11 βˆ’11.93 2344 + 184 0.138 RQQ βˆ’9.37501 7.07 2.4322 6.77 0.138 βˆ’8.42 βˆ’18.56 βˆ’9.38

𝑛 π‘š 3 differential form of gauge field 𝐹 = (1/2)πΉπ‘›π‘šπœ— βˆ§πœ— .We exp[𝑖𝑇 πœƒ3(πœ‚)] of π‘ˆ(1). This group leads to the renormalizable connect the structure group 𝐺𝑉, further, to the nonlinear theory, because gauge invariance gives a conservation of realization of the Lie group 𝐺𝐷 of distortion of extended space charge, and it also ensures the cancelation of quantum Μƒ 𝑀6(β†’ 𝑀6) (E.1), underlying the 𝑀4. This extension appears corrections that would otherwise result in infinitely large to be indispensable for such a realization. In using the 6D amplitudes. This has two generators, the third component 3 βƒ— language,wewillbeabletomakeanecessaryreductionto 𝑇 of isospin 𝑇 relatedtothePaulispinmatrix𝜏/2βƒ— ,and 𝑑 3 𝑑 theconventional4Dspace.Thelawsguidingthisredaction hypercharge π‘Œ implying 𝑄 =𝑇+π‘Œ/2,where𝑄 is are given in Appendix E. The nonlinear realization technique the distortion charge operator assigning the number βˆ’1to or the method of phenomenological Lagrangians [85–91] particles, but +1 to antiparticles. The group (A.3) entails two 3 provides a way to determine the transformation properties of neutral gauge bosons of π‘ˆ(1),orthatcoupledto𝑇 ,andof fields defined on the quotient space. In accordance, we treat π‘ˆ(1)π‘Œ,orthatcoupledtothehyperchargeπ‘Œ.Spontaneous 𝐺 𝐻= the distortion group 𝐷 and its stationary subgroup symmetry breaking can be achieved by introducing the 𝑆𝑂(3) , respectively, as the dynamical group and its algebraic neutral complex scalar Higgs field. Minimization of the subgroup. The fundamental field is distortion gauge field vacuum energy fixes the nonvanishing vacuum expectation (a) and, thus, all the fundamental gravitational structures in value (VEV), which spontaneously breaks the theory, leaving factβ€”the metric as much as the coframes and connectionsβ€” the π‘ˆ(1)𝑑 subgroup intact, that is, leaving one Goldstone acquire a distortion-gauge induced theoretical interpretation. boson. Consequently, the left Goldstone boson is gauged We study the geometrical structure of the space of parameters away from the scalar sector, but it essentially reappears in in terms of Cartan’s calculus of exterior forms and derive the gauge sector providing the longitudinally polarized spin the Maurer-Cartan structure equations, where the distortion state of one of gauge bosons which acquires mass through fields (a) are treated as the Goldstone fields. its coupling to Higgs scalar. Thus, the two neutral gauge bosons were mixed to form two physical orthogonal states A.3. A Rearrangement of Vacuum State. Addressing the of the massless component of distortion field, (π‘Ž) (π‘€π‘Ž =0), rearrangement of vacuum state, in realization of the group which is responsible for gravitational interactions, and its 𝐺 𝑉 we implement the abelian local group [74] massive component, (π‘Ž) π‘Ž(𝑀 =0)ΜΈ , which is responsible for loc the ID-regime. Hence, a substantial change of the properties π‘ˆ =π‘ˆ(1)π‘Œ Γ— π‘ˆ (1) β‰‘π‘ˆ(1)π‘Œ Γ— diag [π‘†π‘ˆ (2)] , (A.3) of the spacetime continuum besides the curvature may arise on the space 𝑀6 (spanned by the coordinates πœ‚), with at huge energies. This theory is renormalizable, because gauge the group elements of exp[𝑖(π‘Œ/2)πœƒπ‘Œ(πœ‚)] of π‘ˆ(1)π‘Œ and invariance gives conservation of charge and also ensures the 20 Journal of Astrophysics cancelation of quantum corrections that would otherwise basis ̃𝑒 in the ID regime, in turn, yields the transformations result in infinitely large amplitudes. Without careful thought of PoincareΒ΄ generators of translations. Given an explicit form we expect that in this framework the renormalizability of the of distorted basis vectors (F.7), it is straightforward to derive theory will not be spoiled in curved space-time too, because the laws of phase transition for individual particle found in the infinities arise from ultraviolet properties of Feynman the ID-region (π‘₯0 =0, π‘₯ =0ΜΈ ) of the space-time continuum Μƒ Μƒ Μƒ integrals in momentum space which, in coordinate space, are tan πœƒ3 =βˆ’π‘₯, πœƒ1 = πœƒ1 =0.ThePoincareΒ΄ generators π‘ƒπœ‡ of short distance properties, and locally (over short distances) translations are transformed as follows [71]: all the curved spaces look like maximally symmetric (flat) Μƒ Μƒ Μƒ space. 𝐸=𝐸, 𝑃1,2 =𝑃1,2 cos πœƒ3, 𝑃̃ =𝑃 βˆ’ πœƒΜƒ π‘šπ‘, A.4. Model Building: Field Equations. The field equations 3 3 tan 3 follow at once from the total gauge invariant Lagrangian 󡄨 󡄨 𝑃 2 in terms of Euler-Lagrange variations, respectively, on both Μƒ 󡄨 Μƒ 3 (A.6) π‘š=󡄨(π‘š βˆ’ tan πœƒ3 ) curvedandflatspaces.TheLagrangianofdistortiongauge 󡄨 𝑐 (π‘Ž) field defined on the flat space is undegenerated Killing 󡄨1/2 loc 𝑃2 +𝑃2 𝐸2 󡄨 form on the Lie algebra of the group π‘ˆ in adjoint repre- + 2πœƒΜƒ 1 2 βˆ’ 2πœƒΜƒ 󡄨 , sin 3 2 tan 3 4 󡄨 sentation, which yields the equation of distortion field (F.1). 𝑐 𝑐 󡄨 We are interested in the case of a spherical-symmetric grav- π‘Ž (π‘Ÿ) Μƒ itational field 0 in presence of one-dimensional space- where 𝐸, 𝑃⃗,andπ‘š and 𝐸̃, 𝑃⃗,andπ‘šΜƒ are ordinary and distorted π‘Ž like ID-field (F.6). In the case at hand, one has the group energy, momentum, and mass at rest. Hence the matter found 𝑆𝑂(3) 𝑆2 of motions with 2D space-like orbits where the in the ID-region (π‘Ž =0)ΜΈ of space-time continuum has Μƒ standard coordinates are πœƒ and πœ‘Μƒ.Thestationarysubgroupof undergone phase transition of II-kind; that is, each particle 𝑆𝑂(3) acts isotropically upon the tangent space at the point of goes off from the mass shellβ€”a shift of mass and energy- 2 Μƒ2 sphere 𝑆 of radius Μƒπ‘Ÿ.So,thebundle𝑝:𝑉4 β†’ 𝑅 has the fiber momentum spectra occurs upwards along the energy scale. 2 βˆ’1 Μƒ2 The matter in this state is called protomatter with the ther- 𝑆 =𝑝 (π‘₯)Μƒ , π‘₯βˆˆπ‘‰Μƒ 4, with a trivial connection on it, where 𝑅 modynamics differing strongly from the thermodynamics of is the quotient-space 𝑉4/𝑆𝑂(3). Considering the equilibrium ordinary compressed matter. The resulting deformed metric configurations of degenerate barionic matter, we assume an on 𝑉4 in holonomic coordinate basis takes the form absence of transversal stresses and the transference of masses in 𝑉4 2 2 𝑔̃00 =(1βˆ’π‘₯0) +π‘₯ , π‘”Μƒπœ‡] =0 (πœ‡=ΜΈ ]), 𝑇1 =𝑇2 =𝑇3 =βˆ’π‘ƒΜƒ (Μƒπ‘Ÿ) ,𝑇0 =βˆ’πœŒΜƒ (Μƒπ‘Ÿ) , 1 2 3 0 (A.4) 2 2 2 𝑔̃33 = βˆ’ [(1 + π‘₯0) +π‘₯ ], 𝑔̃11 =βˆ’Μƒπ‘Ÿ , (A.7) Μƒ Μƒ3 where 𝑃(Μƒπ‘Ÿ) and 𝜌(Μƒ Μƒπ‘Ÿ)Μƒ (π‘Ÿβˆˆπ‘… ) are taken to denote the 2 2Μƒ 𝑔̃ =βˆ’Μƒπ‘Ÿ sin πœƒ. internal pressure and macroscopic density of energy defined 22 in proper frame of reference that is being used. The equations (π‘Ž ) (π‘Ž) As a working model we assume the SPC-configurations given of gravitation 0 and ID fields can be given in Feynman in Appendix G,whicharecomposedofspherical-symmetric gauge [71]as distribution of matter in many-phase stratified states. This is quick to estimate the main characteristics of the equi- 1 πœ•π‘”Μƒ00 Ξ”π‘Ž0 = {𝑔̃00 πœŒΜƒ (Μƒπ‘Ÿ) librium degenerate barionic configurations and will guide 2 πœ•π‘Ž0 us toward first look at some of the associated physics. The simulations confirm in brief the following scenario [71]: the πœ•π‘”Μƒ33 πœ•π‘”Μƒ11 πœ•π‘”Μƒ22 Μƒ energy density and internal pressure have sharply increased βˆ’[𝑔̃33 + 𝑔̃11 + 𝑔̃22 ] 𝑃 (Μƒπ‘Ÿ)}, πœ•π‘Ž0 πœ•π‘Ž0 πœ•π‘Ž0 in protomatter core of SPC-configuration (with respect to corresponding central values of neutron ) proportional 1 πœ•π‘”Μƒ00 βˆ’2 Μƒ Μƒ Μƒ to gravitational forces of compression. This counteracts the (Ξ” βˆ’ πœ†π‘Ž ) π‘Ž= {𝑔00 𝜌 (π‘Ÿ) 9 2 πœ•π‘Ž collapseandequilibriumholdsevenforthemasses∼10 π‘€βŠ™. Thisfeaturecanbeseen,forexample,fromFigure 7 where πœ•π‘”Μƒ33 πœ•π‘”Μƒ11 πœ•π‘”Μƒ22 Μƒ the state equation of the II-class SPCII configuration, with the βˆ’[𝑔̃33 +𝑔̃11 +𝑔̃22 ] 𝑃 (Μƒπ‘Ÿ)} πœ•π‘Ž πœ•π‘Ž πœ•π‘Ž quark protomatter core, is plotted. Γ—πœƒ(πœ† βˆ’ π‘›Μƒβˆ’1/3), π‘Ž B. A Hard Look at Spacetime Deformation (A.5) Μƒ The holonomic metric on M4 canberecastintheform πœ‡ ] πœ‡ ] where 𝑛̃ is the concentration of particles and πœ†π‘Ž =β„Ž/π‘šπ‘Žπ‘β‰ƒ Μƒ Μƒ Μƒ Μƒ 𝑔=Μƒ π‘”Μƒπœ‡]πœ— βŠ— πœ— = 𝑔(Μƒ Μƒπ‘’πœ‡, ̃𝑒])πœ— βŠ— πœ— ,withcomponents 0.4 fm is the Compton lenghth of the ID-field (but substantial πœ‡ Μƒ Μƒ Μƒ Μƒ Μƒ Μƒπœ‡ ID-effects occur far below it), and a diffeomorphism Μƒπ‘Ÿ(π‘Ÿ) : π‘”πœ‡] = 𝑔(π‘’πœ‡, 𝑒]) in dual holonomic base {πœ— ≑𝑑π‘₯ }. In order 𝑀4 →𝑉4 is given as π‘Ÿ=Μƒπ‘Ÿβˆ’π‘…π‘”/4. A distortion of the to relate local Lorentz symmetry to more general deformed Journal of Astrophysics 21

π‘š π‘Ž Μƒ 30 first deformation matrices, (πœ‹(π‘₯) π‘˜ and πœ‹Μƒ 𝑙(π‘₯))Μƒ ∈ 𝐺𝐿(4, 𝑀) for all π‘₯Μƒ, as follows: Μƒπ‘š Μƒ π‘˜ π‘š Μƒ πœ‡ Μƒπœ‡ π‘˜ π·πœ‡ = π‘’πœ‡ πœ‹ π‘˜, πœ“π‘™ = 𝑒 π‘˜πœ‹ 𝑙, 20 π‘˜ πœ‡ π‘˜ π‘š πœ‡ Μƒπ‘š Μƒπ‘’πœ‡ ̃𝑒 π‘š =π›Ώπ‘š, πœ‹Μƒπ‘Ž = Μƒπ‘’π‘Ž π·πœ‡ , (B.1)

