Grain Yield and Groat-Protein Percentage Relationships in Oats (Avena Sativa L) Karen Ann Kuenzel Iowa State University

Total Page:16

File Type:pdf, Size:1020Kb

Grain Yield and Groat-Protein Percentage Relationships in Oats (Avena Sativa L) Karen Ann Kuenzel Iowa State University Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1982 Grain yield and groat-protein percentage relationships in oats (Avena sativa L) Karen Ann Kuenzel Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agricultural Science Commons, Agriculture Commons, and the Agronomy and Crop Sciences Commons Recommended Citation Kuenzel, Karen Ann, "Grain yield and groat-protein percentage relationships in oats (Avena sativa L) " (1982). Retrospective Theses and Dissertations. 7049. https://lib.dr.iastate.edu/rtd/7049 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This was produced from a copy of a document sent to us for microfilming. While most advanced technological means to photograph and reproduce this docun have been used, the quality is heavily dependent upon the quality of the mat submitted. The following explanation of techniques is provided to help you undersi markings or notations which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the documei photographed is "Missing Page(s)". If it was possible to obtain the missir page(s) or section, they are spliced into the film along with adjacent page This may have necessitated cutting through an image and duplicatir adjacent pages to assure you of complete continuity. 2. When an image on the film is obliterated with a round black mark it is : indication that the film inspector noticed either blurred copy because i movement during exposure, or duplicate copy. Unless we meant to dele copyrighted materials that should not have been filmed, you will find a goc image of the page in the adjacent frame. If copyrighted materials we deleted you will find a target note listing the pages in the adjacent frame. 3. When a map, drawing or chart, etc., is part of the material being phot graphed the photographer has followed a definite method in "sectionin; the material. It is customary to begin filming at the upper left hand corner a large sheet and to continue from left to right in equal sections with smi overlaps. If necessary, sectioning is continued again—beginning below tf first row and continuing on until complete. I I 4. For any illustrations that cannot be reproduced satisfactorily by xerograph- photographic prints can be purchased at additional cost and tipped into yo; xerographic copy. Requests can be made to our Dissertations Custom; Services Department. | i t 5. Some pages in any document may have indistinct print. In all cases we hi filmed the best available copy. î Universi^ Micrcxilms International 300 N. ZEEB RD., ANN ARBOR, Ml 8221197 Kuenzel, Karen Ann GRAIN YIELD AND GROAT-PROTEIN PERCENTAGE RELATIONSHIPS IN OATS (AVENA SATIVA L.) Iowa State University PttD. 1982 University Microfilms Intsrnationâl 300N.ZeèbRoad.AnnAibor,MI48106 Grain yield and groat-protein percentage relationships in oats (Avena sativa L.) by Karen Ann Kuenzel A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Department ; Agronomy Major: Plant Breeding and Cytogenetics Approved: Signature was redacted for privacy. In Charge of Ma jor^iRbrk Signature was redacted for privacy. Fc^ the Major Department Signature was redacted for privacy. For the Graduate College Iowa State University Ames, Iowa 1982 ii TABLE OF CONTENTS Page INTRODUCTION 1 LITERATURE REVIEW 4 MATERIALS AND METHODS 16 RESULTS 27 DISCUSSION 107 SUMMARY 129 LITERATURE CITED 132 ACKNOWLEDGMENTS 142 APPENDIX 143 1 INTRODUCTION Cereal grains as food generally are regarded as an energy source rather than a protein sourceo In reality, however, cereals contribute 68% of the plant protein used for direct human consumption worldwide, whereas legumes con­ tribute only 18% (Jalil and Tahir, 1973). On a global basis, cereal grains are an important source of protein, particularly in developing countries. Therefore, increasing the amount of protein produced per unit land area could have a beneficial impact on human nutrition. In the past, attempts to increase protein per unit area were hindered by several factors including the availability