<<

Singlet physics the missing link to precision lattice QCD

Karl Jansen

Introduction: and • Gluons at work: • – The (mysterious) mass of the η0-meson – How much does the know about the strange ? Conclusion • The of elementary particle interaction

with the (most likely) discovery of the Higgs boson the standard model is complete

1 Quark- sector of the standard model Quarks are the fundamental constituents of nuclear

Friedman and Kendall, 1972)

2 independent of 2 f(x, Q ) x 0.25,Q2>10GeV Q ≈ (x momentum of quarks, Q2 momentum transfer)

Interpretation (Feynman): scattering on single quarks in a (Bjorken) scaling →

2 Quantum Fluctuations and the Quark Picture analysis in perturbation theory

 2  2 2  2 3 R 1 dxf(x, Q2) = 3 1 αs(Q ) a(n ) αs(Q ) b(n ) αs(Q ) 0 − π − f π − f π

– a(nf ), b(nf ) calculable coefficients deviations from scaling determination of strong coupling →

3 The discovery of the gluon

Feynman diagram for 3 gluon decay 3-jet event at Jade-detector each gluon generates a jet DESY (1978)

4 Why Perturbation Theory fails for the

situation becomes • incredibly complicated

value of the coupling • (expansion parameter) α (1fm) 1 strong ≈

need different (“exact”) method ⇒ has to be non-perturbative ⇒

Wilson’s Proposal (1974): Lattice

5 Schwinger model: 2-dimensional (Schwinger 1962) via Feynman path integral

R Sgauge S = A Ψ Ψ¯ e− − ferm Z D µD D

R 2 Sferm = d xΨ(¯ x)[Dµ + m] Ψ(x) gauge covriant derivative

D Ψ(x) (∂ ig A (x))Ψ(x) µ ≡ µ − 0 µ with Aµ gauge potential, g0 bare coupling

S = R d2xF F ,F (x) = ∂ A (x) ∂ A (x) gauge µν µν µν µ ν − ν µ equations of motion: obtain classical Maxwell equations

6 Lattice Schwinger model introduce a 2-dimensional lattice with lattice spacing a

fields Ψ(x), Ψ(¯ x) on the lattice sites x = (t, x) integers discretized fermion action

2 P ¯ 2 S a x Ψ[γµ∂µ r ∂µ +m] Ψ(x) → − |{z} µ ∇∗µ∇ 1   ∂ = ∗ + µ 2 ∇µ ∇µ discrete derivatives

1 1 Ψ(x) = [Ψ(x + aµˆ) Ψ(x)] , ∗ Ψ(x) = [Ψ(x) Ψ(x aµˆ)] ∇µ a − ∇µ a − − second order derivative remove doubler break chiral → ←

7 Implementing gauge invariance

Wilson’s fundamental observation: introduce Paralleltransporter connecting the points x and y = x + aµˆ :

U(x, µ) = eiaAµ(x) U(1) ∈ lattice derivative: Ψ(x) = 1 [U(x, µ)Ψ(x + µ) Ψ(x)] ⇒ ∇µ a −

ψ

Uµ Up = U(x, µ)U(x + µ, ν)U †(x + ν, µ)U †(x, ν) s F F µν(x) for a 0 U µν P → →

S = a2 P β 1 Re(U ) + ψ¯ m + 1 γ ( + ? ) a ?  ψ x − (x,p) 0 2{ µ ∇µ ∇µ − ∇µ∇µ} Partition functions (pathintegral) with Boltzmann weight (action) S

R S = e− Z fields

8 Physical Observables expectation value of physical observables O Z 1 S = e− hOi Z fields O | {z } lattice discretization ↓ 01011100011100011110011