) Μƒπ‘Ž Μƒπ‘Ž Μƒ πœ‡ πœ‹ 𝑙 = 𝑒 πœ‡πœ“π‘™ , OV AGN 10 branch

P/P πœ‡ ] where π‘”Μƒπœ‡]Μƒπ‘’π‘˜ ̃𝑒𝑠 =πœ‚π‘˜π‘ ; πœ‚π‘˜π‘  is the metric on 𝑀4. A deformation

log( π‘š π‘š π‘˜ tensor, Ξ© 𝑙 =πœ‹ π‘˜πœ‹ 𝑙, yields local tetrad deformations 0 π‘š Μƒπ‘Ž π‘Ž 𝑙 Μƒπ‘’π‘Ž = πœ‹Μƒπ‘Ž π‘’π‘š, πœ— = πœ‹Μƒ π‘™πœ— , (B.2) π‘š π‘˜ π‘˜ 𝑙 π‘’π‘˜ =πœ‹ π‘˜π‘’π‘š, πœ— =πœ‹ π‘™πœ— , βˆ’10 Neutron star branch Μƒ Μƒπ‘Ž π‘˜ Μƒ and 𝑖𝑑=Μƒπ‘’π‘ŽβŠ—πœ— = π‘’π‘˜βŠ—πœ— ∈ M4.Thefirst deformation matrices πœ‹ and πœ‹Μƒ, in general, give rise to the right cosets of the Lorentz 0102030 group; that is, they are the elements of the quotient group log(휌/휌OV) 𝐺𝐿(4, 𝑀)/𝑆𝑂(3,Μƒ 1). If we deform the cotetrad according to Figure 7: The state equation of SPCII on logarithmic scales, where (B.2), we have two choices to recast metric as follows: either 𝑃 and 𝜌 are the internal pressure and density, given in special units writing the deformation of the metric in the space of tetrads 𝑃 = 6.469 Γ— 1036 [ βˆ’3] 𝜌 = 7.194 Γ— 1015 [ βˆ’3] OV erg cm and OV gcm , or deforming the tetrad field: respectively. Μƒπ‘Ž ̃𝑏 π‘Ž 𝑏 𝑙 π‘š 𝑔=π‘œΜƒ π‘Žπ‘πœ— βŠ— πœ— =π‘œπ‘Žπ‘πœ‹Μƒ π‘™πœ‹Μƒ π‘šπœ— βŠ—πœ— (B.3) 𝑙 π‘š =π›Ύπ‘™π‘šπœ— βŠ—πœ— , spacetime, there is, however, a need to introduce the soldering tools, which are the linear frames and forms in tangent fiber- where the second deformation matrix, π›Ύπ‘™π‘š,readsπ›Ύπ‘™π‘š = bundles to the external smooth differential manifold, whose π‘œ πœ‹Μƒπ‘Ž πœ‹Μƒπ‘ Μƒ π‘Žπ‘ 𝑙 π‘š. The deformed metric splits as components are so-called tetrad (vierbein) fields. The M4 𝑇̃ 𝑀̃ 2 has at each point a tangent space, π‘₯Μƒ 4,spannedbythe π‘”Μƒπœ‡] =Ξ₯πœ‚πœ‡] + π›ΎΜƒπœ‡], (B.4) anholonomic orthonormal frame field, ̃𝑒, as a shorthand for (̃𝑒 ,...,̃𝑒 ) ̃𝑒 = ̃𝑒 πœ‡πœ•Μƒ π‘Ž π‘˜ the collection of the 4-tuplet 0 3 ,where π‘Ž π‘Ž πœ‡. provided that Ξ₯=πœ‹Μƒ π‘Ž =πœ‹ π‘˜ and We use the first half of Latin alphabet (π‘Ž, 𝑏, 𝑐, . . . = 0,1,2,3)to denote the anholonomic indices related to the tangent space. 𝛾̃ =(𝛾 βˆ’Ξ₯2π‘œ ) Μƒπ‘’π‘Ž ̃𝑒𝑙 Μƒ πœ‡] π‘Žπ‘™ π‘Žπ‘™ πœ‡ V The frame field, ̃𝑒, then defines a dual vector, πœ—, of differential 0 (B.5) πœ—Μƒ =(𝛾 βˆ’Ξ₯2πœ‚ ) Μƒπ‘’π‘˜ ̃𝑒𝑠 . Μƒ . π‘˜π‘  π‘˜π‘  πœ‡ V forms, πœ—=(. ), as a shorthand for the collection of the 3 πœ—Μƒ The anholonomic orthonormal frame field, ̃𝑒,relates𝑔̃ to ̃𝑏 𝑏 πœ‡ πœ— = ̃𝑒 πœ‡π‘‘π‘₯Μƒ , whose values at every point form the dual the tangent space metric, π‘œπ‘Žπ‘ = diag(+ βˆ’ βˆ’βˆ’),byπ‘œπ‘Žπ‘ = πœ‡ ] π‘Ž 𝑏 𝑏 𝑏 𝑔(Μƒ ̃𝑒 , ̃𝑒 )=𝑔̃ ̃𝑒 ̃𝑒 𝑔̃ =π‘œ ̃𝑒 ̃𝑒 ̃𝑒 βŒ‹πœ—Μƒ =𝛿 βŒ‹ π‘Ž 𝑏 πœ‡] π‘Ž 𝑏 ,whichhastheconverse πœ‡] π‘Žπ‘ πœ‡ ] basis, such that π‘Ž π‘Ž,where denotes the interior πœ‡ π‘Ž ∞ 1 0 ̃𝑒 ̃𝑒 =π›Ώπœ‡ product; namely, this is a 𝐢 -bilinear map βŒ‹: Ξ© β†’Ξ© because π‘Ž ] ] .Withthisprovision,webuildupaworld- 𝑝 ∞ Ξ© with Ξ© denoting the 𝐢 -modulo of differential 𝑝-forms on deformation tensor yielding a deformation of the flat space Μƒ πœ‡ 𝑏 𝑏 𝑀4.Theπ›Ύπ‘™π‘š canbedecomposedintermsofsymmetricπœ‹Μƒ(π‘Žπ‘™) M4.Incomponents,wehaveΜƒπ‘’π‘Ž ̃𝑒 πœ‡ =π›Ώπ‘Ž.Onthemanifold, 𝑐 and antisymmetric πœ‹Μƒ[π‘Žπ‘™] parts of the matrix πœ‹Μƒπ‘Žπ‘™ =π‘œπ‘Žπ‘πœ‹Μƒ 𝑙 (or, MΜƒ 𝑖𝑑̃ (1, 1) 𝑠 4, the tautological tensor field, ,oftype can be resp., in terms of πœ‹(π‘˜π‘™) and πœ‹[π‘˜π‘™],whereπœ‹π‘˜π‘™ =πœ‚π‘˜π‘ πœ‹ 𝑙)as defined which assigns to each tangent space the identity linear Μƒ 2 𝑐 𝑑 transformation. Thus, for any point π‘₯βˆˆΜƒ M4 and any vector 𝛾 = Ξ₯Μƒ π‘œ +2Ξ₯ΜƒΞ˜Μƒ +π‘œ Ξ˜Μƒ Ξ˜Μƒ Μƒ Μƒ Μƒ Μƒ Μƒ Μƒ π‘Žπ‘™ π‘Žπ‘™ π‘Žπ‘™ 𝑐𝑑 π‘Ž 𝑙 πœ‰βˆˆπ‘‡π‘₯ΜƒM4,onehas𝑖𝑑(πœ‰) = πœ‰.Intermsoftheframefield,the (B.6) Μƒπ‘Ž Μƒ Μƒ Μƒ Μƒ0 Μƒ3 ̃𝑐 𝑑 𝑐 ̃𝑑 𝑐 𝑑 πœ— give the expression for 𝑖𝑑 as 𝑖𝑑=Μƒπ‘’πœ—=̃𝑒0 βŠ— πœ— +⋅⋅⋅̃𝑒3 βŠ— πœ— , +π‘œπ‘π‘‘ (Θ π‘Žπœ‘Μƒ 𝑙 + πœ‘Μƒ π‘ŽΞ˜ 𝑙)+π‘œπ‘π‘‘πœ‘Μƒ π‘Žπœ‘Μƒ 𝑙, Μƒ in the sense that both sides yield πœ‰ when applied to any Μƒ tangent vector πœ‰ in the domain of definition of the frame field. where One can also consider general transformations of the linear Μƒ Μƒ πœ‹Μƒπ‘Žπ‘™ = Ξ₯π‘œπ‘Žπ‘™ + Ξ˜π‘Žπ‘™ + πœ‘Μƒπ‘Žπ‘™, (B.7) group, 𝐺𝐿(4, 𝑅), taking any base into any other set of four ̃𝑏 Μƒ π‘Ž Μƒ linearly independent fields. The notation, {Μƒπ‘’π‘Ž, πœ— },willbeused Ξ₯=πœ‹Μƒ π‘Ž, Ξ˜π‘Žπ‘™ is the traceless symmetric part, and πœ‘Μƒπ‘Žπ‘™ is below for general linear frames. Let us introduce so-called the skew symmetric part of the first deformation matrix. 22 Journal of Astrophysics

π‘Ž 𝑇̃ 𝑀̃ ∘ The anholonomy objects defined on the tangent space, π‘₯Μƒ 4, where the anholonomy coefficients, 𝐢 𝑏𝑐, which represent the read curls of the base members, are