of a rapid, accurate, and inexpensive method for measuring protein and/or amino acids (Oram and Brock, 1972), but recent advances in instrumentation make it possible to rapidly analyze small samples for protein content using infrared reflectance spec­ troscopy (Williams, 1979; Jackel, 1978). Oat {Avena sativa L.) grain protein is unique among the cereals. First, it has a higher caryopsis (groat) protein content than other cereals (Miller, 1958). Second, the amino acid balance and, therefore, the biological value of oat grain protein is good (Bobbins et al., 1971), whereas that of barley (Hordeum vulaare L.), corn (Zea mays L.), sorghum (Sorghum bicolor L.), and wheat (Triticum aestivum L.)-is poor (Mosse, 1966), Third, the amino acid composition 2 of oat protein is nearly constant at all grain protein percentages (Peterson, 1976), whereas in barley, sorghum, and corn, as protein percentage is increased, a dispropor­ tionate increase occurs in the prolamin fraction (Frey, 1951a; Viuf, 1969). Thus, breeding for increased protein content in oat grain is not complicated by changes in the amino acid composition of the protein. Oat protein is pri­ marily globulin (Czonka, 1941), which contains a higher pro­ portion of lysine than other protein fractions (Draper, 1973), and lysine is the primary limiting amino acid in most cereals (Mitchell and Block, 1946). Variation for grain protein exists in Avena species (Bobbins et al., 1971; Frey, 1977), and this trait is heri­ table (Campbell and Frey, 1972b). Protein percentage in oat grain can be increased genetically, but as with other crop species, such an increase is usually associated with a reduc­ tion in grain yield. However, exceptions to this negative relationship in oats have been observed by Sraon et al. (1975) and Iwig and Ohm (1978) who developed oat lines in which protein percentage was increased without reducing grain yields, and Frey (1977) who isolated oat lines in which grain yield was increased without a reduction in groat-protein percentage. The general objective of my study was to examine rela­ tionships between grain protein and grain yield of oats. 3 considering groat-protein percentage and grain and protein yields per hectare as the criteria of measurement. High- protein oat lines with normal grain yields were mated to high-yielding lines with normal protein percentages to create populations of segregates for study. The specific objectives were: 1. To evaluate the associations among the traits groat-protein percentage, grain yield, and protein yield; 2. To examine the progeny of the matings for the prevalence of transgressive segregates for groat- protein percentage, grain yield, and protein yield; 3. To ascertain whether increases in protein yield per hectare are due primarily to increases in groat- protein percentage, grain yield, or a combination of both traits; and 4. To assess whether the primary component that con­ tributes to increased protein yield (i.e., groat- protein percentage or grain yield) varies among matings, and whether such variation, if existent, is due to the parental source of high-protein genes. 4 LITERATURE REVIEW Cereal grains comprise a major source of food consumed •worldwideÎ consequently, grain protein content of cereals is of prime importance in nutrition. All cereal grains contain starch as their principal component with protein as the second highest constituent (Inglett, 1977). Genetic varia­ bility exists among and within cereal species for the quan­ tity of protein produced per unit area and for the nutrition­ al quality of the protein which is dependent upon amino acid composition. Lysine is the primary limiting amino acid in cereal grains (Mitchell and Block, 1946j Monyo, 1977; Robbins et al., 1971; Smith et al., 1959; Van Etten et al., 1967; Whitehouse, 1973), but certain cereals also have a secondary amino acid deficiency of methionine, phenylalanine, arginine, threonine, or tryptophan (Whitehouse, 1973). Accounts dating back to the 1920s generally have shown oat protein to be nutritionally superior to the protein of other cereals with the exception of rice (Oryza sativa L.) (Frey, 1977; Hartwell, 1926; Jones et al., 1948; Mitchell, 1924; Osborne and Mendel, 1920; Robbins et al., 1971). Oats have a