Inventing-Around Edison's Incandescent Lamp Patent
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Indoor Lighting Design Guide
CSU Office of the Chancellor Indoor Lighting Design Guide Indoor Lighting Design Guide Rev: 12/12/18 CSU Office of the Chancellor Indoor Lighting Design Guide ACKNOWLEDGEMENT The California State University (CSU) gratefully acknowledges the effort and work of Jai Agaram, John Andary, Douglas Effenberger, Kent Peterson, Steven Strauss, and Steve Taylor. Comments or inquiries may be directed to: The California State University Office of the Chancellor Capital Planning Design and Construction Long Beach, California Attention: Thomas Kennedy, Chief Architecture and Engineering Telephone: (562) 951-4129 E-mail: [email protected] CSU Office of the Chancellor Indoor Lighting Design Guide TABLE OF CONTENTS EXECUTIVE SUMMARY .......................................................................................................................................................... 1 SECTION 1: INTRODUCTION ............................................................................................................................................ 2 CSU POLICY .................................................................................................................................................................................. 2 DEFINITIONS .................................................................................................................................................................................. 2 UTILITY INCENTIVES ....................................................................................................................................................................... -
2014 10 Spectrum
Contents | Zoom in | Zoom outFor navigation instructions please click here Search Issue | Next Page IBM’S “BRAIN CHIP” NEARLY PERFECT A SHADOWY CARTEL GOOGLECAR'S BLINKS INTO BEING ATOMIC CLOCKS RULED THE LIGHT DRIVING TEST It’s a stamp-size One second off The long legacy of We've got the supercomputer in 14 billion years the Phoebus cartel details online at P. 13 P. 36 P. 50 SPECTRUM.IEEE.ORG____________ FOR THE TECHNOLOGY INSIDER | 10.14 Why Voice Quality Stinks… And Why It Doesn’t Have To P. 30 Contents | Zoom in | Zoom outFor navigation instructions please click here Search Issue | Next Page qM qMqM Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page qMqM Qmags THE WORLD’S NEWSSTAND® NOW AVAILABLE comsol.com/release/5.0 FROM MODEL TO APP The Application Builder provides you with Verify and Optimize your Designs with tools to easily design a custom interface for your multiphysics models. Use ® COMSOL Server to distribute your apps to COMSOL Multiphysics colleagues and customers worldwide. Visit comsol.com/release/5.0 NOW FEATURING THE APPLICATION BUILDER PRODUCT SUITE COMSOL Multiphysics COMSOL Server ELECTRICAL FLUID MULTIPURPOSE INTERFACING AC/DC Module CFD Module Optimization Module LiveLink™ for MATLAB® RF Module Mixer Module Material Library LiveLink™ for Excel® Wave Optics Module Microfl uidics Module Particle Tracing Module CAD Import Module Ray Optics Module Subsurface Flow Module Design Module MEMS Module Pipe Flow Module ECAD Import Module Plasma Module Molecular Flow Module LiveLink™ for -
Flashlight Ebook
FLASHLIGHT PDF, EPUB, EBOOK Lizi Boyd | 40 pages | 12 Aug 2014 | CHRONICLE BOOKS | 9781452118949 | English | California, United States Flashlight PDF Book App Store Preview. The source of the light often used to be an incandescent light bulb lamp but has been gradually replaced by light-emitting diodes LEDs since the mids. Some models of flashlight include an acceleration sensor to allow them to respond to shaking, or to select modes based on what direction the light is held when switched on. LED flashlights were made in the early s. Perf Power. This was the first battery suitable for portable electrical devices, as it did not spill or break easily and worked in any orientation. CS1 maint: archived copy as title link U. Water resistance, if specified, is evaluated after impact testing; no water is to be visible inside the unit and it must remain functional. The standard described only incandescent lamp flashlights and was withdrawn in Colored light is occasionally useful for hunters tracking wounded game after dusk, or for forensic examination of an area. Solar powered flashlights use energy from a solar cell to charge an on-board battery for later use. Remove All. Don't feel overwhelmed with our surplus of options. Retailer Walmart. Anodized Aluminum. A flashlight may have a red LED intended to preserve dark adaptation of vision. Price Free. And it even goes with a compass, giving you the direction in the darkness. Lanterns Lanterns. The working distance is from the point of view of the user of the flashlight. An IP X8 rating by FL1 does not imply that the lamp is suitable for use as a diver's light since the test protocol examines function of the light only after immersion, not during immersion. -
Electric Light Pdf, Epub, Ebook