9 Composition of mesons and

Pion Proton representation

(A) Quenched QCD: no internal quark loops

(B) full QCD

10 An unexpectedly large mass

meson composition approx. mass K0 d + s 498MeV K+ u + s 494MeV K− u + s 494MeV η u + u + s 548MeV η0 u + d + s 958MeV naively: derive masses of η and η0 from quark-content of K’s m 5MeV, m 100MeV u,d ≈ s ≈ side remark: m m binding energy! meson  quark → expectation

m m m + 2 m 500MeV η ≈ η0 ≈ K · u ≈ find MeV mη0 = 958 clear contradiction →

11 Topology

Veneziano-Witten relation relation of flavour singlet η0 mass to topological susceptibility

2 fπ 2 2 2 YM (mη + m 2m ) = χtop 2Nf η0 − K YM 2 χtop = Qtopo

Qtopo topological charge in pure gluonic theory think of topological defect →

12 Topological charge topological defect in crystals (screens)

defect (schematically) defect (observed) spin vortex

vortex in spin models • topological charge in QCD • related to homotopy group of the n sphere • (principle bundle) −

13 Singlet, dis-connected contributions

η0 is singlet state

ℓ¯ s¯ meson with quark interaction • ℓ s

ℓ ℓℓ s

pure gluon interaction •

s ℓs s test of gluons at work •

t t′ t t′

14 Practical usage: application for Nf = 2 + 1 + 1 maximally twisted mass

Ensemble β lattice a [fm] aµl µl [MeV] κc L [fm] A30.32 1.90 323 64 0.086 0.003 13 0.163272 2.75 A50.32 1.90 323 × 64 0.086 0.005 22 0.163267 2.75 A60.24 1.90 243 × 48 0.086 0.006 26 0.163265 2 B25.32 1.95 323 × 64 0.078 0.0025 13 0.161240 2.5 B35.32 1.95 323 × 64 0.078 0.0035 18 0.161240 2.5 B55.32 1.95 323 × 64 0.078 0.0055 28 0.1612360 2.5 B75.32 1.95 323 × 64 0.078 0.0075 38 0.1612320 2.5 B85.24 1.95 243 × 48 0.078 0.0085 45 0.1612312 2.0 D15.48 2.1 483 × 96 0.0612 0.0015 9 0.156361 3.0 D20.48 2.1 483 × 96 0.0612 0.0020 12 0.156357 3.0 D30.48 2.1 483 × 96 0.0612 0.0030 19 0.156355 3.0 D45.32 2.1 483 × 96 0.0612 0.0045 28 0.156315 2.0 × ensembles are freely available on ILDG

15 The left-hand side: meson masses (Ottnad, Michael, Reker, Urbach)

3

2.5

2 ′

η,η 1.5 M 0 r

1

0.5 A-ensembles B-ensembles D-ensembles extrapolation 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 2 (r0MPS)

chiral extrapolation continuum extrapolation

η0 mass noisy but non-zero •

can obtain η and η0 masses •

16 The right-hand side: topological susceptibility (Garcia Ramos, Cichy, K.J.)

4 r0χ =0.050(8) 0.06 ∞ dedicated quenched effort 0.05 • learn about continuum limit of χtop 0.04 • ∞ χ 4 0

r 0.03

0.02

0.01

0 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 2 (a/r0) consistent with O(a2) continuum limit scaling • have both sides of Veneziano-Witten relation in the continuum limit •

17 Veneziano-Witten relation

relation of flavour singlet mass to quenched topological susceptibility •

2 fπ 2 2 2 YM (mη + m 2m ) = χtop 2Nf η0 − K

formula needs limit: N /N 0 • f c → Hence, test in full QCD (N = 4,N = 3) in non-trivial • f c obtain (preliminary) (M = 497.648(22)MeV, f = 130.41(4)MeV) input • K π

amη [MeV] amη0 [MeV] χYM 551(8) 1001(55) (187(7)MeV)4

2 (afπ) 2 2 2 4 ((amη) + (amη ) 2(amK) ) = (184(6)MeV) 4Nf 0 − find very nice agreement →