π‘Ž π‘Ž 1 π‘Ž 𝑏 𝑐 ∘ 𝑐 ∘ 𝑐 𝐢̃ := π‘‘πœ—Μƒ = 𝐢̃ πœ—Μƒ ∧ πœ—Μƒ , 𝐢 =βˆ’πœ— ([π‘’βˆ˜ , π‘’βˆ˜ ]) 2 𝑏𝑐 (B.8) 𝑏𝑐 π‘Ž 𝑏 ∘ ∘ Μƒπ‘Ž ∘ πœ‡ ∘ ] ∘ 𝑐 ∘ 𝑐 where the anholonomy coefficients, 𝐢 𝑏𝑐, which represent the = π‘’π‘Ž 𝑒𝑏 (πœ•πœ‡π‘’ ] βˆ’ πœ•]𝑒 πœ‡) (B.17) curls of the base members, are =βˆ’π‘’βˆ˜ 𝑐 [π‘’βˆ˜ (π‘’βˆ˜ πœ‡)βˆ’π‘’βˆ˜ (π‘’βˆ˜ πœ‡)] . ̃𝑐 ̃𝑐 πœ‡ ] Μƒ 𝑐 Μƒ 𝑐 πœ‡ π‘Ž 𝑏 𝑏 π‘Ž 𝐢 π‘Žπ‘ =βˆ’πœ— ([Μƒπ‘’π‘Ž, ̃𝑒𝑏]) = Μƒπ‘’π‘Ž ̃𝑒𝑏 (πœ•πœ‡Μƒπ‘’ ] βˆ’ πœ•]̃𝑒 πœ‡) The (anholonomic) Levi-Civita (or Christoffel) connection =βˆ’Μƒπ‘’π‘ [̃𝑒 (̃𝑒 πœ‡)βˆ’Μƒπ‘’ (̃𝑒 πœ‡)] πœ‡ π‘Ž 𝑏 𝑏 π‘Ž (B.9) can be written as π‘š 𝑙 ∘ ∘ 1 ∘ ∘ 𝑐 =2πœ‹π‘ ̃𝑒 πœ‡ (πœ‹βˆ’1 πœ•Μƒ πœ‹βˆ’1 ). Ξ“ := π‘’βˆ˜ βŒ‹π‘‘πœ— βˆ’ (π‘’βˆ˜ βŒ‹π‘’βˆ˜ βŒ‹π‘‘πœ— )βˆ§πœ— , 𝑙 π‘š [π‘Ž πœ‡ 𝑏] π‘Žπ‘ [π‘Ž 𝑏] 2 π‘Ž 𝑏 𝑐 (B.18) In particular case of constant metric in the tetradic space, the ∘ ∘ where πœ—π‘ is understood as the down indexed 1-form πœ—π‘ = deformed connection can be written as ∘ 𝑏 Μƒ σΈ€  σΈ€  π‘œπ‘π‘πœ— .Thenorm𝑖𝑑 (A.2) canthenbewrittenintermsofthe π‘Ž 1 π‘Ž π‘Žπ‘ŽσΈ€  𝑏 π‘Žπ‘ŽσΈ€  𝑐 Ξ“Μƒ = (𝐢̃ βˆ’π‘œ π‘œ σΈ€  𝐢̃ σΈ€  βˆ’π‘œ π‘œ σΈ€  𝐢̃ σΈ€  ). 𝑉 𝑀 𝑏𝑐 2 𝑏𝑐 𝑏𝑏 π‘Ž 𝑐 𝑐𝑐 π‘Ž 𝑏 (B.10) spacetime structures of 4 and 4 as ∘ ] Μƒ Μƒ ΜƒπœŒ Μƒπ‘Ž Μ† πœ‡ ∘ All magnitudes related to the 𝑉4 will be denoted by an over 𝑖𝑑=Μƒπ‘’πœ—=Μƒπ‘’πœŒ βŠ— πœ— = Μƒπ‘’π‘Ž βŠ— πœ— = Ξ© ]π‘’πœ‡ βŠ— πœ— π‘š π‘š ∘ ∘ ∘ ∘ πœ‡ Μ† πœ‡ (B.19) β€œ ”. According to (A.1),wehaveΩ𝑙 = π·πœ‡ πœ“π‘™ and Ξ© ] = π‘Ž 𝑏 πœ‡ = Ξ©Μ† 𝑒̆ πœ—Μ† =Ξ©π‘š 𝑒 βŠ—πœ—π‘™ ∈ MΜƒ , Μ† Μ† 𝜌 𝑏 π‘Ž 𝑙 π‘š 4 π·πœŒπœ“] ,provided provided ∘ 𝑙 πœ‡ ∘ π‘š π‘’βˆ˜ = 𝐷 𝑒 , π‘’βˆ˜ πœ“βˆ˜ = Ξ© 𝑒 , πœ‡ πœ‡ 𝑙 πœ‡ 𝑙 𝑙 π‘š Μ† π‘Ž π‘Ž 𝑐 Μ† πœ‡ ∘ π‘Ž ∘ ] ] ∘ (B.11) Ξ© 𝑏 = πœ‹Μ† π‘πœ‹Μ† 𝑏 = Ξ© ]𝑒 πœ‡π‘’π‘ , Μƒπ‘’πœŒ = πœ‹Μ† πœŒπ‘’], πœ‡ πœ‡ ̃𝑒 = 𝐷̆ π‘’βˆ˜ , ̃𝑒 πœ“Μ† 𝜌 = Ξ©Μ† π‘’βˆ˜ . (B.20) 𝜌 𝜌 πœ‡ 𝜌 ] V πœ‡ ∘ πœ‡ ∘ 𝑏 ΜƒπœŒ 𝜌 π‘Ž ∘ ̃𝑐 𝑐 πœ— = πœ‹Μ†πœ‡ πœ— , ̃𝑒𝑐 = πœ‹Μ†π‘ π‘’π‘Ž, πœ— = πœ‹Μ† π‘πœ— . In analogy with (B.1), the following relations hold: Under a local tetrad deformation (B.20),ageneralspin ∘ π‘š ∘ π‘˜ ∘ π‘š ∘ πœ‡ ∘ πœ‡ ∘ π‘˜ π·πœ‡ = π‘’πœ‡ πœ‹ π‘˜, πœ“π‘™ = 𝑒 π‘˜πœ‹ 𝑙, connection transforms according to 𝑐 π‘˜ πœ‡ π‘š πœ‡ ∘ π‘š π‘Ž π‘Ž ∘ 𝑑 π‘ŽΜƒ 𝑐 π‘ŽΜƒ 𝑙 ∘ ∘ π‘˜ ∘ ∘ πœ”Μƒ π‘πœ‡ = πœ‹Μ†π‘ πœ” π‘‘πœ‡πœ‹Μ† 𝑏 + πœ‹Μ†π‘ πœ•πœ‡πœ‹Μ† 𝑏 =πœ‹π‘™ πœ•πœ‡πœ‹ 𝑏. (B.21) π‘’πœ‡ 𝑒 π‘š =π›Ώπ‘š, πœ‹π‘Ž = π‘’π‘Ž π·πœ‡ , (B.12)

∘ π‘Ž ∘ π‘Ž ∘ πœ‡ We have then two choices to recast metric as follows: πœ‹ 𝑙 = 𝑒 πœ‡πœ“π‘™ , 𝑐 𝑑 Μƒπ‘Ž ̃𝑏 π‘Ž 𝑏 ∘ ∘ ∘ π‘š πœ‡ 𝑔=π‘œΜƒ πœ— βŠ— πœ— =π‘œ πœ‹Μ† πœ‹Μ† πœ— βŠ— πœ— Ξ© = πœ‹βˆ˜ π‘šπœ‹βˆ˜ 𝜌 Ξ©Μ† = πœ‹Μ†πœ‡ πœ‹Μ†πœŒ π‘Žπ‘ π‘Žπ‘ 𝑐 𝑑 where 𝑙 𝜌 𝑙 and ] 𝜌 ].Wealsohave (B.22) 𝑐 𝑑 π‘”βˆ˜ π‘’βˆ˜ πœ‡π‘’βˆ˜ ] =πœ‚ ∘ ∘ πœ‡] π‘˜ 𝑠 π‘˜π‘  and = π›ΎΜ†π‘π‘‘πœ— βŠ— πœ— . Μ† πœ‡ πœ‡ ] Μ† 𝜌 𝜌 πœ‡ 𝐷𝜌 = 𝑒]Μ† πœ‹Μ† 𝜌, πœ“] = 𝑒̆ πœ‡πœ‹Μ† ], In the first case, the contribution of the Christoffel symbols 𝛾̆ =π‘œ πœ‹Μ†π‘ πœ‹Μ†π‘‘ πœ‡ constructed by the metric π‘Žπ‘ 𝑐𝑑 π‘Ž 𝑏 reads 𝑒̆ πœ‡π‘’]Μ† =π›Ώπœ‡, πœ‹Μ† πœ‡ = 𝑒̆ πœŒπ·Μ† , ] 𝜌 𝜌 π‘Ž π‘Ž 𝜌 (B.13) σΈ€  σΈ€  Μƒπ‘Ž 1 ∘ π‘Ž π‘Žπ‘ŽσΈ€  ∘ 𝑏 π‘Žπ‘ŽσΈ€  ∘ 𝑐 Ξ“ = (𝐢 βˆ’ 𝛾̆ 𝛾̆ σΈ€  𝐢 σΈ€  βˆ’ 𝛾̆ 𝛾̆ σΈ€  𝐢 σΈ€  ) πœ‹Μ†π‘Ž = π‘’π‘ŽΜ† πœ“Μ† 𝜌. 𝑏𝑐 2 𝑏𝑐 𝑏𝑏 π‘Ž 𝑐 𝑐𝑐 π‘Ž 𝑏 ] 𝜌 ] (B.23) ∘ 1 ∘ ∘ πœ‡ π‘Žπ‘ŽσΈ€  ∘ ∘ ∘ 𝑑𝑠≑𝑖𝑑 𝑑π‘₯ 𝑉 + 𝛾̆ (𝑒 βŒ‹π‘‘π›ΎΜ† σΈ€  βˆ’ 𝑒 βŒ‹π‘‘π›ΎΜ† σΈ€  βˆ’ 𝑒 σΈ€  βŒ‹π‘‘π›ΎΜ† ). The norm of the displacement on 4 can be 2 𝑐 π‘π‘Ž 𝑏 π‘π‘Ž π‘Ž 𝑏𝑐 written in terms of the spacetime structures of 𝑀4 as 𝛾̆ ∘ ∘ π‘š As before, the second deformation matrix, π‘Žπ‘,canbe ∘ ∘ 𝑙 πœ‹Μ† 𝑖𝑑=π‘’πœ—=Ω𝑙 π‘’π‘š βŠ—πœ— βˆˆπ‘‰4. (B.14) decomposed in terms of symmetric, (π‘Žπ‘), and antisymmetric, 𝑐 πœ‹Μ†[π‘Žπ‘],partsofthematrixπœ‹Μ†π‘Žπ‘ =π‘œπ‘Žπ‘πœ‹Μ† 𝑏.So, The holonomic metric can be recast in the form ∘ πœ‡ ∘ ] ∘ πœ‡ ∘ ] Μ† Μ† ∘ ∘ ∘ ∘ ∘ πœ‹Μ†π‘Žπ‘ = Ξ₯π‘œπ‘Žπ‘ + Ξ˜π‘Žπ‘ + πœ‘Μ†π‘Žπ‘, (B.24) 𝑔=π‘”πœ‡]πœ— βŠ— πœ— = 𝑔(π‘’πœ‡, 𝑒]) πœ— βŠ— πœ— . (B.15) Μ† π‘Ž Μ† ∘ where Ξ₯=πœ‹Μ† π‘Ž, Ξ˜π‘Žπ‘ is the traceless symmetric part, and πœ‘Μ†π‘Žπ‘ 𝑇 ∘ 𝑉 The anholonomy objects defined on the tangent space, π‘₯ 4, is the skew symmetric part of the first deformation matrix. In read analogy with (B.4), the deformed metric can then be split as ∘ π‘Ž ∘ π‘Ž 1 ∘ π‘Ž ∘ 𝑏 ∘ 𝑐 2 ∘ 𝐢 := π‘‘πœ— = 𝐢 π‘π‘πœ— ∧ πœ— , (B.16) 𝑔̃ (πœ‹Μ†) = Ξ₯Μ† (πœ‹Μ†) 𝑔 + 𝛾̆ (πœ‹Μ†) , 2 πœ‡] πœ‡] πœ‡] (B.25) Journal of Astrophysics 23 where coupling prescription of a general field carrying an arbitrary representation of the Lorentz group will be Μ† 2 ∘ π‘Ž ∘ 𝑏 π›ΎΜ†πœ‡] (πœ‹Μ†) =[π›ΎΜ†π‘Žπ‘ βˆ’ Ξ₯ π‘œπ‘Žπ‘] 𝑒 πœ‡π‘’ ]. (B.26) Μƒ Μƒ Μƒ 𝑖 π‘Žπ‘ Μƒπ‘Žπ‘ πœ•πœ‡ 󳨀→ Dπœ‡ = πœ•πœ‡ βˆ’ (πœ”Μƒ πœ‡ βˆ’ 𝐾 πœ‡)π½π‘Žπ‘, (B.33) The inverse deformed metric reads 2 πœ‡ ] πœ‡] 𝑐𝑑 βˆ’1π‘Ž βˆ’1𝑏 ∘ ∘ with π½π‘Žπ‘ denoting the corresponding Lorentz generator. 𝑔̃ (πœ‹Μ†) =π‘œ πœ‹Μ† π‘πœ‹Μ† π‘‘π‘’π‘Ž 𝑒𝑏 , (B.27) The Riemann-Cartan manifold, π‘ˆ4,isaparticularcaseof Μƒ βˆ’1π‘Ž 𝑐 𝑐 βˆ’1π‘Ž π‘Ž the general metric-affine manifold M4,restrictedbythe where πœ‹Μ† π‘πœ‹Μ† 𝑏 = πœ‹Μ† π‘πœ‹Μ† 𝑐 =𝛿.The(anholonomic)Levi- 𝑏 𝑁̃ =0 Civita (or Christoffel) connection is metricity condition πœ†πœ‡] , when a nonsymmetric linear connection is said to be metric compatible. The Lorentz and Μƒ Μƒ 1 Μƒ ̃𝑐 diffeomorphism invariant scalar curvature, 𝑅̃, becomes either Ξ“π‘Žπ‘ := ̃𝑒[π‘ŽβŒ‹π‘‘πœ—π‘] βˆ’ (Μƒπ‘’π‘ŽβŒ‹Μƒπ‘’π‘βŒ‹π‘‘πœ—π‘)βˆ§πœ— , (B.28) π‘Ž 2 afunctionof̃𝑒 πœ‡ only, or π‘”Μƒπœ‡]: πœ—Μƒ πœ—Μƒ = where 𝑐 is understood as the down indexed 1-form 𝑐 Μƒ πœ‡ ] Μƒ π‘Žπ‘ Μƒ Μƒ 𝑏 𝑅 (πœ”Μƒ) ≑ ̃𝑒 ̃𝑒 𝑅 (πœ”Μƒ) = 𝑅(𝑔,Μƒ Ξ“) π‘œ πœ—Μƒ π‘Ž 𝑏 πœ‡] 𝑐𝑏 . Hence, the usual Levi-Civita connection is related to (B.34) 𝜌] Μƒπœ‡ Μƒ the original connection by the relation ≑ 𝑔̃ 𝑅 πœŒπœ‡] (Ξ“) . Μƒπœ‡ Μ†πœ‡ Μ† πœ‡ Ξ“ 𝜌𝜎 = Ξ“ 𝜌𝜎 + Ξ  𝜌𝜎, (B.29) C. Determination of 𝐷̃ and πœ“Μƒ in Standard provided Theory of Gravitation πœ‡ πœ‡] Μ† Μ† πœ‡] Μ† Μ† π‘Žπ‘ π‘Žπ‘ πœ‡ Ξ  𝜌𝜎 =2𝑔̃ 𝑔̆] (πœŒβˆ‡πœŽ)Ξ₯βˆ’π‘”Μ†πœŒπœŽπ‘” βˆ‡]Ξ₯ Let πœ”Μƒ = πœ”Μƒπœ‡ βˆ§π‘‘π‘₯Μƒ be the 1-forms of corresponding 1 (B.30) connections assuming values in the Lorentz Lie algebra. The + π‘”Μƒπœ‡] (βˆ‡Μ† 𝛾̆ + βˆ‡Μ† 𝛾̆ βˆ’ βˆ‡Μ† 𝛾̆ ), action for gravitational field can be written in the form 2 𝜌 ]𝜎 𝜎 𝜌] ] 𝜌𝜎 ∘ 𝑆̃ = 𝑆+𝑆̃ , (C.1) where βˆ‡Μ† is the covariant derivative. The contravariant 𝑔 𝑄 ]𝜌 deformed metric, 𝑔̃ , is defined as the inverse of π‘”Μƒπœ‡],such ]𝜌 𝜌 πœ‡ where the integral that π‘”Μƒπœ‡]𝑔̃ =π›Ώπœ‡. Hence, the connection deformation Ξ  𝜌𝜎 acts like a force that deviates the test particles from the ∘ 1 ∘ 1 ∘ ̃𝑐 ̃𝑑 𝑆=βˆ’ ∫ ⋆𝑅=βˆ’ ∫ ⋆𝑅𝑐𝑑 ∧ πœ— ∧ πœ— geodesic motion in the space, 𝑉4.Ametric-affinespace 4Γ¦ 4Γ¦ (𝑀̃ , 𝑔,Μƒ Ξ“)Μƒ (C.2) 4 is defined to have a metric and a linear connection 1 ∘ =βˆ’ ∫ π‘…βˆšβˆ’π‘”π‘‘Ξ©Μƒ that need not be dependent on each other. In general, the lift- 2 ing of the constraints of metric-compatibility and symmetry Γ¦ yields the new geometrical property of the spacetime, which is the usual Einstein action, with the coupling constant relat- 𝑁̃ 4 are the nonmetricity 1-form π‘Žπ‘ and the affine torsion 2-form ing to the Newton gravitational constant Γ¦ =8πœ‹πΊπ‘/𝑐 , 𝑆𝑄 is Μƒπ‘Ž 𝑇 representing a translational misfit (for a comprehensive the phenomenological action of the spin-torsion interaction, ∞ discussion see [92–95]). These, together with the curvature 2- and ⋆ denotes the Hodge dual. This is a 𝐢 -linear map ⋆: Μƒ 𝑏 Ω𝑝 β†’Ξ©π‘›βˆ’π‘ form π‘…π‘Ž , symbolically can be presented as [96, 97] , which acts on the wedge product monomials of π‘Ž1β‹…β‹…β‹…π‘Žπ‘ π‘Ž β‹…β‹…β‹…π‘Ž ⋆(πœ—Μƒ )=πœ€1 𝑛 ̃𝑒 the basis 1-forms as π‘Žπ‘+1β‹…β‹…β‹…π‘Žπ‘› .Hereweused Μƒ Μƒπ‘Ž Μƒ 𝑏 Μƒ Μƒπ‘Ž Μƒ 𝑏 (π‘π‘Žπ‘, 𝑇 , π‘…π‘Ž ) ∼ D (𝑔̃ , πœ— , Ξ“π‘Ž ) , (B.31) the abbreviated notations for the wedge product monomials, π‘Žπ‘ π‘Ž β‹…β‹…β‹…π‘Ž π‘Ž π‘Ž π‘Ž Μƒ 1 𝑝 Μƒ 1 Μƒ 2 Μƒ 𝑝 πœ— = πœ— ∧ πœ— βˆ§β‹…β‹…β‹…βˆ§πœ— , defined on the π‘ˆ4 space, the DΜƒ ̃𝑒 (𝑖 = 𝑝 + 1,...,𝑛) where is the covariant exterior derivative.Ifthenonmetric- π‘Žπ‘– are understood as the down indexed 𝑁̃ =βˆ’DΜƒ 𝑔̃ β‰‘βˆ’π‘”Μƒ 𝑏 π‘Ž β‹…β‹…β‹…π‘Ž ity tensor πœ†πœ‡] πœ† πœ‡] πœ‡] ;πœ† does not vanish, ̃𝑒 =π‘œ πœ—Μƒ πœ€ 1 𝑛 1-forms π‘Žπ‘– π‘Žπ‘–π‘ ,and is the total antisymmetric the general formula for the affine connection written in the π‘Žπ‘ pseudotensor. The variation of the connection 1-form πœ”Μƒ spacetime components is yields 𝜌 ∘ 𝜌 𝜌 𝜌 1 𝜌 Μƒ Μƒ Μƒ Μƒ 1 Ξ“ πœ‡] = Ξ“ πœ‡] + 𝐾 πœ‡] βˆ’ 𝑁 πœ‡] + 𝑁(πœ‡]), (B.32) Μƒ Μƒ π‘Žπ‘ 2 𝛿𝑆𝑄 = ∫ ⋆Tπ‘Žπ‘ βˆ§π›Ώπœ”Μƒ , (C.3) Γ¦ ∘ 𝜌 𝜌 𝜌 𝜌 Ξ“ 𝐾̃ := 2𝑄̃ + 𝑄̃ where πœ‡] is the Riemann part and πœ‡] (πœ‡]) πœ‡] where is the non-Riemann part, the affine contortion tensor.The 𝜌 𝜌 𝜌 𝑄̃ = (1/2)𝑇̃ = Ξ“Μƒ Μƒ 1 Μƒ ̃𝑐 ̃𝑑 torsion, πœ‡] πœ‡] [πœ‡]] given with respect ⋆ Tπ‘Žπ‘ := ⋆(π‘„π‘Ž ∧ ̃𝑒𝑏)=𝑄 ∧ πœ— πœ€π‘π‘‘π‘Žπ‘ ΜƒπœŒ 2 to a holonomic frame, π‘‘πœ— =0, is the third-rank tensor, (C.4) antisymmetric in the first two indices, with 24 independent 1 ̃𝑐 𝑑 Μƒπœ‡]𝛼 = 𝑄 πœ‡] ∧ ̃𝑒 π›Όπœ€π‘Žπ‘π‘π‘‘πœ— , components. In a presence of curvature and torsion, the 2 24 Journal of Astrophysics