ELECTRIC LIGHT PDF, EPUB, EBOOK Seamus Heaney | 96 pages | 19 Mar 2001 | FABER & FABER | 9780571207985 | English | London, United Kingdom Electric Light PDF Book Tour EL: 5 min videos on each light type, followed by a 5 question quiz for each lamp type. Wednesday 17 June In , Thomas Edison began serious research into developing a practical incandescent lamp and on October 14, , Edison filed his first patent application for "Improvement In Electric Lights". Sunday 27 September Wednesday 29 July Wednesday 16 September View all albums. Saturday 10 October View all similar artists. In colder climates where heating and lighting is required during the cold and dark winter months, the heat byproduct has some value. Saturday 15 August Similar To Jeff Lynne. Tuesday 18 August Monday 25 May Wednesday 22 April Play album Buy Loading. Friday 24 April Wednesday 15 July Main article: Incandescent light bulb. Wednesday 14 October Help Learn to edit Community portal Recent changes Upload file. Features Exploring the local sounds and scenes at Noise Pop Fest. Due to the importance of this area of engineering we offer a full course of web pages, videos, and educational tools to communicate to you the world of of the electric light and the engineers and inventors who made it possible. Friday 31 July Monday 8 June Friday 21 August Sunday 18 October Friday 26 June The inside of the tubes are coated with phosphors that give off visible light when struck by ultraviolet photons. Friday 4 September Connect to Spotify Dismiss. Thursday 7 May Sunday 31 May Wednesday 1 July Tuesday 20 October The electric arc is struck by touching the rod tips then separating them. -
The Electric-Lamp Industry
Massachusetts Institute of Technology Studies of Innovation • GiSma,..=("EaEssormat THE MACMILLAN COMPANY THE ELECTRIC-LAMP INDUSTRY: NEW YORK a BOSTON a CHICAGO DALLAS • ATLANTA • SAN FRANCISCO MACMILLAN AND CO., LIMITED Technological Change and Economic LONDON a BOMBAY a CALCUTTA MADRAS a MELBOURNE Development from 1800 to 1947 THE MACMILLAN COMPANY OF CANADA, LIMITED TORONTO By ARTHUR A. BRIGHT, Jr. THE MACMILLAN COMPANY • NEW YORK 1949 FOREWORD THIS study of the economic development of the electric- lamp industry is the second volume in a series of studies on the economics of innovation, undertaken at the Massachusetts Insti- tute of Technology. The creative role played by science and technology in modern economic life is apparent to everyone. But we know relatively little about the human factors which condition the introduction of technological change into our environment. Are there barriers to innovation inherent in the increasing concentration of power in a few large concerns? Does the patent system, designed as an incentive to invention, act more often as a brake on new develop- ments? What has been the role of key personalities in creating change? Are there lessons to be drawn from the past on how the innovating process can be more effective, not only from the standpoint of achieving a higher standard of material being but from the point of view of smoother human relations? Certainly, material progress at any price is not a satisfactory goal. On the other hand, freedom for creative action in initiating and carrying out new developments is a basic human drive for many individu- als. I believe, personally, that a great society should strive toward a goal which will give to individuals and groups the maximum opportunities for creative expression; yet this means to me that the State must act to prevent the compulsive pressure of some particular group from overriding others to the destruction of human values. -
Edison Facts 2021.Indd
Edison Facts Did You Know? ■ Thomas Edison was born on February 11, 1847, in Milan, Ohio. ■ Edison was partially deaf. ■ At age 10, Edison built his first science laboratory in the basement of his family's home. ■ Edison acquired 1,093 U.S. patents for his inventions. He held the record for the most patents until 2015, when he was surpassed by inventor Lowell Wood, who today holds 1,969 U.S. patents. ■ The first invention that Edison tried to sell was an electric vote recorder. ■ The phonograph was Edison's favorite invention. ■ In 1879, Edison invented the first incandescent light bulb. ■ Edison tested over 6,000 vegetable growths (baywood, boxwood, hickory, cedar, flax, bamboo) as filament material in his light bulbs. ■ Edison set up the Pearl Street Central Power Station, the world's first “electric light-power station” in lower Manhattan. ■ Edison's Pearl Street plant powered one square mile of Lower Manhattan, providing service to 59 customers for approximately 24 cents per kilowatt-hour. ■ Edison founded the Edison General Electric Company in 1878 to market his inventions, including the incandescent lamp. In 1892, the company merged with the Thomson-Houston Company to form the General Electric Company. ■ Edison began operation of the first passenger electric railway in the country in Menlo Park, New Jersey. ■ Edison was nicknamed the “Wizard of Menlo Park”. ■ In 1913, Edison introduced the first talking motion pictures. ■ Edison coined the phrase, “Genius is one percent inspiration, 99 percent perspiration.” ■ Edison passed away when he was 84 years old, on Sunday, Learn more about October 18, 1931. -
