Simple Lie Algebras
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Modules and Lie Semialgebras Over Semirings with a Negation Map 3
MODULES AND LIE SEMIALGEBRAS OVER SEMIRINGS WITH A NEGATION MAP GUY BLACHAR Abstract. In this article, we present the basic definitions of modules and Lie semialgebras over semirings with a negation map. Our main example of a semiring with a negation map is ELT algebras, and some of the results in this article are formulated and proved only in the ELT theory. When dealing with modules, we focus on linearly independent sets and spanning sets. We define a notion of lifting a module with a negation map, similarly to the tropicalization process, and use it to prove several theorems about semirings with a negation map which possess a lift. In the context of Lie semialgebras over semirings with a negation map, we first give basic definitions, and provide parallel constructions to the classical Lie algebras. We prove an ELT version of Cartan’s criterion for semisimplicity, and provide a counterexample for the naive version of the PBW Theorem. Contents Page 0. Introduction 2 0.1. Semirings with a Negation Map 2 0.2. Modules Over Semirings with a Negation Map 3 0.3. Supertropical Algebras 4 0.4. Exploded Layered Tropical Algebras 4 1. Modules over Semirings with a Negation Map 5 1.1. The Surpassing Relation for Modules 6 1.2. Basic Definitions for Modules 7 1.3. -morphisms 9 1.4. Lifting a Module Over a Semiring with a Negation Map 10 1.5. Linearly Independent Sets 13 1.6. d-bases and s-bases 14 1.7. Free Modules over Semirings with a Negation Map 18 2. -
Lie Algebras and Representation Theory Andreasˇcap
Lie Algebras and Representation Theory Fall Term 2016/17 Andreas Capˇ Institut fur¨ Mathematik, Universitat¨ Wien, Nordbergstr. 15, 1090 Wien E-mail address: [email protected] Contents Preface v Chapter 1. Background 1 Group actions and group representations 1 Passing to the Lie algebra 5 A primer on the Lie group { Lie algebra correspondence 8 Chapter 2. General theory of Lie algebras 13 Basic classes of Lie algebras 13 Representations and the Killing Form 21 Some basic results on semisimple Lie algebras 29 Chapter 3. Structure theory of complex semisimple Lie algebras 35 Cartan subalgebras 35 The root system of a complex semisimple Lie algebra 40 The classification of root systems and complex simple Lie algebras 54 Chapter 4. Representation theory of complex semisimple Lie algebras 59 The theorem of the highest weight 59 Some multilinear algebra 63 Existence of irreducible representations 67 The universal enveloping algebra and Verma modules 72 Chapter 5. Tools for dealing with finite dimensional representations 79 Decomposing representations 79 Formulae for multiplicities, characters, and dimensions 83 Young symmetrizers and Weyl's construction 88 Bibliography 93 Index 95 iii Preface The aim of this course is to develop the basic general theory of Lie algebras to give a first insight into the basics of the structure theory and representation theory of semisimple Lie algebras. A problem one meets right in the beginning of such a course is to motivate the notion of a Lie algebra and to indicate the importance of representation theory. The simplest possible approach would be to require that students have the necessary background from differential geometry, present the correspondence between Lie groups and Lie algebras, and then move to the study of Lie algebras, which are easier to understand than the Lie groups themselves. -
Note on the Decomposition of Semisimple Lie Algebras