Μƒ and also Here βˆ‡πœ‡ denotes the covariant derivative agreeing with the π‘”Μƒπœ‡] = (1/2)(π›ΎΜƒπœ‡π›ΎΜƒ] + 𝛾̃]π›ΎΜƒπœ‡):βˆ‡Μƒ = πœ•Μƒ + Ξ“Μƒ π‘Ž π‘Ž π‘Ž 𝑏 metric, πœ‡ πœ‡ πœ‡,where 𝑄̃ = π·Μƒπœ—Μƒ =π‘‘πœ—Μƒ + πœ”Μƒπ‘Ž ∧ πœ—Μƒ . (C.5) Μƒ π‘Žπ‘ ] Μƒ 𝑏 Ξ“πœ‡(π‘₯)Μƒ = (1/2)𝐽 Μƒπ‘’π‘Ž (π‘₯)Μƒ πœ•πœ‡Μƒπ‘’π‘](π‘₯)Μƒ is the connection and π½π‘Žπ‘ are the generators of Lorentz group Ξ›.Thetetradcomponents πœ‡ The variation of the action describing the macroscopic matter Μƒπ‘’π‘Ž (π‘₯)Μƒ associate with the chosen representation 𝐷(Ξ›) by 𝑆̃ πœ—π‘Ž Μƒ π‘™σΈ€ β‹…β‹…β‹…π‘˜σΈ€  Μƒ sources π‘š withrespecttothecoframe and connection 1- which the Ξ¦(π‘₯)Μƒ is transformed as [𝐷(Ξ›)]π‘™β‹…β‹…β‹…π‘˜ Ξ¦(π‘₯)Μƒ ,where πœ”Μƒπ‘Žπ‘ π‘Žπ‘ form reads 𝐷(Ξ›) = 𝐼 + (1/2)πœ”Μƒ π½π‘Žπ‘, πœ”Μƒπ‘Žπ‘ =βˆ’πœ”Μƒπ‘π‘Ž are the parameters of the πœ‡ πœ‡ Lorentz group. One has, for example, to set 𝛾̃ (π‘₯)Μƒ β†’ ̃𝑒 (π‘₯)Μƒ Μƒ Μƒ 𝑙 π›Ώπ‘†π‘š = ∫ π›ΏπΏπ‘š forthefieldsofspin(𝑗 = 0, 1); for vector field [π½π‘Žπ‘]π‘˜ = 𝛿𝑙 πœ‚ βˆ’π›Ώπ‘™ πœ‚ π›ΎΜƒπœ‡(π‘₯)Μƒ = ̃𝑒 πœ‡(π‘₯)𝛾̃ π‘Ž 𝐽 = βˆ’(1/4)[𝛾 ,𝛾 ] (C.6) π‘Ž π‘π‘˜ 𝑏 π‘Žπ‘˜;but π‘Ž and π‘Žπ‘ π‘Ž 𝑏 π‘Ž 1 (𝑗 = 1/2) π›Ύπ‘Ž = ∫ (βˆ’ ⋆ πœƒΜƒ βˆ§π›Ώπœ—Μƒ + ⋆ Ξ£Μƒ βˆ§π›Ώπœ”Μƒπ‘Žπ‘), for the spinor field ,where are the Dirac matrices. π‘Ž π‘Žπ‘ Μƒ 2 Given the principal fiber bundle 𝑃(𝑉4,𝐺𝑉;̃𝑠) with the Μƒ structure group 𝐺𝑉,thelocalcoordinatesπ‘βˆˆΜƒ 𝑃 are 𝑝=Μƒ Μƒ where β‹†πœƒπ‘Ž is the dual 3-form relating to the canonical energy- (π‘₯,Μƒ 𝑉 π‘ˆ ),whereπ‘₯βˆˆπ‘‰Μƒ 4 and π‘ˆπ‘‰ βˆˆπΊπ‘‰,thetotalbundlespace Μƒπœ‡ Μƒ momentum tensor, πœƒ ,by 𝑃 is a smooth manifold, and the surjection ̃𝑠 is a smooth π‘Ž Μƒ Μƒ map ̃𝑠:𝑃→𝑉4.Asetofopencoverings{U𝑖} of 𝑉4 with Μƒ Μƒ Μƒ 1 Μƒπœ‡ Μƒ]𝛼𝛽 π‘₯∈{Μƒ U𝑖}βŠ‚π‘‰4 satisfy ⋃𝛼 U𝛼 =𝑉4. The collection of matter β‹†πœƒπ‘Ž = πœƒ πœ€πœ‡]π›Όπ›½πœ— (C.7) 3! π‘Ž fields of arbitrary spins Ξ¦(Μƒ π‘₯)Μƒ take values in standard fiber over βˆ’1 Μƒ Μƒ Μƒ βˆ’1 π‘₯:Μƒ ̃𝑠 (U𝑖)=U𝑖 Γ— 𝐹π‘₯Μƒ.Thefibrationisgivenas⋃π‘₯Μƒ ̃𝑠 (π‘₯)Μƒ = ⋆Σ̃ =βˆ’β‹†Ξ£Μƒ Μƒ and π‘Žπ‘ π‘π‘Ž is the dual 3-form corresponding to the 𝑃.Thelocalgaugewillbethediffeomorphismmapπœ’Μƒπ‘– : Μƒ βˆ’1 Μƒ Μƒ βˆ’1 βˆ’1 Μƒ canonical spin tensor, which is identical with the dynamical U𝑖× 𝑉 𝐺𝑉 β†’ ̃𝑠 (U𝑖)βˆˆπ‘ƒ,sinceπœ’Μƒ maps ̃𝑠 (U𝑖) onto 𝑆̃ 4 𝑖 spin tensor π‘Žπ‘π‘;namely, UΜƒΓ— 𝐺 Γ— the direct (Cartesian) product 𝑖 𝑉4 𝑉.Here 𝑉4 represents 𝑉4 πœ‡ ]𝛼𝛽 the fiber product of elements defined over space such that ⋆Σ̃ = 𝑆̃ πœ€ πœ—Μƒ . ̃𝑠(πœ’Μƒ (π‘₯,Μƒ π‘ˆ )) = π‘₯Μƒ πœ’Μƒ (π‘₯,Μƒ π‘ˆ )=πœ’Μƒ (π‘₯,Μƒ (𝑖𝑑) )π‘ˆ = πœ’Μƒ (π‘₯)π‘ˆΜƒ π‘Žπ‘ π‘Žπ‘ πœ‡]𝛼𝛽 (C.8) 𝑖 𝑉 and 𝑖 𝑉 𝑖 𝐺𝑉 𝑉 𝑖 𝑉 π‘₯∈{Μƒ UΜƒ } (𝑖𝑑) for all 𝑖 ,where 𝐺𝑉 is the identity element of the Μƒ Μƒ Μƒ βˆ’1 Μƒ The variation of the total action, 𝑆=𝑆𝑔 + π‘†π‘š,withrespectto group 𝐺𝑉.Thefiber̃𝑠 at π‘₯βˆˆπ‘‰Μƒ 4 is diffeomorphic to 𝐹, π‘Žπ‘ Μƒ 𝐹̃ Μƒπ‘ βˆ’1(π‘₯)Μƒ ≑ 𝐹̃ β‰ˆ 𝐹̃ the Μƒπ‘’π‘Ž, πœ”Μƒ and Ξ¦ gives the following field equations: where is the fiber space, such that π‘₯Μƒ .The Μƒ action of the structure group 𝐺𝑉 on 𝑃 defines an isomorphism 1 ∘ 𝑐 of the Lie algebra gΜƒ of 𝐺𝑉 onto the Lie algebra of vertical (1) 𝑅 ∧ πœ—Μƒ = πœƒΜƒ =0, Μƒ Μƒ 2 𝑐𝑑 Γ¦ 𝑑 vector fields on 𝑃 tangent to the fiber at each π‘βˆˆΜƒ 𝑃 called 1 fundamental. To involve a drastic revision of the role of gauge (2) ⋆ TΜƒ =βˆ’ ⋆ Ξ£Μƒ , fields in the physical concept of the spacetime deformation, π‘Žπ‘ Γ¦ π‘Žπ‘ (C.9) 2 we generalize the standard gauge scheme by exploring a new 𝛿𝐿̃ 𝛿𝐿̃ special type of distortion gauge field, (π‘Ž), which is assumed to (3) π‘š =0, π‘š =0. Μƒ act on the external spacetime groups. Then, we also consider 𝛿Φ 𝛿Φ̃ loc the principle fiber bundle, 𝑃(𝑀4,π‘ˆ ;𝑠), with the base space loc 𝑀4,thestructuregroupπ‘ˆ ,andthesurjection𝑠.Thematter Μƒ Μƒ In the sequel, the DC-members 𝐷 and πœ“ can readily be fields Ξ¦(π‘₯) take values in the standard fiber which is the determined as follows: Hilbert vector space where a linear representation π‘ˆ(π‘₯) of π‘ˆloc 𝑙 π‘Ž π‘š group is given. This space can be regarded as the Lie 𝐷̃ =πœ‚π‘™π‘š βŸ¨Μƒπ‘’ ,𝑒 ⟩, πœ“Μƒ π‘Ž =πœ‚ πœ—Μƒ (πœ—βˆ’1) . loc π‘Ž π‘Ž π‘š 𝑙 π‘™π‘š (C.10) algebra of the group π‘ˆ upon which the Lie algebra acts according to the law of the adjoint representation: π‘Žβ†” π‘ŽΞ¦ β†’[π‘Ž, Ξ¦] D. The GGP in More Detail ad . The GGP accounts for the gravitation gauge group 𝐺𝑉 π‘ˆloc Note that an invariance of the Lagrangian 𝐿Φ̃ under the generated by the hidden local internal symmetry . The Μƒ infinite-parameter group of general covariance (A.5) in 𝑉4 physical system of the fields Ξ¦(π‘₯)Μƒ defined on 𝑉4 must be implies an invariance of 𝐿Φ̃ under the 𝐺𝑉 group and vice invariant under the finite local gauge transformations π‘ˆπ‘‰ (D.1) versa if and only if the generalized local gauge transforma- oftheLiegroupofgravitation𝐺𝑉 (see Scheme 1), where π‘…πœ“(π‘Ž) Μƒ Μƒ Μƒ tions of the fields Ξ¦(π‘₯)Μƒ and their covariant derivative βˆ‡πœ‡Ξ¦(π‘₯)Μƒ is the matrix of unitary map: areintroducedbyfinitelocalπ‘ˆπ‘‰ βˆˆπΊπ‘‰ gauge transformations: Μƒ σΈ€  𝑅 (π‘Ž) :Φ󳨀→Φ, Ξ¦Μƒ (π‘₯Μƒ) =π‘ˆ (π‘₯Μƒ) Ξ¦Μƒ (π‘₯Μƒ) , πœ“ 𝑉 (D.2) σΈ€  (D.1) π‘˜ ] Μƒ πœ‡ Μƒ Μƒ πœ‡ Μƒ Μƒ 𝑆 (π‘Ž) π‘…πœ“ (π‘Ž) :(π›Ύπ·π‘˜Ξ¦) 󳨀→( 𝛾̃ (π‘₯Μƒ) βˆ‡]Ξ¦) . [𝛾̃ (π‘₯Μƒ) βˆ‡πœ‡Ξ¦ (π‘₯Μƒ)] =π‘ˆπ‘‰ (π‘₯Μƒ) [𝛾̃ (π‘₯Μƒ) βˆ‡πœ‡Ξ¦ (π‘₯Μƒ)]. Journal of Astrophysics 25