William Stanley Lighted a Town and Powered an Industry
William Stanley Lighted a Town and Powered an Industry by Bernard A. Drew and Gerard Chapman preface by Samuel Sass Berkshire History Fall 1985 Vol. VI No. 1 Published by the Berkshire County Historical Society Pittsfield Massachusetts Preface: At a meeting of engineers in New York a half century ago, a paper was read which contained the following description of a historic event in the development of electrical technology: For the setting we have a small town among the snow-clad New England Hills. There a young man, in fragile health, is attacking single-handed the control of a mysterious form of energy, incalculable in its characteristics, and potentially so deadly that great experts among his contemporaries condemned attempts to use it. With rare courage he laid his plans, with little therapy or precedent to guide him; with persistent experimental skill he deduced the needed knowledge when mathematics failed; with resourcefulness that even lead him to local photographers to requisition their stock of tin-type plates (for the magnetic circuit of his transformer), successfully met the lack of suitable materials, and with intensive devotion and sustained effort, despite poor health, he brought his undertaking, in an almost unbelievably short time, to triumphant success. This triumphant success occurred in Great Barrington, Massachusetts, in 1886, and the young man in fragile health was William Stanley. A century ago he demonstrated the feasibility of transforming to a higher level the generated alternating current voltage, for transmission at a distance, and reducing it at the consumer end to a usable level. One hears or reads on occasion that Stanley “invented” the transformer. -
Basic Physics of the Incandescent Lamp (Lightbulb) Dan Macisaac, Gary Kanner,Andgraydon Anderson
Basic Physics of the Incandescent Lamp (Lightbulb) Dan MacIsaac, Gary Kanner,andGraydon Anderson ntil a little over a century ago, artifi- transferred to electronic excitations within the Ucial lighting was based on the emis- solid. The excited states are relieved by pho- sion of radiation brought about by burning tonic emission. When enough of the radiation fossil fuels—vegetable and animal oils, emitted is in the visible spectrum so that we waxes, and fats, with a wick to control the rate can see an object by its own visible light, we of burning. Light from coal gas and natural say it is incandescing. In a solid, there is a gas was a major development, along with the near-continuum of electron energy levels, realization that the higher the temperature of resulting in a continuous non-discrete spec- the material being burned, the whiter the color trum of radiation. and the greater the light output. But the inven- To emit visible light, a solid must be heat- tion of the incandescent electric lamp in the ed red hot to over 850 K. Compare this with Dan MacIsaac is an 1870s was quite unlike anything that had hap- the 6600 K average temperature of the Sun’s Assistant Professor of pened before. Modern lighting comes almost photosphere, which defines the color mixture Physics and Astronomy at entirely from electric light sources. In the of sunlight and the visible spectrum for our Northern Arizona University. United States, about a quarter of electrical eyes. It is currently impossible to match the He received B.Sc. -
The Invention of the Electric Light
The Invention of the Electric Light B. J. G. van der Kooij This case study is part of the research work in preparation for a doctorate-dissertation to be obtained from the University of Technology, Delft, The Netherlands (www.tudelft.nl). It is one of a series of case studies about “Innovation” under the title “The Invention Series”. About the text—This is a scholarly case study describing the historic developments that resulted in the steam engine. It is based on a large number of historic and contemporary sources. As we did not conduct any research into primary sources, we made use of the efforts of numerous others by citing them quite extensively to preserve the original character of their contributions. Where possible we identified the individual authors of the citations. As some are not identifiable, we identified the source of the text. Facts that are considered to be of a general character in the public domain are not cited. About the pictures—Many of the pictures used in this case study were found at websites accessed through the Internet. Where possible they were traced to their origins, which, when found, were indicated as the source. As most are out of copyright, we feel that the fair use we make of the pictures to illustrate the scholarly case is not an infringement of copyright. Copyright © 2015 B. J. G. van der Kooij Cover art is a line drawing of Edison’s incandescent lamp (US Patent № 223.898) and Jablochkoff’s arc lamp (US Patent № 190.864) (courtesy USPTO). Version 1.1 (April 2015) All rights reserved. -