Note on the Decomposition of Semisimple Lie Algebras Thomas B. Mieling (Dated: January 5, 2018) Presupposing two criteria by Cartan, it is shown that every semisimple Lie algebra of finite dimension over C is a direct sum of simple Lie algebras. Definition 1 (Simple Lie Algebra). A Lie algebra g is Proposition 2. Let g be a finite dimensional semisimple called simple if g is not abelian and if g itself and f0g are Lie algebra over C and a ⊆ g an ideal. Then g = a ⊕ a? the only ideals in g. where the orthogonal complement is defined with respect to the Killing form K. Furthermore, the restriction of Definition 2 (Semisimple Lie Algebra). A Lie algebra g the Killing form to either a or a? is non-degenerate. is called semisimple if the only abelian ideal in g is f0g. Proof. a? is an ideal since for x 2 a?; y 2 a and z 2 g Definition 3 (Derived Series). Let g be a Lie Algebra. it holds that K([x; z; ]; y) = K(x; [z; y]) = 0 since a is an The derived series is the sequence of subalgebras defined ideal. Thus [a; g] ⊆ a. recursively by D0g := g and Dn+1g := [Dng;Dng]. Since both a and a? are ideals, so is their intersection Definition 4 (Solvable Lie Algebra). A Lie algebra g i = a \ a?. We show that i = f0g. Let x; yi. Then is called solvable if its derived series terminates in the clearly K(x; y) = 0 for x 2 i and y = D1i, so i is solv- trivial subalgebra, i.e. -
Matrix Lie Groups
Maths Seminar 2007 MATRIX LIE GROUPS Claudiu C Remsing Dept of Mathematics (Pure and Applied) Rhodes University Grahamstown 6140 26 September 2007 RhodesUniv CCR 0 Maths Seminar 2007 TALK OUTLINE 1. What is a matrix Lie group ? 2. Matrices revisited. 3. Examples of matrix Lie groups. 4. Matrix Lie algebras. 5. A glimpse at elementary Lie theory. 6. Life beyond elementary Lie theory. RhodesUniv CCR 1 Maths Seminar 2007 1. What is a matrix Lie group ? Matrix Lie groups are groups of invertible • matrices that have desirable geometric features. So matrix Lie groups are simultaneously algebraic and geometric objects. Matrix Lie groups naturally arise in • – geometry (classical, algebraic, differential) – complex analyis – differential equations – Fourier analysis – algebra (group theory, ring theory) – number theory – combinatorics. RhodesUniv CCR 2 Maths Seminar 2007 Matrix Lie groups are encountered in many • applications in – physics (geometric mechanics, quantum con- trol) – engineering (motion control, robotics) – computational chemistry (molecular mo- tion) – computer science (computer animation, computer vision, quantum computation). “It turns out that matrix [Lie] groups • pop up in virtually any investigation of objects with symmetries, such as molecules in chemistry, particles in physics, and projective spaces in geometry”. (K. Tapp, 2005) RhodesUniv CCR 3 Maths Seminar 2007 EXAMPLE 1 : The Euclidean group E (2). • E (2) = F : R2 R2 F is an isometry . → | n o The vector space R2 is equipped with the standard Euclidean structure (the “dot product”) x y = x y + x y (x, y R2), • 1 1 2 2 ∈ hence with the Euclidean distance d (x, y) = (y x) (y x) (x, y R2). -
Lecture 5: Semisimple Lie Algebras Over C
LECTURE 5: SEMISIMPLE LIE ALGEBRAS OVER C IVAN LOSEV Introduction In this lecture I will explain the classification of finite dimensional semisimple Lie alge- bras over C. Semisimple Lie algebras are defined similarly to semisimple finite dimensional associative algebras but are far more interesting and rich. The classification reduces to that of simple Lie algebras (i.e., Lie algebras with non-zero bracket and no proper ideals). The classification (initially due to Cartan and Killing) is basically in three steps. 1) Using the structure theory of simple Lie algebras, produce a combinatorial datum, the root system. 2) Study root systems combinatorially arriving at equivalent data (Cartan matrix/ Dynkin diagram). 3) Given a Cartan matrix, produce a simple Lie algebra by generators and relations. In this lecture, we will cover the first two steps. The third step will be carried in Lecture 6. 1. Semisimple Lie algebras Our base field is C (we could use an arbitrary algebraically closed field of characteristic 0). 1.1. Criteria for semisimplicity. We are going to define the notion of a semisimple Lie algebra and give some criteria for semisimplicity. This turns out to be very similar to the case of semisimple associative algebras (although the proofs are much harder). Let g be a finite dimensional Lie algebra. Definition 1.1. We say that g is simple, if g has no proper ideals and dim g > 1 (so we exclude the one-dimensional abelian Lie algebra). We say that g is semisimple if it is the direct sum of simple algebras. Any semisimple algebra g is the Lie algebra of an algebraic group, we can take the au- tomorphism group Aut(g). -