U =Rγ°€ UlocRβˆ’1 (2) In case of curved space, the reduction 𝑉6 →𝑉4 can γ°€ V νœ“ νœ“ Ξ¦Μƒ (x)Μƒ = UVΞ¦(Μƒ x)Μƒ Ξ¦(Μƒ x)Μƒ be achieved if we use the projection (𝑒0Μ† )ofthetem- poral component (𝑒0𝛼̆ )ofbasissix-vector𝑒(Μ† 𝑒𝛼̆ , 𝑒0𝛼̆ ) on γ°€ Rνœ“(x,Μƒ x) Rνœ“(x,Μƒ x) the given universal direction (𝑒0𝛼̆ β†’ 𝑒0Μ† ). By this we Uloc Ξ¦γ°€(x) =UlocΞ¦(x) Ξ¦(x) choose the time coordinate. Actually, the Lagrangian of physical fields defined on 𝑅6 is a function of scalars (πœ†π›Ό) 𝛼 0𝛼 Scheme 1: The GGP. such that 𝐴(πœ†π›Ό)𝐡 =𝐴𝛼𝐡 +𝐴0𝛼𝐡 ;thenupon the reduction of temporal components of six-vectors 0𝛼 0𝛼 0𝛽 0 0 0 𝐴0𝛼𝐡 =𝐴 βŸ¨π‘’0𝛼̆ , 𝑒0𝛽̆ ⟩𝐡 =π΄βŸ¨π‘’0Μ† , 𝑒0Μ† ⟩𝐡 =𝐴0𝐡 Here 𝑆(𝐹) is the gauge invariant scalar function 𝑆(𝐹) ≑ πœ‡ we may fulfill a reduction to 𝑉4. βˆ’1 Μƒ 𝑙 Μƒ (1/4)πœ‹Μƒ (𝐹) = (1/4)πœ“πœ‡π·π‘™ , π·π‘˜ =πœ•π‘˜ βˆ’π‘–Γ¦,π‘Žπ‘˜.Inanillustration Adistortionofthebasis(E.2) comprises the following two of the point at issue, the (D.2) explicitly may read steps. We, at first, consider distortion transformations of the πœ‡β‹…β‹…β‹…π›Ώ πœ‡ 𝑂 Ξ¦Μƒ (π‘₯Μƒ) = πœ“Μƒ β‹…β‹…β‹…πœ“Μƒ 𝛿 𝑅 (π‘Ž) Ξ¦π‘™β‹…β‹…β‹…π‘š (π‘₯) ingredient unit vectors 𝜏 under the distortion gauge field 𝑙 π‘š (π‘Ž): πœ‡β‹…β‹…β‹…π›Ώ (D.3) ≑(𝑅 ) Ξ¦π‘™β‹…β‹…β‹…π‘š (π‘₯) , 𝑂̆ (π‘Ž) = Q𝜏 (π‘Ž) 𝑂 =𝑂 + π‘Ž 𝑂 , πœ“ π‘™β‹…β‹…β‹…π‘š (+𝛼) (+𝛼) 𝜏 + Γ¦ (+𝛼) βˆ’ (E.3) Μ† 𝜏 and also 𝑂(βˆ’π›Ό) (π‘Ž) = Q(βˆ’π›Ό) (π‘Ž) π‘‚πœ =π‘‚βˆ’ + Γ¦π‘Ž(βˆ’π›Ό)𝑂+, ] Μƒπœ‡β‹…β‹…β‹…π›Ώ 𝜏 𝑔̃ (π‘₯Μƒ) βˆ‡]Ξ¦ (π‘₯Μƒ) where Q (=Q(πœ†π›Ό)(π‘Ž)) is an element of the group 𝑄.This (D.4) induces the distortion transformations of the ingredient unit Μƒ πœ‡ Μƒ 𝛿 π‘˜ π‘™β‹…β‹…β‹…π‘š =𝑆(𝐹) πœ“π‘™ β‹…β‹…β‹…πœ“π‘šπ‘… (π‘Ž) 𝛾 π·π‘˜Ξ¦ (π‘₯) . vectors πœŽπ›½, which, in turn, undergo the rotations, πœŽΜ†(πœ†π›Ό)(πœƒ) = 𝛽 πœ‡ πœ‡ πœ‡ R(πœ†π›Ό)(πœƒ)πœŽπ›½,whereR(πœƒ) ∈ 𝑆𝑂(3) is the element of the group In case of zero curvature, one has πœ“π‘™ =𝐷𝑙 =𝑒𝑙 = (πœ•π‘₯πœ‡/πœ•π‘‹π‘™) ‖𝐷‖ =0ΜΈ 𝑋𝑙 of rotations of planes involving two arbitrary axes around the , ,where are the inertial coordinates. 𝑅3 𝑀 orthogonal third axis in the given ingredient space πœ†.Infact, In this, the conventional gauge theory given on the 4 𝑂 𝜎 is restored in both curvilinear and inertial coordinates. distortion transformations of basis vectors ( )and( )are not independent but rather are governed by the spontaneous Although the distortion gauge fieldπ‘Ž ( 𝐴)isavectorfield, only the gravitational attraction is presented in the proposed breaking of the distortion symmetry (for more details see theory of gravitation. [74]). To avoid a further proliferation of indices, hereafter we will use uppercase Latin (𝐴) in indexing (πœ†π›Ό),andsoforth. The infinitesimal transformations then read E. A Lie Group of Distortion 𝜏 𝜏 𝛿Q𝐴 (π‘Ž) = Γ¦π›Ώπ‘Žπ΄π‘‹πœ† βˆˆπ‘„, 𝑀 The extended space 6 reads 0 𝑖 (E.4) 𝛿R (πœƒ) =βˆ’ 𝑀 π›Ώπœ”π›Όπ›½ βˆˆπ‘†π‘‚(3) , 3 3 3 3 2 𝛼𝛽 𝑀6 =𝑅+ βŠ•π‘…βˆ’ =𝑅 βŠ•π‘‡ , π‘‹πœ =βˆ—π›Ώπœ 𝐼 =𝜎/2 𝜎 3 3 (E.1) provided by the generators πœ† πœ† and 𝑖 𝑖 ,where 𝑖 sgn (𝑅 )=(+++) , sgn (𝑇 )=(βˆ’βˆ’βˆ’) . 𝛼𝛽 are the Pauli matrices, 𝑀𝛼𝛽 =πœ€π›Όπ›½π›ΎπΌπ›Ύ,andπ›Ώπœ” =πœ€π›Όπ›½π›Ύπ›Ώπœƒπ›Ύ.The transformation matrix 𝐷(π‘Ž, πœƒ) = Q(π‘Ž) Γ— R(πœƒ) is an element The 𝑒(πœ†π›Ό) =π‘‚πœ† Γ—πœŽπ›Ό (πœ† = Β±, 𝛼 = 1, 2, 3) are linearly 𝐺 =𝑄×𝑆𝑂(3) independent unit basis vectors at the point (p) of interest of ofthedistortiongroup 𝐷 : 𝑅3 𝑂 the given three-dimensional space πœ†. The unit vectors πœ† 𝐷(π‘‘π‘Žπ΄,π‘‘πœƒπ΄) =𝐼+𝑑𝐷(π‘Žπ΄,πœƒπ΄), and πœŽπ›Ό imply 𝐴 𝐴 (E.5) βˆ— 𝑑𝐷(π‘Žπ΄,πœƒπ΄) = 𝑖 [π‘‘π‘Ž 𝑋𝐴 +π‘‘πœƒ 𝐼𝐴], βŸ¨π‘‚πœ†,π‘‚πœβŸ©= π›Ώπœ†πœ,βŸ¨πœŽπ›Ό,πœŽπ›½βŸ©=𝛿𝛼𝛽, (E.2) where 𝐼𝐴 ≑𝐼𝛼 at given πœ†.Thegenerators𝑋𝐴 (E.4) of the group 𝛿 βˆ—π›Ώ =1βˆ’π›Ώ where 𝛼𝛽 is the Kronecker symbol and πœ†πœ πœ†πœ. 𝑄 do not complete the group 𝐻 to the dynamical group 𝐺𝐷, Three spatial 𝑒𝛼 =πœ‰Γ—πœŽπ›Ό and three temporal 𝑒0𝛼 =πœ‰0 Γ—πœŽπ›Ό and therefore they cannot be interpreted as the generators 𝑅3 components are the basis vectors, respectively, in spaces of the quotien space 𝐺𝐷/𝐻,andthedistortionfieldsπ‘Žπ΄ 3 √ 2 2 and 𝑇 ,where𝑂± =(1/ 2)(πœ‰0 Β±πœ‰), πœ‰0 =βˆ’πœ‰ =1, βŸ¨πœ‰0,πœ‰βŸ©=0. cannot be identified directly with the Goldstone fields arising 3 𝐺 The 3D space 𝑅± is spanned by the coordinates πœ‚(±𝛼).Inusing in spontaneous breaking of the distortion symmetry 𝐷. this language it is important to consider a reduction to the These objections, however, can be circumvented, because, 𝐺 =𝑄× space 𝑀4 which can be achieved in the following way. as it is shown by [74], the distortion group 𝐷 𝑆𝑂(3) canbemappedinaone-to-onemannerontothe 𝑀 𝑇3 (1) In case of free flat space 6,thesubspace is group 𝐺𝐷 = 𝑆𝑂(3) Γ— 𝑆𝑂(3), which is isomorphic to the isotropic.Andinsofaritcontributesinlineelement π‘†π‘ˆ(2) Γ— π‘†π‘ˆ(2) 0 0 3 chiral group ,incaseofwhichthemethodof just only by the square of the moduli 𝑑=|x |, x βˆˆπ‘‡, 3 1 phenomenological Lagrangians is well known. In aftermath, then, the reduction 𝑀6 →𝑀4 =𝑅 βŠ•π‘‡ can be 0 we arrive at the key relation readily achieved if we use 𝑑=|x | for conventional πœƒ =βˆ’ π‘Ž . time. tan 𝐴 Γ¦ 𝐴 (E.6) 26 Journal of Astrophysics