Trow Point and the Disappearing Gun the Concrete Structure in Front of You Is What Remains of an Innovative Experiment in Gun Technology
Trow Point and the Disappearing Gun The concrete structure in front of you is what remains of an innovative experiment in gun technology. The trial of the ‘Hiram Maxim Disappearing Gun’ took place here on the 16th December 1887. Big guns A novel idea... Training ground The late 19th century was an era of huge change in warfare and weaponry Although the gun fired without problem, the water-and-air-pressure that would continue through to the major world wars. Gun technology moved powered raising and lowering mechanism was too slow and was from unreliable, dangerous and erratic cannons to long range, accurate and never used in combat. It took 8 hours to pressurise the pump before quick loading weapons. The ‘Mark IV 6 inch breech loading gun’ was a it was operational and in very cold weather the water would freeze, powerful example of the scale of change. It had a firing range of 30,000ft making it impossible to fire at all! (9000m), twice that of previous guns, and was capable of punching holes There were other attempts to develop retractable mounts but they through the iron armour of enemy ships. never went into widespread service. As the firing range of guns improved there was little need to hide soldiers from the enemy Now you see it...now you don’t! when reloading and it wasn’t long before attack from the air What was unique about this gun replaced the threat from the sea. emplacement at Trow Point was that it trialled a mounting system that would The gun and its mounting was removed, leaving just this concrete allow the Mark IV 6” gun to be raised and lowered. -
Energy Efficiency – HID Lighting
PDHonline Course E423 (5 PDH) Energy Efficiency High Intensity Discharge Lighting Instructor: Lee Layton, P.E 2014 PDH Online | PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.PDHonline.org www.PDHcenter.com An Approved Continuing Education Provider www.PDHcenter.com PDHonline Course E423 www.PDHonline.org Energy Efficiency High Intensity Discharge Lighting Lee Layton, P.E Table of Contents Section Page Introduction ………………………………….….. 3 Chapter 1, Lighting Market ………………….….. 5 Chapter 2, Fundamentals of Lighting ………….... 16 Chapter 3, Characteristics of HID Lighting……... 28 Chapter 4, Types of HID Lighting……………..... 37 Summary ……………………………………..…. 66 © Lee Layton. Page 2 of 66 www.PDHcenter.com PDHonline Course E423 www.PDHonline.org Introduction Gas-discharge lamps are light sources that generate light by sending an electrical discharge through an ionized gas. The character of the gas discharge depends on the pressure of the gas as well as the frequency of the current. High-intensity discharge (HID) lighting provides the highest efficacy and longest service life of any lighting type. It can save 75%-90% of lighting energy when it replaces incandescent lighting. Figure 1 shows a typical high-intensity discharge lamp. In a high-intensity discharge lamp, electricity arcs between two electrodes, creating an intensely bright light. Usually a gas of mercury, sodium, or metal halide acts as the conductor. HID lamps use an electric arc to produce intense light. Like fluorescent lamps, they require ballasts. They also take up to 10 minutes to produce light when first turned on because the ballast needs time to establish the electric arc. -
Sir Hiram S. Maxim Collection
Sir Hiram S. Maxim Collection 2001 National Air and Space Museum Archives 14390 Air & Space Museum Parkway Chantilly, VA 20151 [email protected] https://airandspace.si.edu/archives Table of Contents Collection Overview ........................................................................................................ 1 Administrative Information .............................................................................................. 1 Scope and Contents........................................................................................................ 2 Biographical / Historical.................................................................................................... 1 General............................................................................................................................. 2 Names and Subjects ...................................................................................................... 2 Sir Hiram S. Maxim Collection NASM.1989.0031 Collection Overview Repository: National Air and Space Museum Archives Title: Sir Hiram S. Maxim Collection Identifier: NASM.1989.0031 Date: 1890-1916 (bulk 1890-1894, 1912) Extent: 1.09 Cubic feet ((1 records center box)) Creator: Maxim, Hiram H. Language: English . Administrative Information Acquisition Information Hiram H. Maxim, gift, 1989, 1989-0031, NASM Restrictions No restrictions on access Conditions Governing Use Material is subject to Smithsonian Terms of Use. Should you wish to use NASM material in any medium, please submit an Application