higher biological value than other cereals for two reasons. First, of the four single proteins of cereal grains (based on solubility), i.e., albumin, globulin, glutelin, and prolamin (de Man, 1976), oats have a low proportion of prolamin, the fraction nearly devoid in lysine and low in 5 some other essential amino acids (Doll, 1977; Draper, 1973; Frey, 1976; Johnson and Lay, 1974; Mosse, 1966; Peterson, 1976). Wheat, rye, and barley contain 30-50% prolamin, maize and sorghum contain 50-60%, rice contains only 1-5%, and oats contain 10-16% (Czonka, 1941; Brohult and Sandegren, 1954; Mosse, 1966; Whitehouse, 1973; Johnson and Lay, 1974; Peterson, 1976), Second, as protein content of oat groats increases, the amino acid content remains nearly constant (Frey, 1951b,
Recommended publications
  • Grain Grading Primer
    Marketing and Regulatory Programs Grain Agricultural Marketing Service Grading Federal Grain Inspection Service Washington, D.C. Primer October 2016 United States Department of Agriculture Agricultural Marketing Service Federal Grain Inspection Service Informational Reference October 2016 Grain Grading Primer Foreword The effectiveness of the U.S. grain inspection system depends largely on an inspector’s ability to sample, inspect, grade, and certify the various grains for which standards have been established under the United States Grain Standards Act, as amended. This publication is designed primarily to provide information and instruction for producers, grain handlers, and students on how grain is graded. It is not designed for Official grain inspectors for they must necessarily use more detailed instruction than that provided herein. In view of this fact, the Federal Grain Inspection Service, published the Grain Inspection Handbook, Book II, Grain Grading Procedures, which documents the step-by-step procedures needed to effectively and efficiently inspect grain in accordance with the Official United States Standards for Grain. The mention of firm names or trade products does not imply that they are endorsed or recommended by the United States Department of Agriculture over other firms or similar approved products not mentioned. Foreword Table of Contents The U.S. Department of Agriculture (USDA) prohibits discrimination in its programs on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, and marital or familial status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternate means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD).
    [Show full text]
  • Gluten Free Grains
    Gluten-free Grains A demand-and-supply analysis of prospects for the Australian health grains industry A report for the Rural Industries Research and Development Corporation by Grant Vinning and Greg McMahon Asian Markets Research Pty Ltd September 2006 RIRDC publication no. 05/011 RIRDC project no. AMR–10A © 2006 Rural Industries Research and Development Corporation All rights reserved ISBN 1 74151 110 0 ISSN 1440-6845 Gluten-free Grains: a demand-and-supply analysis of prospects for the Australian grains industry Publication no. 05/011 Project no. AMR–10A The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable industries. The information should not be relied upon for the purpose of a particular matter. Specialist and/or appropriate legal advice should be obtained before any action or decision is taken on the basis of any material in this document. The Commonwealth of Australia, the Rural Industries Research and Development Corporation, and the authors or contributors do not assume liability of any kind whatsoever resulting from any person’s use of or reliance on the content of this document. This publication is copyright. However, RIRDC encourages wide dissemination of its research results, providing the Corporation is clearly acknowledged. For any inquiries concerning reproduction, telephone the Publications Manager on 02 6272 3186. Researcher contact details Grant Vinning Greg McMahon Asian Markets Research Asian Markets Research 22 Kersley Road 22 Kersley Road KENMORE QLD 4069 KENMORE QLD 4069 Phone: 07 3378 0042 Phone: 07 3378 0042 Email: [email protected] Email: [email protected] In submitting this report, the researchers have agreed to RIRDC publishing this material in its edited form.