Given the distortion field π‘Žπ΄,therelation(E.6) uniquely where 𝑇𝐡𝐢 is the energy-momentum tensor and 𝜁0 is the determines six angles πœƒπ΄ of rotations around each of six (𝐴) gauge fixing parameter. To render our discussion here more axes. In pursuing our goal further, we are necessarily led to transparent, below we clarify the relation between gravita- extending a whole framework of GGP now for the base 12D tional and coupling constants. To assist in obtaining actual smooth differentiable manifold: solutions from the field equations, we may consider the weak- field limit and will envisage that the right-hand side of (F.1) 𝑀12 =𝑀6 βŠ• 𝑀6. (E.7) should be in the form 𝑀 Here the 6 isrelatedtothespacetimecontinuum(E.1),but 𝐡𝐢 𝑀 1 πœ•π‘” (π‘₯) Μƒ the 6 is displayed as a space of inner degrees of freedom. βˆ’ (4πœ‹πΊπ‘) βˆšπ‘” (π‘₯) 𝑇𝐡𝐢. (F.2) The 2 πœ•π‘₯𝐴

𝑒(πœ†,πœ‡,𝛼) =π‘‚πœ†,πœ‡ βŠ—πœŽπ›Ό (πœ†,πœ‡=1,2;𝛼=1,2,3) (E.8) Hence,wemayassigntoNewton’sgravitationalconstant𝐺𝑁 the value are basis vectors at the point 𝑝(𝜁) of 𝑀12: βŸ¨π‘‚ ,𝑂 ⟩=βˆ—π›Ώ βˆ—π›Ώ ,𝑂=𝑂 βŠ—π‘‚ , 2 πœ†,πœ‡ 𝜏,] πœ†,𝜏 πœ‡,] πœ†,πœ‡ πœ† πœ‡ 𝐺 = Γ¦ . (F.3) (E.9) 𝑁 4πœ‹ βˆ— 4 βˆ— 2 βˆ— 2 3 π‘‚πœ†,πœ‡β†β†’ 𝑅 = 𝑅 βŠ— 𝑅 ,πœŽπ›Ό ←→𝑅 , Μƒ The curvature of manifold 𝑀6 β†’ 𝑀6 is the familiar where 𝜁 = (πœ‚, 𝑒)12 βˆˆπ‘€ (πœ‚ ∈6 𝑀 and π‘’βˆˆπ‘€6).So,the decomposition (E.1),togetherwith distortion induced by the extended field components

3 3 3 3 𝑀 = 𝑅 βŠ• 𝑅 = 𝑇 βŠ• 𝑃 , 1 6 + βˆ’ π‘Ž =π‘Ž ≑ π‘Ž , (1,1,𝛼) (2,1,𝛼) √2 (+𝛼) 3 3 (E.10) (𝑇 )=(+++) , (𝑃 )=(βˆ’βˆ’βˆ’) , (F.4) sgn sgn 1 π‘Ž =π‘Ž ≑ π‘Ž . (1,2,𝛼) (2,2,𝛼) √2 (βˆ’π›Ό) holds. The 12-dimensional basis (𝑒) transforms under the distortion gauge field π‘Ž(𝜁) (𝜁12 βˆˆπ‘€ ): The other regime of ID presents at ̃𝑒=𝐷(π‘Ž) 𝑒, (E.11) 1 where the distortion matrix 𝐷(π‘Ž) reads 𝐷(π‘Ž) = 𝐢(π‘Ž), βŠ—π‘…(π‘Ž) π‘Ž(1,1,𝛼) =βˆ’π‘Ž(2,1,𝛼) ≑ π‘Ž(+𝛼), provided √2 (F.5) 1 𝑂=𝐢̃ (π‘Ž) 𝑂, 𝜎=𝑅̃ (π‘Ž) 𝜎. (E.12) π‘Ž =βˆ’π‘Ž ≑ π‘Ž . (1,2,𝛼) (2,2,𝛼) √2 (βˆ’π›Ό) The matrices 𝐢(π‘Ž) generate the group of distortion transfor- mations of the bi-pseudo-vectors: To obtain a feeling for this point we may consider physical 𝜏,] 𝜏 ] βˆ— πœβˆ— ] systems which are static as well as spherically symmetrical. 𝐢(πœ†πœ‡π›Ό) (π‘Ž) =π›Ώπœ†π›Ώπœ‡ + Γ¦π‘Ž(πœ†,πœ‡,𝛼) π›Ώπœ† π›Ώπœ‡, (E.13) We are interested in the case of a spherical-symmetric gravi- tational field π‘Ž0(π‘Ÿ) in presence of one-dimensional space-like but 𝑅(π‘Ž) ∈ 𝑆𝑂(3)πœ†πœ‡β€”the group of ordinary rotations of 3 ID-field π‘Ž: the planes involving two arbitrary bases of the spaces π‘…πœ†πœ‡ aroundtheorthogonalthirdaxes.Theanglesofrotations 1 are determined according to (E.6), but now for the extended π‘Ž =π‘Ž =π‘Ž = (βˆ’π‘Ž + π‘Ž) , (1,1,3) (2,2,3) (+3) 2 0 indices 𝐴 = (πœ†, πœ‡, 𝛼) and so forth. 1 (F.6) π‘Ž(1,2,3) =π‘Ž(2,1,3) =π‘Ž(βˆ’3) = (βˆ’π‘Ž0 βˆ’ π‘Ž) , F. Field Equations at Spherical Symmetry 2 π‘Ž =π‘Ž =0, πœ†,πœ‡=1,2. The extended field equations followed at once in terms of (πœ†,πœ‡,1) (πœ†,πœ‡,2) Euler-Lagrange variations, respectively, on the spaces 𝑀12 Μƒ and 𝑀12 [74]. In accordance, the equation of distortion gauge One can then easily determine the basis vectors (π‘’πœ†π›Ό, π‘’πœπ›½ ), π‘Ž =(π‘Ž , π‘Ž ) Μƒ field 𝐴 (πœ†π›Ό) (πœπ›½) reads where tan πœƒ(Β±3) = Γ¦(βˆ’π‘Ž0 Β± π‘Ž).Passingbackfromthe𝑀6 to 𝑉 𝐡 βˆ’1 𝐡 4, the basis vectors read πœ• πœ•π΅π‘Žπ΄ βˆ’(1βˆ’πœ0 )πœ•π΄πœ• π‘Žπ΅

1 πœ•π‘”π΅πΆ (F.1) ̃𝑒0 =𝑒0 (1 βˆ’ π‘₯0)+𝑒3π‘₯, =𝐽 =βˆ’ βˆšπ‘” 𝑇 , 𝐴 2 πœ•π‘Ž 𝐡𝐢 𝐴 ̃𝑒3 =𝑒3 (1 + π‘₯0)βˆ’π‘’03π‘₯, Journal of Astrophysics 27

1 π‘žπ‘žπ‘žπ‘ž 𝐻̃ 𝑆̃ ̃𝑒1 = {(cos πœƒ(+3) + cos πœƒ(βˆ’3))𝑒1 described by the Hamiltonian and invariant action , 2 then one has

βˆ’HTΜƒ βˆ’ΜƒS +(sin πœƒ(+3) + sin πœƒ(βˆ’3))𝑒2 ⟨ |e | ⟩=⟨∫[d휎]eΜƒ ⟩, (G.1)

Μƒ +(cos πœƒ(+3) βˆ’ cos πœƒ(βˆ’3)) 𝑒01 where 𝑇 is an imaginary time interval and [π‘‘πœŽ] is the integration over all the possible string motion. The action 𝑆̃ is 𝐴̃ +(sin πœƒ(+3) βˆ’ sin πœƒ(βˆ’3)) 𝑒02}, proportional to the area of the surface swept by the strings in the finite region of ID-region of 𝑅4. The strings are initially 1 in the -configuration and finally in the -configuration. ̃𝑒 = {( πœƒ + πœƒ )𝑒 2 2 cos (+3) cos (βˆ’3) 2 The maximal contribution to the path integral comes from the surface 𝜎0 of the minimum surface area β€œinstanton”. A βˆ’( πœƒ + πœƒ )𝑒 sin (+3) sin (βˆ’3) 1 computation of the transition amplitude is straightforward by summing over all the small vibrations around 𝜎0.Indomain +(cos πœƒ(+3) βˆ’ cos πœƒ(βˆ’3)) 𝑒02 πœŒπ‘‘ β‰€πœŒ<πœŒπ‘Žπ‘ , one has the string flip-flop regime in presence of ID, at distances 0.25 fm <π‘Ÿπ‘π‘ ≀ 0.4 fm. That is, the system 𝛽 βˆ’(sin πœƒ(+3) βˆ’ sin πœƒ(βˆ’3)) 𝑒01}, is made of quark protomatter in complete -equilibrium with rearrangement of string connections joining them. In (F.7) final domain 𝜌>πœŒπ‘Žπ‘ , the system is made of quarks where π‘₯0 ≑ Γ¦π‘Ž0, π‘₯β‰‘Γ¦π‘Ž. in one bag in complete 𝛽-equilibrium at presence of ID. The quarks are under the weak interactions and gluons, G. SPC-Configurations including the effects of QCD-perturbative interactions. The QCD vacuum has a complicated structure, which is inti- The equations describing the equilibrium SPC include the mately connected to the gluon-gluon interaction. In most gravitational and ID field equations (A.2),thehydrostatic applications, sufficient accuracy is obtained by assuming equilibrium equation, and the state equation specified for that all the quarks are almost massless inside a bag. The each domain of many layered configurations. The resulting latter is regarded as noninteracting Fermi gas found in the stable SPC is formed, which consists of the protomatter ID-region of the space-time continuum, at short distances core and the outer layers of ordinary matter. A layering of π‘Ÿπ‘π‘ ≀ 0.25 fm.Eachconfigurationisdefinedbythetwofree configurations is a consequence of the onset of different parameters of central values of particle concentration 𝑛(0)Μƒ regimes in equation of state. In the density range 𝜌< and dimensionless potential of space-like ID-field π‘₯(0).The 12 βˆ’3 int 4.54 Γ— 10 gcm ,oneusesforbothconfigurationsthe interior gravitational potential π‘₯0 (π‘Ÿ) matches the exterior ext simple semiempirical formula of state equation given by one π‘₯0 (π‘Ÿ) at the surface of the configuration. The central Harrison and Wheeler, see for example [98]. Above the value of the gravitational potential π‘₯0(0) can be found by 12 βˆ’3 density 𝜌 > 4.54 Γ— 10 gcm , for the simplicity, the I- reiterating integrations when the sewing condition of the class SPCI configuration is thought to be composed of regular interior and exterior potentials holds. The key question of n-p-e (neutron-proton-electron) gas (in absence of ID) in stability of SPC was studied in [72]. In the relativistic case 12 βˆ’3 intermediate density domain 4.54 Γ— 10 gcm β‰€πœŒ< the total mass-energy of SPC is the extremum in equilibrium πœŒπ‘‘ and of the n-p-e protomatter in presence of ID at 𝜌> forallconfigurationswiththesametotalnumberofbaryons. Μƒ πœŒπ‘‘. For the II-class SPCII configuration above the density While the extrema of 𝑀 and 𝑁 occuratthesamepointin 14 βˆ’3 πœŒπ‘“π‘™ = 4.09 Γ— 10 gcm one considers an onset of melting a one-parameter equilibrium sequence, one can look for the Μƒ Μƒ 2 down of hadrons when nuclear matter consequently turns extremum of 𝐸=𝑀𝑐 βˆ’ π‘šΜƒπ΅π‘ on equal footing. Minimizing to quark matter, found in string flip-flop regime. In domain theenergywillgivetheequilibriumconfiguration,andthe Μƒ πœŒπ‘“π‘™ β‰€πœŒ<πœŒπ‘‘, to which the distances 0.4 fm <π‘Ÿπ‘π‘ ≀ second derivative of 𝐸 will give stability information. Recall 1.6 fm correspond, one has the regular (ID is absent) string that, for spherical configurations of matter, instantaneously flip-flop regime. This is a kind of tunneling effect whenthe at rest, small radial deviations from equilibrium are governed strings joining the quarks stretch themselves violating energy by a Sturm-Liouville linear eigenvalue equation [98], with the conservation and after touching each other they switch on to imposition of suitable boundary conditions on normal modes 𝑖 𝑖 π‘–πœ”π‘‘ the other configuration71 [ ]. The basic technique adopted for with time dependence πœ‰ (π‘₯,βƒ— 𝑑) =πœ‰ (π‘₯)𝑒⃗ . A necessary and Μƒ calculation of transition matrix element 𝐾 is the instanton sufficient condition for stability is that the potential energy 𝑖 technique (semiclassical treatment). During the quantum be positive defined for all initial data of πœ‰ (π‘₯,βƒ— 0),namely, Μƒ transition from a state πœ“1 of energy 𝐸1 to another one πœ“2 in first order approximation when one does not take into Μƒ of energy 𝐸2, the lowering of energy of system takes place account the rotation and magnetic field, if the square of and the quark matter acquires Δ𝐸̃ correction to the classical frequencyofnormalmodeofsmallperturbationsispositive. string energy such that the flip-flop energy lowers the energy A relativity tends to destabilize configurations. However, of quark matter, consequently by lowering the critical density numerical integrations of the stability equations of SPC [72] or critical Fermi momentum. If one, for example, looks for give for the pressure-averaged value of the adiabatic index Μƒ the string flip-flop transition amplitude of simple system of Ξ“1 =(πœ•ln 𝑃/πœ• ln 𝜌)Μƒ 𝑠 the following values: Ξ“1 β‰ˆ 2.216 for 28 Journal of Astrophysics