LECTURE 12: LIE GROUPS and THEIR LIE ALGEBRAS 1. Lie
LECTURE 12: LIE GROUPS AND THEIR LIE ALGEBRAS 1. Lie groups Definition 1.1. A Lie group G is a smooth manifold equipped with a group structure so that the group multiplication µ : G × G ! G; (g1; g2) 7! g1 · g2 is a smooth map. Example. Here are some basic examples: • Rn, considered as a group under addition. • R∗ = R − f0g, considered as a group under multiplication. • S1, Considered as a group under multiplication. • Linear Lie groups GL(n; R), SL(n; R), O(n) etc. • If M and N are Lie groups, so is their product M × N. Remarks. (1) (Hilbert's 5th problem, [Gleason and Montgomery-Zippin, 1950's]) Any topological group whose underlying space is a topological manifold is a Lie group. (2) Not every smooth manifold admits a Lie group structure. For example, the only spheres that admit a Lie group structure are S0, S1 and S3; among all the compact 2 dimensional surfaces the only one that admits a Lie group structure is T 2 = S1 × S1. (3) Here are two simple topological constraints for a manifold to be a Lie group: • If G is a Lie group, then TG is a trivial bundle. n { Proof: We identify TeG = R . The vector bundle isomorphism is given by φ : G × TeG ! T G; φ(x; ξ) = (x; dLx(ξ)) • If G is a Lie group, then π1(G) is an abelian group. { Proof: Suppose α1, α2 2 π1(G). Define α : [0; 1] × [0; 1] ! G by α(t1; t2) = α1(t1) · α2(t2). Then along the bottom edge followed by the right edge we have the composition α1 ◦ α2, where ◦ is the product of loops in the fundamental group, while along the left edge followed by the top edge we get α2 ◦ α1. -
Irreducible Representations of Complex Semisimple Lie Algebras
Irreducible Representations of Complex Semisimple Lie Algebras Rush Brown September 8, 2016 Abstract In this paper we give the background and proof of a useful theorem classifying irreducible representations of semisimple algebras by their highest weight, as well as restricting what that highest weight can be. Contents 1 Introduction 1 2 Lie Algebras 2 3 Solvable and Semisimple Lie Algebras 3 4 Preservation of the Jordan Form 5 5 The Killing Form 6 6 Cartan Subalgebras 7 7 Representations of sl2 10 8 Roots and Weights 11 9 Representations of Semisimple Lie Algebras 14 1 Introduction In this paper I build up to a useful theorem characterizing the irreducible representations of semisim- ple Lie algebras, namely that finite-dimensional irreducible representations are defined up to iso- morphism by their highest weight ! and that !(Hα) is an integer for any root α of R. This is the main theorem Fulton and Harris use for showing that the Weyl construction for sln gives all (finite-dimensional) irreducible representations. 1 In the first half of the paper we'll see some of the general theory of semisimple Lie algebras| building up to the existence of Cartan subalgebras|for which we will use a mix of Fulton and Harris and Serre ([1] and [2]), with minor changes where I thought the proofs needed less or more clarification (especially in the proof of the existence of Cartan subalgebras). Most of them are, however, copied nearly verbatim from the source. In the second half of the paper we will describe the roots of a semisimple Lie algebra with respect to some Cartan subalgebra, the weights of irreducible representations, and finally prove the promised result. -
CLIFFORD ALGEBRAS Property, Then There Is a Unique Isomorphism (V ) (V ) Intertwining the Two Inclusions of V