    [Show full text]
  • Economic Impacts of Privatizing the Marketing of Canadian Oats
    Economic Impacts of Privatizing the Marketing of Canadian Oats By Robert W. R. Morrissey A Thesis Submitted to the Faculfy of Graduate Studies in Partial Fulfilment of the Requirements for the Degree of MASTER OF SCIENCE Department of Agricultural Economics and Farm Management O October 1996 N,flonarLibrav Bibliothèque nationale I*l du Canada Acquisitions and Direction des acquisitions et Bibliographic Services Branch des services bibliographiques 395 Wellington Street 395, rue Wellington Ottawa, Ontario Ottawa (Ontario) K1A ON4 K.lA ON4 Yourl¡le volrc(élérence Oú lile Nolre élérence The author has granted an L'auteur a accordé une licence irrevocable non-excl us¡ve licence irrévocable et non exclusive allowing the National Library of permettant à la Bibliothèque Canada to reproduce, loan, nationale du Canada de distribute or sell cop¡es of reproduire, prêter, distribuer ou his/her thesis by any means and vendre des copies de sa thèse in any form or format, making de quelque manière et sous this thesis available to interested quelque forme que ce soit pour persons. mettre des exemplaires de cette thèse à la disposition des person nes intéressées. The author retains ownership of L'auteur conserve Ia propriété du the copyright in his/her thesis. droit d'auteur qu¡ protège sa Neither the thesis nor substantial thèse. Ni la thèse ni des extraits extracts from it may be printed or substantiels de celle-ci ne otherwise reproduced without doivent être imprimés ou his/her permission. autrement reproduits sans son autorisation. ISBN 0-612-16216_8 C,anadä l.lønc- DÍsæ¡ffion AhsMs lnternalíonol otÅ lvlos¡ets AhshæE lnlemolíonql are orronged bv brood, gen€rol subiea coteoories.
    [Show full text]
  • Oat Grower Manual: Harvest
    Prairie Oat Production Manual Prairie Oat Growers Manual Back, Huvenaars, Kotylak, Kuneff, Simpson, Ziesman Prairie Oat Production Manual University of Alberta Plant Science 499 Created by: Barbara Ziesman Carly Huvenaars Joseph Back Kim Kuneff Krista Kotylak Liz Simpson Printed in 2010 Printed in Canada To view this manual, go to: www.poga.ca Prairie Oat Production Manual Disclaimer The Prairie Oat Growers Manual is a reference tool for growers of Western Canada. The authors have tried to ensure that all information is accurate and complete, however it should not be considered as the final word in all decisions. If there is a deviation from the manual you should seek advice from a trained professional. All the information provided is strictly for informational purposes and the authors make no guarantee on the use and reliance of the information. It is at your own personal risk, therefore the authors shall not be liable for any personal damages or losses or any theory based liability arising from use of the information provided. Prairie Oat Production Manual Tillage ...........................................................................26 In- Crop Yield Reducers .........................................27 Table of Contents Post Harvest: ...............................................................28 Diseases................................................. 29 Fusarium Head Blight (Scab)..............................29 Introduction ............................................1 Crown Rust (Leaf Rust) ..........................................30
    [Show full text]
  • Phenolic Content and Profile and Antioxidant
    molecules Article (Poly)phenolic Content and Profile and Antioxidant Capacity of Whole-Grain Cookies are Better Estimated by Simulated Digestion than Chemical Extraction 1,2 3 1, 4 4 Francesca Danesi , Luca Calani , Veronica Valli y, Letizia Bresciani , Daniele Del Rio and Alessandra Bordoni 1,2,* 1 Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; [email protected] (F.D.); [email protected] (V.V.) 2 Interdepartmental Center for Agri-food Industrial Research (CIRI Agrifood), University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy 3 Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy; [email protected] 4 Department of Veterinary Science, University of Parma, Medical School, Building C, Via Volturno 39, 43125 Parma, Italy; [email protected] (L.B.); [email protected] (D.D.R.) * Correspondence: [email protected]; Tel.: +39-0547-338955 Current address: Sociedad Española de Colorantes Naturales y Afines (SECNA), Polígono 33, Parcela 254, y El Muladar, 46370 Chiva, Valencia, Spain. Academic Editor: Francesco Cacciola Received: 28 May 2020; Accepted: 14 June 2020; Published: 17 June 2020 Abstract: It is widely recognized that the biological effects of phytochemicals cannot be attributed to the native compounds present in foods but rather to their metabolites endogenously released after intake. Bioavailability depends on bioaccessibility, which is the amount of the food constituent that is released from the matrix in the gastrointestinal tract. The use of chemical extraction to evaluate the content and profile of phytochemicals does not mirror the physiological situation in vivo, and their bioaccessibility should be considered while assessing their nutritional significance in human health.