the SPCI and Ξ“1 β‰ˆ 2.4 for SPCII configurations. This clearly [13] P. Natarajan, β€œThe formation and evolution of massive black proves the stability of resulting SPC. Note that the SPC is hole seeds in the early Universe,”in FluidFlowstoBlackHoles:A always found inside the event horizon sphere, and therefore Tribute to S Chandrasekhar on His Birth Centenary,D.J.Saikia, itcouldbeobservedonlyinpresenceofaccretingmatter. Ed., pp. 191–206, World Scientific, 2011. [14] E. Treister and C. M. Urry, β€œThe cosmic history of black hole growth from deep multiwavelength surveys,” Advances in Conflict of Interests Astronomy,vol.2012,ArticleID516193,21pages,2012. The author declares that there is no conflict of interests [15]E.Treister,K.Schawinski,M.Volonteri,P.Natarajan,and E. Gawiser, β€œBlack hole growth in the early Universe is self- regarding the publication of this paper. regulated and largely hidden from view,” Nature,vol.474,no. 7351, pp. 356–358, 2011. Acknowledgment [16] C. J. Willott, L. Albert, D. Arzoumanian et al., β€œEddington- limited accretion and the black hole mass function at redshift The very helpful and knowledgable comments from the 6,” Astronomical Journal,vol.140,no.2,pp.546–560,2010. anonymous referee which have essentially clarified the paper [17]V.BrommandA.Loeb,β€œFormationofthefirstsupermassive are much appreciated. black holes,” Astrophysical Journal Letters,vol.596,no.1,pp.34– 46, 2003. References [18] B. Devecchi and M. Volonteri, β€œFormation of the first nuclear clusters and massive black holes at high redshift,” Astrophysical [1] J. A. Orosz, β€œInventory of black hole binaries,” in Proceedings of Journal Letters,vol.694,no.1,pp.302–313,2009. the International Astronomical Union Symposium (IAU ’03),K. [19]A.J.Barger,L.L.Cowie,R.F.Mushotzkyetal.,β€œThecosmic van der Hucht, A. Herrero, and C. Esteban, Eds., vol. 212, 2003. evolution of hard X-ray-selected active galactic nuclei,” Astro- [2] D. Lynden-Bell, β€œGalactic nuclei as collapsed old quasars,” nomical Journal, vol. 129, no. 2, pp. 578–609, 2005. Nature,vol.223,no.5207,pp.690–694,1969. [20] S. M. Croom, G. T. Richards, T. Shanks et al., β€œThe 2dF-SDSS 0.4 < [3]T.R.Lauer,S.M.Faber,D.Richstoneetal.,β€œThemasses LRG and QSO survey: the QSO luminosity function at 𝑧 < 2.6 of nuclear black holes in luminous elliptical galaxies and ,” MNRAS,vol.399,no.4,pp.1755–1772,2009. implications for the space density of the most massive black [21]Y.Ueda,M.Akiyama,K.Ohta,andT.Miyaji,β€œCosmological holes,” Astrophysical Journal Letters,vol.662,no.2I,pp.808– evolution of the hard X-ray active galactic nucleus luminosity 834, 2007. function and the origin of the hard X-ray background,” The [4] M. Volonteri, β€œFormation of supermassive black holes,” Astron- Astrophysical Journal Letters,vol.598,no.2I,pp.886–908,2003. omy and Astrophysics Review,vol.18,no.3,pp.279–315,2010. [22]D.R.Ballantyne,A.R.Draper,K.K.Madsen,J.R.Rigby,andE. [5]J.WooandC.M.Urry,β€œActivegalacticnucleusblackhole Treister, β€œLifting the veil on obscured accretion: active galactic masses and bolometric luminosities,” Astrophysical Journal nuclei number counts and survey strategies for imaging hard Letters,vol.579,no.2,pp.530–544,2002. X-ray missions,” Astrophysical Journal,vol.736,article56,no.1, 2011. [6] E. Treister, P. Natarajan, D. B. Sanders, C. Megan Urry, K. Schawinski, and J. Kartaltepe, β€œMajor galaxy mergers and the [23] T. Takahashi, K. Mitsuda, R. Kelley et al., β€œThe ASTRO-H growth of supermassive black holes in quasars,” Science,vol.328, mission,” in Space Telescopes and Instrumentation 2010: Ultra- no. 5978, pp. 600–602, 2010. violet to Gamma Ray, 77320Z, M. Arnaud, S. S. Murray, and T. Takahashi, Eds., vol. 7732 of Proceedings of SPIE,SanDiego, [7] A. J. Davis and P. Natarajan, β€œAngular momentum and cluster- Calif, USA, June 2010. ing properties of early dark matter haloes,” Monthly Notices of the Royal Astronomical Society, vol. 393, no. 4, pp. 1498–1502, [24] L. Yao, E. R. Seaquist, N. Kuno, and L. Dunne, β€œCO molecular 2009. gas in infrared-luminous galaxies,” Astrophysical Journal Letters, vol.588,no.2I,pp.771–791,2003. [8] M. Vestergaard, β€œEarly growth and efficient accretion of massive black holes at high redshift,” Astrophysical Journal Letters,vol. [25] A. Castellina and F. Donato, β€œAstrophysics of galactic charged 601,no.2I,pp.676–691,2004. cosmic rays,” in Planets, Stars and Stellar Systems,T.D.Oswalt and G. Gilmore, Eds., vol. 5 of Galactic Structure and Stellar [9] M. Volonteri, G. Lodato, and P. Natarajan, β€œThe evolution Populations, pp. 725–788, 2011. of massive black hole seeds,” Monthly Notices of the Royal Astronomical Society, vol. 383, no. 3, pp. 1079–1088, 2008. [26] A. Letessier-Selvon and T. Stanev, β€œUltrahigh energy cosmic rays,” ReviewsofModernPhysics,vol.83,no.3,pp.907–942,2011. [10] M. Volonteri and P.Natarajan, β€œJourney to the MBH-𝜎 relation: the fate of low-mass black holes in the universe,” Monthly [27] G. Sigl, β€œHigh energy neutrinos and cosmic rays,” http://arxiv Notices of the Royal Astronomical Society,vol.400,no.4,pp. .org/abs/1202.0466. 1911–1918, 2009. [28]K.Kotera,D.Allard,andA.V.Olinto,β€œCosmogenicneutrinos: [11] F. Shankar, D. H. Weinberg, and J. Miralda-Escude,Β΄ β€œSelf- parameter space and detectabilty from PeV to ZeV,” Journal of consistent models of the AGN and black hole populations: Cosmology and Astroparticle Physics,vol.2010,article013,2010. duty cycles, accretion rates, and the mean radiative efficiency,” [29] D. Semikoz, β€œHigh-energy astroparticle physics,” CERN Yellow Astrophysical Journal Letters,vol.690,no.1,pp.20–41,2009. Report CERN-2010-001, 2010. [12] B. C. Kelly, M. Vestergaard, X. Fan, P. Hopkins, L. Hernquist, [30] J. Linsley, β€œPrimary cosmic-rays of energy 1017 to 1020 ev, the and A. Siemiginowska, β€œConstraints on black hole growth, energy spectrum and arrival directions,” in Proceedings of the quasar lifetimes, and Eddington ratio distributions from the 8th International Cosmic Ray Conference,vol.4,p.77,1963. SDSS broad-line quasar black hole mass function,” Astrophysical [31] N. Hayashida, K. Honda, M. Honda et al., β€œObservation of a very Journal Letters,vol.719,no.2,pp.1315–1334,2010. energetic cosmic ray well beyond the predicted 2.7 K cutoff in Journal of Astrophysics 29