CHAPTER 2 Clifford algebras 1. Exterior algebras 1.1. Definition. For any vector space V over a field K, let T (V ) = k k k Z T (V ) be the tensor algebra, with T (V ) = V V the k-fold tensor∈ product. The quotient of T (V ) by the two-sided⊗···⊗ ideal (V ) generated byL all v w + w v is the exterior algebra, denoted (V ).I The product in (V ) is usually⊗ denoted⊗ α α , although we will frequently∧ omit the wedge ∧ 1 ∧ 2 sign and just write α1α2. Since (V ) is a graded ideal, the exterior algebra inherits a grading I (V )= k(V ) ∧ ∧ k Z M∈ where k(V ) is the image of T k(V ) under the quotient map. Clearly, 0(V )∧ = K and 1(V ) = V so that we can think of V as a subspace of ∧(V ). We may thus∧ think of (V ) as the associative algebra linearly gener- ated∧ by V , subject to the relations∧ vw + wv = 0. We will write φ = k if φ k(V ). The exterior algebra is commutative | | ∈∧ (in the graded sense). That is, for φ k1 (V ) and φ k2 (V ), 1 ∈∧ 2 ∈∧ [φ , φ ] := φ φ + ( 1)k1k2 φ φ = 0. 1 2 1 2 − 2 1 k If V has finite dimension, with basis e1,...,en, the space (V ) has basis ∧ e = e e I i1 · · · ik for all ordered subsets I = i1,...,ik of 1,...,n . (If k = 0, we put { } k { n } e = 1.) In particular, we see that dim (V )= k , and ∅ ∧ n n dim (V )= = 2n. -
Algebraic D-Modules and Representation Theory Of
Contemporary Mathematics Volume 154, 1993 Algebraic -modules and Representation TheoryDof Semisimple Lie Groups Dragan Miliˇci´c Abstract. This expository paper represents an introduction to some aspects of the current research in representation theory of semisimple Lie groups. In particular, we discuss the theory of “localization” of modules over the envelop- ing algebra of a semisimple Lie algebra due to Alexander Beilinson and Joseph Bernstein [1], [2], and the work of Henryk Hecht, Wilfried Schmid, Joseph A. Wolf and the author on the localization of Harish-Chandra modules [7], [8], [13], [17], [18]. These results can be viewed as a vast generalization of the classical theorem of Armand Borel and Andr´e Weil on geometric realiza- tion of irreducible finite-dimensional representations of compact semisimple Lie groups [3]. 1. Introduction Let G0 be a connected semisimple Lie group with finite center. Fix a maximal compact subgroup K0 of G0. Let g be the complexified Lie algebra of G0 and k its subalgebra which is the complexified Lie algebra of K0. Denote by σ the corresponding Cartan involution, i.e., σ is the involution of g such that k is the set of its fixed points. Let K be the complexification of K0. The group K has a natural structure of a complex reductive algebraic group. Let π be an admissible representation of G0 of finite length. Then, the submod- ule V of all K0-finite vectors in this representation is a finitely generated module over the enveloping algebra (g) of g, and also a direct sum of finite-dimensional U irreducible representations of K0. -
On the Third-Degree Continuous Cohomology of Simple Lie Groups 2
ON THE THIRD-DEGREE CONTINUOUS COHOMOLOGY OF SIMPLE LIE GROUPS CARLOS DE LA CRUZ MENGUAL ABSTRACT. We show that the class of connected, simple Lie groups that have non-vanishing third-degree continuous cohomology with trivial ℝ-coefficients consists precisely of all simple §ℝ complex Lie groups and of SL2( ). 1. INTRODUCTION ∙ Continuous cohomology Hc is an invariant of topological groups, defined in an analogous fashion to the ordinary group cohomology, but with the additional assumption that cochains— with values in a topological group-module as coefficient space—are continuous. A basic refer- ence in the subject is the book by Borel–Wallach [1], while a concise survey by Stasheff [12] provides an overview of the theory, its relations to other cohomology theories for topological groups, and some interpretations of algebraic nature for low-degree cohomology classes. In the case of