    [Show full text]
  • 2019 Organic Certificate
    ADDENDUM OF PRODUCTS certified to the usda organic regulations 7CFR Part 205 Golden Organics Inc. 4941 Allison St., Unit 2 Certification Number: 319 Date Issued: 1/14/2020 Arvada, Colorado 80002 United States Products 100% ORGANIC Baking: Cacao Nibs Beans: Adzuki Beans, Anasazi Beans, Black Beans, Cannellini Beans, Cranberry Beans, Fava Beans, Garbanzo Beans, Great Northern Beans, Kidney Dark Red, Lima Beans, Mung Beans, Mung Beans Split, Navy Beans, Pinto Beans, Small Red Beans, Soybeans, Black Soybeans Cereals: Barley Flakes, Bulgur, Couscous, Couscous Whole Wheat, Oat Bran, Oats Rolled Instant, Oats Rolled Quick, Oats Rolled Regular, Oats Steel Cut, Oats Thick Cut, Polenta, Quinoa Flakes, Rye Flakes, Triticale Flakes, Wheat Bran Dried Fruit: Apple Rings, Apples Diced, Apricots Dried, Blueberries, Coconut Chips, Coconut Fine Macaroon, Coconut Medium Shred, Cranberries Sweetened with Apple Juice, Goji Berries, Mango Sliced, Mulberries White, Turkish Figs Feeds: Oats Whole-Unhulled, Sunflower Birdseed Flour: All-Purpose White Flour, Almond Meal, Barley Flour, Cornmeal-Blue, Cornmeal-Yellow, Kamut, Millet Flour, Oat Flour, Quinoa Flour, Rice Flour-Brown, Rye Flour-Whole, Whole Wheat Flour, Whole Wheat Pastry Flour Grains: Barley Hulled, Barley Hulless, Barley Sprouting, Buckwheat Groat Hulled Chna/US, Corn Blue, Corn Yellow, Einkorn, Farro Emmer, Freekeh Cracked, Kamut, Millet Hulled, Millet Unhulled, Oat Groats, Oats Hulless, Quinoa White, Quinoa Red, Rye Berries, Sorghum Grain, Spelt Cracked, Triticale, Wheat Durum, Wheat Hard Red Spring, Wheat Hard Red Winter, Wheat Hard White, Wheat Soft White Pastry Nuts: Almonds Dark Chocolate, Brazil Nuts, Cashew Pieces, Cashews Whole 320 Organic, Pine Nuts, Pistachio Raw Meat, Pistachio Roasted/Salted Shell, Peanuts Raw Shelled Oils: Extra Virgin Coconut Oil, MCT Oil Golden Organics Inc.
    [Show full text]
  • Groat Proportion in Oats As Measured by Different Methods: Analysis of Oats Resistant to Dehulling and Sources of Error in Mechanical Dehulling
    Groat proportion in oats as measured by different methods: Analysis of oats resistant to dehulling and sources of error in mechanical dehulling 2 D. C. Doehlert', M. S. McMullen , and N. R. Hiveland'' 1USDA-ARS Hard Red Spring and Durum Wheat Quality Laboratory, Harris Hall, North Dakota State University, Dept. 7640, P.o. Box 6050, Fargo, NO 58108-6050, USA (e-mail: [email protected]); 2Department of Plant Sciences, Loftsgard Hall, North Dakota State University, Dept. 7670, P.O. Box 6050, Fargo, NO 58108-6050, USA; and 3NDSU Williston Research Extension Center, 14120 Highway 2, Williston, NO, USA. Received 15 December 2009, accepted 12 February 2010. Doehlert, D. C,, McMullen, M. S. and Riveland, N. R. 2010. Groat proportion in oats as measured by different methods: Analysis of oats resistant to dehulling and sources of error in mechanical dehulling. Can. J. Plant Sci. 90: 391-397. Groat proportion is the groat yield from an oat dehulling process. We compared hand, impact and compressed-air dehulling to measure groat proportion, and evaluated sources of error. Hand dehulling was the simplest and most accurate method, because all groats and hulls can be accounted for. Mechanical methods dehulled most, but not all, oat kernels. Failure to account for oats resistant to dehulling in calculations resulted in gross errors. Oats resistant to impact dehulling did not differ in groat proportion from the general population, but differed in many physical properties. Hull structure may account the most for their resistance to dehulling. Mechanically dehulled oats consistently yielded lower groat proportions than those from hand dehulling.