the primary energy spectrum,” Physical Review Letters,vol.73, [48] O. E. Kalashev, V. A. Kuzmin, D. V. Semikoz, and G. Sigl, no.26,pp.3491–3494,1994. β€œUltrahigh-energy neutrino fluxes and their constraints,” Phys- [32]D.J.Bird,S.C.Corbato,Β΄ H. Y. Dai et al., β€œDetection of a cosmic ical Review D,vol.66,no.6,ArticleID063004,2002. raywithmeasuredenergywellbeyondtheexpectedspectral [49] O. E. Kalashev, V.A. Kuzmin, D. V.Semikoz, and G. Sigl, β€œUltra- cutoff due to cosmic microwave radiation,” Astrophysical Jour- high energy cosmic rays from neutrino emitting acceleration nal Letters,vol.441,no.1,pp.144–150,1995. sources?” Physical Review D,vol.65,no.10,ArticleID103003, [33] K. Greisen, β€œEnd to the cosmic-ray spectrum?” Physical Review 2002. Letters,vol.16,no.17,pp.748–750,1966. [50] A. Y. Neronov and D. V. Semikoz, β€œWhich blazars are neutrino [34] G. T. Zatsepin and V. A. Kuz’min, β€œUpper limit of the spectrum loud?” Physical Review D,vol.66,no.12,ArticleID123003, of cosmic rays,” Journal of Experimental and Theoretical Physics 2002. Letters,vol.4,pp.78–80,1966. [51] P. Jain and S. Panda, β€œUltra high energy cosmic rays from early [35]R.Abbasi,Y.Abdou,T.Abu-Zayyadetal.,β€œTime-integrated decaying primordial black holes,” in Proceedings of the 29th searches for point-like sources of neutrinos with the 40-string International Cosmic Ray Conference,B.SripathiAcharya,Ed., IceCube detector,” The Astrophysical Journal,vol.732,no.1, vol.9,pp.33–36,TataInstituteofFundamentalResearch,Pune, article 18, 2011. India, 2005. [52] T. K. Gaisser, F. Halzen, and T. Stanev, β€œParticle astrophysics [36] J. Abraham, β€œObservation of the suppression of the flux of with high energy neutrinos,” Physics Report,vol.258,no.3,pp. cosmic rays above 4m1019 eV,” Physical Review Letters,vol.101, 173–236, 1995. no. 6, Article ID 061101, 2008. [53] J. Alvarez-Muniz˜ and F. Halzen, β€œPossible high-energy neutri- [37] R. J. Protheroe and T. Stanev, β€œLimits on models of the ultrahigh nos from the cosmic accelerator RX J1713.7-3946,” Astrophysical energy cosmic rays based on topological defects,” Physical Journal Letters,vol.576,no.1,pp.L33–L36,2002. Review Letters,vol.77,no.18,pp.3708–3711,1996. [54] P. S. Coppi and F. A. Aharonian, β€œConstraints on the very high [38] D. Fargion, β€œUltrahigh energy neutrino scattering onto relic energy emissivity of the universe from the diffuse GeV gamma- light neutrinos in galactic halo as a possible source of highest ray background,” Astrophysical Journal Letters,vol.487,no.1,pp. extragalactic cosmic rays,” in Proceedings of the 25th Inter- L9–L12, 1997. national Cosmic Ray Conference (Held July-August, 1997 in [55] D. Eichler, β€œHigh-energy neutrino astronomyβ€”a probe of Durban, South Africa),M.S.Potgieter,C.Raubenheimer,and galactic nuclei,” The Astrophysical Journal,vol.232,pp.106–112, D.J.vanderWalt,Eds.,vol.7,pp.153–156,Potchefstroom 1979. University,Transvaal,SouthAfrica,1997. [56] F. Halzen and E. Zas, β€œNeutrino fluxes from active galaxies: a [39] D. Fargion, B. Mele, and A. Salis, β€œUltra-high-energy neutrino model-independent estimate,” Astrophysical Journal Letters,vol. scattering onto relic light neutrinos in the galactic halo as a 488, no. 2, pp. 669–674, 1997. possible source of the highest energy extragalactic cosmic rays,” [57] S. Adrian-Martinez, I. Al Samarai, A. Albert et al., β€œMeasure- The Astrophysical Journal,vol.517,no.2,pp.725–733,1999. ment of atmospheric neutrino oscillations with the ANTARES [40] D. Fargion, B. Mele, and A. Salis, β€œUltrahigh energy neutrino neutrino tele-scope,” Physics Letters B,vol.714,no.2–5,pp.224– scattering onto relic light neutrinos in galactic halo as a possible 230, 2012. source of highest energy extragalactic cosmic,” Astrophysical [58] S. Adrian-MartΒ΄ Β΄Δ±nez, J. A. Aguilar, I. Al Samarai et al., β€œFirst Journal,vol.517,pp.725–733,1999. search for point sources of high energy cosmic neutrinos with [41] T. J. Weiler, β€œCosmic-ray neutrino annihilation on relic neutri- the ANTARES neutrino telescope,” The Astrophysical Journal nos revisited: a mechanism for generating air showers above the Letters,vol.743,no.1,articleL14,2011. Greisen-Zatsepin-Kuzmin cutoff,” Astroparticle Physics, vol. 11, [59] M. G. Aartsen, R. Abbasi, Y. Abdou et al., β€œMeasurement no. 3, pp. 303–316, 1999. of atmospheric neutrino oscillations with Ice-Cube,” Physical [42] T. J. Weiler, β€œCosmic-ray neutrino annihilation on relic neutri- Review Letters, vol. 111, no. 8, Article ID 081801, 2013. nos revisited: a mechanism for generating air showers above the [60] M. G. Aartsen, R. Abbasi, Y. Abdou et al., β€œFirst observation Greisen-Zatsepin-Kuzmin cutoff,” Astroparticle Physics, vol. 11, of PeV-energy neutrinos with IceCube,” Physical Review Letters, no. 3, pp. 303–316, 1999. vol. 111, Article ID 021103, 2013. [43] V. K. Dubrovich, D. Fargion, and M. Y. Khlopov, β€œPrimordial [61] M. G. Aartsen, β€œEvidence for high-energy extraterrestrial neu- bound systems of superheavy particles as the source of ultra- trinos at the IceCube detector,” Science,vol.342,no.6161,Article high energy cosmic rays,” Nuclear Physics Bβ€”Proceedings Sup- ID 1242856, 2013. plements,vol.136,no.1–3,pp.362–367,2004. [62] C. Kopper and IceCube Collabotration, β€œObservation of PeV [44] A. Datta, D. Fargion, and B. Mele, β€œSupersymmetryβ€”neutrino neutrinos in IceCube,” in Proceedings of the IceCube Particle unbound,” Journal of High Energy Physics, 0509:007, 2005. Astrophysics Symposium (IPA '13), Madison, Wis, USA, May [45] S. Yoshida, G. Sigl, and S. Lee, β€œExtremely high energy neutri- 2013, http://wipac.wisc.edu/meetings/home/IPA2013. nos, neutrino hot dark matter, and the highest energy cosmic [63] N. Kurahashi-Neilson, β€œSpatial clustering analysis of the very rays,” Physical Review Letters,vol.81,no.25,pp.5505–5508, high energy neutrinos in icecube,” in Proceedings of the IceCube 1998. Particle Astrophysics Symposium (IPA ’13), IceCube Collabora- [46] A. Ringwald, β€œPossible detection of relic neutrinos and their tion, Madison, Wis, USA, May 2013. mass,” in Proceedings of the 27th International Cosmic Ray Con- [64] N. Whitehorn and IceCube Collabotration, β€œResults from ference, R. Schlickeiser, Ed., Invited, Rapporteur, and Highlight IceCube,” in Proceedings of the IceCube Particle Astrophysics Papers,p.262,Hamburg,Germany,August2001. Symposium (IPA '13), Madison, Wis, USA, May 2013. [47] Z. Fodor, S. D. Katz, and A. Ringwald, β€œRelic neutrino masses [65] A. V. Avrorin, V. M. Aynutdinov, V. A. Balkanov et al., β€œSearch and the highest energy cosmic-rays,” JournalofHighEnergy for high-energy neutrinos in the Baikal neutrino experiment,” Physics,2002. Astronomy Letters,vol.35,no.10,pp.651–662,2009. 30 Journal of Astrophysics

[66] T. Abu-Zayyad, R. Aida, M. Allen et al., β€œThe cosmic-ray energy [87] S. Weinberg, Brandeis Lectures, MIT Press, Cambridge, Mass, spectrum observed with the surface detector of the tele-scope USA, 1970. array experiment,” The Astrophysical Journal Letters,vol.768, [88] A. Salam and J. Strathdee, β€œNonlinear realizations: II. Confor- no. 1, 5 pages, 2013. mal symmetry,” Physical Review,vol.184,pp.1760–1768,1969. [67] P. Abreu, M. Aglietta, M. Ahlers et al., β€œLarge-scale distribution 18 [89] C. J. Isham, A. Salam, and J. Strathdee, β€œNonlinear realizations of arrival directions of cosmic rays detected above 10 eV at the of space-time symmetries. Scalar and tensor gravity,” Annals of pierre auger observatory,” The Astrophysical Journal Supplement Physics,vol.62,pp.98–119,1971. Series,vol.203,no.2,p.20,2012. [90] D. V.Volkov, β€œPhenomenological lagrangians,” Soviet Journal of [68] β€œA search for point sources of EeV neutrons,” The Astrophysical Particles and Nuclei,vol.4,pp.1–17,1973. Journal,vol.760,no.2,ArticleID148,11pages,2012. [91] V. I. Ogievetsky, β€œNonlinear realizations of internal and space- [69] T. Ebisuzaki, Y. Takahashi, F. Kajino et al., β€œThe JEM-EUSO time symmetries,” in Proceedings of 10th Winter School of mission to explore the extreme Universe,” in Proceedings of the Theoretical Physics in Karpacz,vol.1,p.117,Wroclaw,Poland, 7thToursSymposiumonNuclearPhysicsandAstrophysics,vol. 1974. 1238, pp. 369–376, Kobe, Japan, November 2009. [92] V. de Sabbata and M. Gasperini, β€œIntroduction to gravitation,” [70] K. Murase, M. Ahlers, and B. C. Lacki, β€œTesting the hadronu- in Unified Field Theories of more than Four Dimensions,V. clear origin of PeV neutrinos observed with IceCube,” Physical de Sabbata and E. Schmutzer, Eds., p. 152, World Scientific, Review D, vol. 88, Article ID 121301(R), 2013. Singapore, 1985. [71] G. Ter-Kazarian, β€œProtomatter and EHE C.R,” Journal of the [93] V. de Sabbata and M. Gasperini, β€œOn the Maxwell equations in Physical Society of Japan B, vol. 70, pp. 84–98, 2001. a Riemann-Cartan space,” Physics Letters A,vol.77,no.5,pp. [72] G. Ter-Kazarian, S. Shidhani, and L. Sargsyan, β€œNeutrino radi- 300–302, 1980. ation of the AGN black holes,” Astrophysics and Space Science, [94] V. de Sabbata and C. Sivaram, Spin and Torsion in Gravitation, vol.310,no.1-2,pp.93–110,2007. World Scientific, Singapore, 1994. [73] G. Ter-Kazarian and L. Sargsyan, β€œSignature of plausible accret- [95] N. J. Poplawski, β€œSpacetime and fields,” http://arxiv.org/abs/ ing supermassive black holes in Mrk 261/262 and Mrk 266,” 0911.0334. Advances in Astronomy,vol.2013,ArticleID710906,12pages, 2013. [96] A. Trautman, β€œOn the structure of the Einstein-Cartan equa- tions,” in Differential Geometry,vol.12ofSymposia Mathemat- [74] G. T. Ter-Kazarian, β€œGravitation and inertia; a rearrangement of ica, pp. 139–162, Academic Press, London, UK, 1973. vacuum in gravity,” Astrophysics and Space Science,vol.327,no. 1, pp. 91–109, 2010. [97]J.-P.Francoise,G.L.Naber,andS.T.Tsou,Eds.,Encyclopedia of Mathematical Physics,Elsevier,Oxford,UK,2006. [75] G. Ter-Kazarian, β€œUltra-high energy neutrino fluxes from supermassive AGN black holes,” Astrophysics & Space Science, [98] S. L. Shapiro and S. A. Teukolsky, Black Holes, White Dwarfs, vol.349,pp.919–938,2014. and Neutron Stars, A Wiley-Intercience Publication, Wiley- [76] G. T. Ter-Kazarian, β€œGravitation gauge group,” Il Nuovo Intercience, New York, NY, USA, 1983. Cimento,vol.112,no.6,pp.825–838,1997. [77] A. Neronov, D. Semikoz, F. Aharonian, and O. Kalashev, β€œLarge- scale extragalactic jets powered by very-high-energy gamma rays,” Physical Review Letters,vol.89,no.5,pp.1–4,2002. [78] T. Eguchi, P. B. Gilkey, and A. J. Hanson, β€œGravitation, gauge theories and differential geometry,” Physics Reports C,vol.66, no. 6, pp. 213–393, 1980. [79] S. Kobayashi and K. Nomizu, Foundations of Differential Geom- etry, Interscience Publishers, New York, NY, USA, 1963. [80] J. Plebanski, β€œForms and riemannian geometry,” in Proceedings of the International School of Cosmology and Gravitation,Erice, Italy, 1972. [81] A. Trautman, Differential Geometry for Physicists,vol.2of Monographs and Textbooks in Physical Science,Bibliopolis, Naples,Fla,USA,1984. [82] G. Ter-Kazarian, β€œTwo-step spacetime deformation induced dynamical torsion,” Classical and Quantum Gravity,vol.28,no. 5, Article ID 055003, 2011. [83] L. S. Pontryagin, Continous Groups,Nauka,Moscow,Russia, 1984. [84] B. A. Dubrovin, Contemporary Geometry,Nauka,Moscow, Russia, 1986. [85] S. Coleman, J. Wess, and B. Zumino, β€œStructure of phenomeno- logical lagrangians. I,” Physical Review,vol.177,no.5,pp.2239– 2247, 1969. [86] C. G. Callan, S. Coleman, J. Wess, and B. Zumino, β€œStructure of phenomenological lagrangians. II,” Physical Review,vol.177,no. 5, pp. 2247–2250, 1969. Journal of Journal of The Scientific Journal of Advances in Gravity Photonics World Journal Soft Matter Condensed Matter Physics Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014

Journal of Aerodynamics

Journal of Fluids Hindawi Publishing Corporation Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014

Submit your manuscripts at http://www.hindawi.com

International Journal of International Journal of Statistical Mechanics Optics Hindawi Publishing Corporation Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014

Journal of Thermodynamics

Journal of Computational Advances in Physics Advances in Methods in Physics High Energy Physics Research International Astronomy Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014

Journal of Journal of Journal of International Journal of Journal of Atomic and Solid State Physics Astrophysics Superconductivity Biophysics Molecular Physics Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation Hindawi Publishing Corporation http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014 http://www.hindawi.com Volume 2014