connected, (semi)simple Lie groups and trivial real coefficients, continuous cohomology is also known to successfully detect geometric information. For example, the situ- ation for degree two is well understood: Let G be a connected, non-compact, simple Lie group 2 ℝ with finite center. Then Hc(G; ) ≠ 0 if and only G is of Hermitian type, i.e. if its associated symmetric space of non-compact type admits a G-invariant complex structure. If that is the case, 2 ℝ Hc(G; ) is one-dimensional, and explicit continuous 2-cocycles were produced by Guichardet– Wigner in [6] as an obstruction to extending to G a homomorphism K → S1, where K<G is a maximal compact subgroup. The goal of this note is to clarify a similar geometric interpretation of the third-degree con- tinuous cohomology of simple Lie groups. -
LIE GROUPS and ALGEBRAS NOTES Contents 1. Definitions 2
LIE GROUPS AND ALGEBRAS NOTES STANISLAV ATANASOV Contents 1. Definitions 2 1.1. Root systems, Weyl groups and Weyl chambers3 1.2. Cartan matrices and Dynkin diagrams4 1.3. Weights 5 1.4. Lie group and Lie algebra correspondence5 2. Basic results about Lie algebras7 2.1. General 7 2.2. Root system 7 2.3. Classification of semisimple Lie algebras8 3. Highest weight modules9 3.1. Universal enveloping algebra9 3.2. Weights and maximal vectors9 4. Compact Lie groups 10 4.1. Peter-Weyl theorem 10 4.2. Maximal tori 11 4.3. Symmetric spaces 11 4.4. Compact Lie algebras 12 4.5. Weyl's theorem 12 5. Semisimple Lie groups 13 5.1. Semisimple Lie algebras 13 5.2. Parabolic subalgebras. 14 5.3. Semisimple Lie groups 14 6. Reductive Lie groups 16 6.1. Reductive Lie algebras 16 6.2. Definition of reductive Lie group 16 6.3. Decompositions 18 6.4. The structure of M = ZK (a0) 18 6.5. Parabolic Subgroups 19 7. Functional analysis on Lie groups 21 7.1. Decomposition of the Haar measure 21 7.2. Reductive groups and parabolic subgroups 21 7.3. Weyl integration formula 22 8. Linear algebraic groups and their representation theory 23 8.1. Linear algebraic groups 23 8.2. Reductive and semisimple groups 24 8.3. Parabolic and Borel subgroups 25 8.4. Decompositions 27 Date: October, 2018. These notes compile results from multiple sources, mostly [1,2]. All mistakes are mine. 1 2 STANISLAV ATANASOV 1. Definitions Let g be a Lie algebra over algebraically closed field F of characteristic 0. -
Introuduction to Representation Theory of Lie Algebras
Introduction to Representation Theory of Lie Algebras Tom Gannon May 2020 These are the notes for the summer 2020 mini course on the representation theory of Lie algebras. We'll first define Lie groups, and then discuss why the study of representations of simply connected Lie groups reduces to studying representations of their Lie algebras (obtained as the tangent spaces of the groups at the identity). We'll then discuss a very important class of Lie algebras, called semisimple Lie algebras, and we'll examine the repre- sentation theory of two of the most basic Lie algebras: sl2 and sl3. Using these examples, we will develop the vocabulary needed to classify representations of all semisimple Lie algebras! Please email me any typos you find in these notes! Thanks to Arun Debray, Joakim Færgeman, and Aaron Mazel-Gee for doing this. Also{thanks to Saad Slaoui and Max Riestenberg for agreeing to be teaching assistants for this course and for many, many helpful edits. Contents 1 From Lie Groups to Lie Algebras 2 1.1 Lie Groups and Their Representations . .2 1.2 Exercises . .4 1.3 Bonus Exercises . .4 2 Examples and Semisimple Lie Algebras 5 2.1 The Bracket Structure on Lie Algebras . .5 2.2 Ideals and Simplicity of Lie Algebras . .6 2.3 Exercises . .7 2.4 Bonus Exercises . .7 3 Representation Theory of sl2 8 3.1 Diagonalizability . .8 3.2 Classification of the Irreducible Representations of sl2 .............8 3.3 Bonus Exercises . 10 4 Representation Theory of sl3 11 4.1 The Generalization of Eigenvalues .