    [Show full text]
  • Cultivated Emmer Wheat (Triticum Dicoccon Schrank), an Old Crop with Promising Future: a Review
    Genet Resour Crop Evol DOI 10.1007/s10722-010-9572-6 NOTES ON NEGLECTED AND UNDERUTILIZED CROPS Cultivated emmer wheat (Triticum dicoccon Schrank), an old crop with promising future: a review Maria Zaharieva • Negash Geleta Ayana • Amin Al Hakimi • Satish C. Misra • Philippe Monneveux Received: 17 November 2009 / Accepted: 10 May 2010 Ó Springer Science+Business Media B.V. 2010 Abstract Cultivated emmer wheat, Triticum dicoc- specific taste and flavor of emmer wheat products have con Schrank, a tetraploid species with hulled grain, has led to a recent development of the cultivation in some been largely cultivated during seven millennia in the European countries. Emmer wheat also possesses Middle-East, Central and West Asia, and Europe. It valuable traits of resistance to pests and diseases and has been largely replaced by hulless species and is now tolerance to abiotic stresses and is increasingly used as a minor crop, with the exception of some countries like a reservoir of useful genes in wheat breeding. In the India, Ethiopia and Yemen, where its grain is used for present article, a review concerning taxonomy, diver- preparing traditional foods. Nutritional qualities and sity and history of cultivation of emmer wheat is reported. Grain characteristics and valuable agro- M. Zaharieva (&) nomic traits are described. Some successful examples CIMMYT Global Wheat Program, A.P. 6-641, 06600 of emmer wheat utilization for the development of Mexico, DF, Mexico durum or bread wheat cultivars are examined, and the e-mail: [email protected]; [email protected] perspectives in using emmer wheat as health food and N.
    [Show full text]
  • Processing of Oats and the Impact of Processing Operations on Nutrition and Health Benefits Eric A
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Nutrition and Health Sciences -- Faculty Nutrition and Health Sciences, Department of Publications 2014 Processing of oats and the impact of processing operations on nutrition and health benefits Eric A. Decker University of Massachusetts na d King Abdulaziz University, [email protected] Devin J. Rose University of Nebraska–Lincoln, [email protected] Derek A. Stewart The James Hutton Institute and BioForsk Nord-Holt, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/nutritionfacpub Part of the Human and Clinical Nutrition Commons, Molecular, Genetic, and Biochemical Nutrition Commons, and the Other Nutrition Commons Decker, Eric A.; Rose, Devin J.; and Stewart, Derek A., "Processing of oats and the impact of processing operations on nutrition and health benefits" (2014). Nutrition and Health Sciences -- Faculty Publications. 31. http://digitalcommons.unl.edu/nutritionfacpub/31 This Article is brought to you for free and open access by the Nutrition and Health Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Nutrition and Health Sciences -- Faculty Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. British Journal of Nutrition (2014), 112, S58–S64 doi:10.1017/S000711451400227X q The Authors 2014 Processing of oats and the impact of processing operations on nutrition and health benefits Eric A. Decker1,2*, Devin J. Rose3 and Derek Stewart4,5 1Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA 2Bioactive Natural Products Research Group, Department of Biochemistry, Faculty of Science, King Abdulaziz University, P. O.