18 The content of the (Alexandrou, Constantinou, Drach, Dinter, Frezzotti, Herdoiza, Koutsou, Rossi, Vaquero, K.J.)

neutralino in supersymmetric models candidate for dark matter • interaction with nucleon most strongly through the strange quark content • via the Higgs boson exchange diagram χ χ

H

N N spin independend cross section:

P N qq¯ N σSI h | | i ; q = u, d, s, c ∝ q mN cross section proportional to quark content ⇒ Study here: strange quark content N ss¯ N h | | i

19 The problem spin independent cross section also strongly dependend on pion-nucleon sigma term σ m N uu¯ + dd¯ N πN ≡ lh | | i

Varying 48MeV < ΣπN < 80MeV cross section changes by an order of magnitude ⇒ 2 N ss¯ N connected to parameter h | | i ΣπN yN yN = N uu¯ N + N dd¯ N h | | i h | | i relation: y = 1 σ /Σ N − 0 πN σ = m N uu¯ + dd¯ 2¯ss N , m = (m + m )/2 0 qh | − | i q u d from effective field theory (χPT):

GLS GWU AMO yN = 0.20(21), yN = 0.44(13), yN = 0.39(14) (GLS: Gasser et.al. (1991), GWU: Pavan et.al. (2002), AMO: Alarcon et.al. (2012))

either compatible with zero or quite large large cross-section → →

20 The dis-connected (singlet) contribution

top

top tsrc t tsrc t

connected dis-connected

connected contribution can be computed precisely • dis-connected only interact via gluons • strange quark content only dis-connected contributions • need a huge (unrealistic) statistics → lattice calculation of strange quark content very difficult ⇒ another example of gluons at work • our setup: avoids mixing in

21 Twisted mass fermions: special noise reduction technique

twisted mass noise reduction Hopping parameter expansion

( 107264 correlators analyzed) employed a huge O(100 000) measurements • (typical: 1000 measurements)

plateau of R(ts, t) yN ,t) [bare]

s t

• ∝ R( hopping parameter expansion already • better than straightforward calculation

0.0 0.2 0.4 0.6 0.8 1.0 substantially reduced error 0 2 4 6 8 10 12 14 • top /a

22 Twisted mass fermions: special noise reduction technique

Hopping parameter expansion twisted mass noise reduction

5σ limit

) signal/error for strange quark content 6 =

0 • t (

dR N number of configurations used ) 6

= • 0 t ( R

1σ limit 0 1 2 3 4 5 6

0 100 200 300 400 500 600 700 N typical statistics normally N 100 200 • ≈ − standard calculation very (too?) difficult • using techniques for twisted mass fermions • can obtain a signal with reasonable statistics →

23 Chiral extrapolation of yN

0.25 a = 0.062 fm ts ≈ 1.1 fm L = 2.98 fm a = 0.062 fm ts ≈ 1.1 fm L = 1.98 fm = ≈ = a 0.078 fm ts 0.94 fm L 2.5 fm result: yN = 0.099(12)(52)(22)(9) 0.20 = ≈ = a 0.078 fm ts 1.25 fm L 2.5 fm • + 2 fit : A B mPS fit : A + B m2 + C m4 errors: (statistical)(chiral)(excited)(discretization) 0.15 PS PS • N y obtain: yN = 0.099(58) 0.10 • lattice result with all 0.05 • systematic errors included

0.00 0.00 0.05 0.10 0.15 0.20 0.25 0.30 2 2 mPS [GeV ]

– chiral extrapolation error dominates need physical point → – value significantly smaller than from effective field theory

– Higgs-boson Wimp cross-section might be unexpectedly small

24 Impact of yN on σ-terms

y = 1 σ /Σ • N − 0 πN

our result constraints strange quark content σ = N ss¯ N • s h | | i

25 Summary

Showed two examples of gluons at work • – the mass of the η0 meson – the strange quark content of the nucleon results became possible through • – special twisted mass noise reduction techniques – improved renormalization pattern

allowed to test the fundamental Veneziano-Witten relation • calculation of dis-connected diagrams for other observables in sight • Prace project has been extremely helpful •

26