    [Show full text]
  • Potential Alternative Crops for Eastern Oregon
    Potential Alternative Crops for Eastern Oregon Stephen Machado Abstract The winter wheat/summer fallow rotation is the most common cropping system in eastern Oregon. It is used to store winter precipitation and control weeds. This cropping system, however, destroys soil organic carbon, reduces water infiltration and thus leads to soil erosion, and is not sustainable. Conservation tillage, annual cropping, and the introduction of alternative crops are ways to improve sustainability of cropping systems in eastern Oregon. The following review briefly discusses the uses, climatic requirements, and yield potential of potential alternative crops for eastern Oregon. These crops include legumes, cereals, and crops with industrial and pharmaceutical uses. Based on this review, research should focus on evaluating potential alternative crops for suitability to eastern Oregon conditions and provide growers with information they need to integrate these crops into existing cropping systems. Introduction The Pacific Northwest (PNW) Columbia Plateau is semi-arid with rainfall ranging from 12 to 18 inches. About 70 percent of annual precipitation occurs from November to April during winter and water available to plants during spring and summer depends on how much water is stored in the soil. Because of steep slopes prevalent in the PNW, soil erosion is a major problem in fields that do not have sufficient residue cover. Cropping systems that improve water infiltration and storage, reduce evaporation, and increase water use efficiency of crops on a sustainable basis should be developed. Wheat/fallow rotation is the traditional crop production system in the PNW Columbia Plateau. The winter wheat/summer fallow rotation is used on 4.5 million acres in the drier portion of the region, where rainfall is considered inadequate to produce a crop every year.
    [Show full text]
  • Grain Other Than Wheat
    Grains of truth about GRAINS OTHER THAN WHEAT Definition SPELT: To Germans, it is known as dinkel, Italians GRAIN: A member of the grass family as farro and Americans as good old spelt. Whatever (Gramineae) produces a dry edible one-seeded fruit, the name, spelt has been around since 7,000 BC and “caryopsis,” commonly called a kernel, grain or berry. of the three “ancient wheats” is the most widely There are eight grains from cereal grass: available in the United States. wheat, corn, rice, oats, rye, barley, millet and sorghum. Saint Hildegard von Bingen was recorded in Einkorn, emmer, spelt and kamut are known as ancient medieval European manuscripts as having often used wheats. All of these grains come from cereal grass, spelt as a healing food. Spelt’s popularity is due partly but some grew wild in earlier civilizations. to its flavor and partly because it has a great nutritional Other grains that are becoming popular, quinoa profile. The rich flavor of this wheat is sweet and nutty. (keen-wa), amaranth, flaxseed and buckwheat are It contains eight of the essential amino acids and is referred to as pseudo-grains or false grains. Most of naturally high in fiber. The chewy texture makes a these come from broad leaf plants and therefore are satisfying pilaf or hot cereal. It has a high gluten not considered a true grain. content and can be substituted for all the wheat flour History–Ancient Grains called for in a recipe. KAMUT (Ka-moot): Nicknamed King Tut’s wheat, it EINKORN: It has been well documented that einkorn is the first grain to have been domesticated, was originally cultivated in the Fertile Crescent area possibly as early as 12,000 BC.
    [Show full text]
  • Oats As a Feed for Beef Cattle
    OATS AS A FEED FOR BEEF CATTLE Stephen Boyles, The Ohio State Univeristy Ladon Johnson, North Dakota State University Oats is lower in energy and more bulky than other common feed grains since it threshes with the hull intact. The hull commonly accounts for 24 to 30 percent of the weight of the oat kernel. Since oat grain yield and quality are highest under relatively cool growing seasons, it is produced and fed primarily in the northern part of the Great Plains. Quality, as measured by bushel weight, commonly varies inversely with temperatures during the kernel filling and ripening period of the grain. A traditional pattern in movement of feed oats is for high-quality, heavy-test-weight "race horse" oats to move from northern producing areas to south and easterly directions. Energy content of oats varies directly according to bushel test weight, which in turn is dependent upon size of groat (whole seed minus the hull) and kernel plumpness. Starting on Feed Oats is an ideal grain for starting cattle on feed because of its high hull and fiber content. Many experienced cattlemen prefer to start weaned calves on oats as the only or major grain, gradually shifting over to higher-energy grains as the animals become adapted to grain consumption. The greater bulk and lower energy density of oats compared to other grains is particularly valuable for helping calves learn to eat and getting older cattle started on grain safely. Oats may constitute 50-70 percent of the grain mix while cattle are becoming accustomed to a full feed.
    [Show full text]