Ultrafast Investigations of Materials Using Angle-Resolved Photoemission Spectroscopy with High Harmonic Generation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Plasma Enhanced Chemical Vapor Deposition of Organic Polymers
processes Review Plasma Enhanced Chemical Vapor Deposition of Organic Polymers Gerhard Franz Department of Applied Sciences and Mechatronics, Munich University of Applied Sciences (MUAS), 34 Lothstrasse, Munich, D-80335 Bavaria, Germany; [email protected] Abstract: Chemical Vapor Deposition (CVD) with its plasma-enhanced variation (PECVD) is a mighty instrument in the toolbox of surface refinement to cover it with a layer with very even thickness. Remarkable the lateral and vertical conformity which is second to none. Originating from the evaporation of elements, this was soon applied to deposit compound layers by simultaneous evaporation of two or three elemental sources and today, CVD is rather applied for vaporous reactants, whereas the evaporation of solid sources has almost completely shifted to epitaxial processes with even lower deposition rates but growth which is adapted to the crystalline substrate. CVD means first breaking of chemical bonds which is followed by an atomic reorientation. As result, a new compound has been generated. Breaking of bonds requires energy, i.e., heat. Therefore, it was a giant step forward to use plasmas for this rate-limiting step. In most cases, the maximum temperature could be significantly reduced, and eventually, also organic compounds moved into the preparative focus. Even molecules with saturated bonds (CH4) were subjected to plasmas—and the result was diamond! In this article, some of these strategies are portrayed. One issue is the variety of reaction paths which can happen in a low-pressure plasma. It can act as a source for deposition and etching which turn out to be two sides of the same medal. -
Lecture06-Thin Film Deposition
EE143 – Fall 2016 Microfabrication Technologies Lecture 6: Thin Film Deposition Reading: Jaeger Chapter 6 Prof. Ming C. Wu [email protected] 511 Sutardja Dai Hall (SDH) 1 Vacuum Basics • Units – 1 atmosphere = 760 torr = 1.013x105 Pa – 1 bar = 105 Pa = 750 torr – 1 torr = 1 mm Hg – 1 mtorr = 1 micron Hg – 1 Pa = 7.5 mtorr = 1 newton/m2 – 1 torr = 133.3 Pa • Ideal Gas Law: PV = NkT – k = 1.38E-23 Joules/K = 1.37E-22 atm cm3/K – N = # of molecules (note the typo in your book) – T = absolute temperature in K 2 1 Dalton’s Law of Partial Pressure • For mixture of non-reactive gases in a common vessel, each gas exerts its pressure independent of others • ������ = �� + �� + ⋯ . +�� – Total pressure = Sum of partial pressures • ������ = �� + �� + ⋯ . +�� – Total number of molecules = sum of individual molecules • Ideal gas law observed by each gas, as well as all gases – ��� = ���� – ��� = ���� – ��� = ���� 3 Average Molecular Velocity • Assumes Maxwell- Boltzman Velocity Distribution 7 ��� �3 = �� • where m = molecular weight of gas molecule 4 2 Mean Free Path between collisions �� � = 7 ����� • where – K = Boltzmann constant – T = temperature in Kelvin – d = molecular diameter – P = pressure • For air at 300K �. � �. �� �(�� ��) = = � (�� ��) � (�� ����) 5 Impingement Rate • � = number of molecules striking a surface per unit area per unit time [1/cm2-sec] � � = �. �×���� 7 �� • where – P = pressure in torr – M = molecular weight 6 3 Question • How long does it take to form a monolayer of gas on the surface of a substrate? 7 Vacuum Basics -
Sculpturing the Electron Wave Function
Sculpturing the Electron Wave Function Roy Shiloh, Yossi Lereah, Yigal Lilach and Ady Arie Department of Physical Electronics, Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel Coherent electrons such as those in electron microscopes, exhibit wave phenomena and may be described by the paraxial wave equation1. In analogy to light-waves2,3, governed by the same equation, these electrons share many of the fundamental traits and dynamics of photons. Today, spatial manipulation of electron beams is achieved mainly using electrostatic and magnetic fields. Other demonstrations include simple phase-plates4 and holographic masks based on binary diffraction gratings5–8. Altering the spatial profile of the beam may be proven useful in many fields incorporating phase microscopy9,10, electron holography11–14, and electron-matter interactions15. These methods, however, are fundamentally limited due to energy distribution to undesired diffraction orders as well as by their binary construction. Here we present a new method in electron-optics for arbitrarily shaping of electron beams, by precisely controlling an engineered pattern of thicknesses on a thin-membrane, thereby molding the spatial phase of the electron wavefront. Aided by the past decade’s monumental leap in nano-fabrication technology and armed with light- optic’s vast experience and knowledge, one may now spatially manipulate an electron beam’s phase in much the same way light waves are shaped simply by passing them through glass elements such as refractive and diffractive lenses. We show examples of binary and continuous phase-plates and demonstrate the ability to generate arbitrary shapes of the electron wave function using a holographic phase-mask. -
Deposition Lecture Day 2 Deposition
Deposition Lecture Day 2 Deposition PVD - Physical Vapor Deposition E-beam Evaporation Thermal Evaporation (wire feed vs boat) Sputtering CVD - Chemical Vapor Deposition PECVD LPCVD MVD ALD MBE Plating Parylene Coating Vacuum Systems, pumps and support equipment Differences, Pros and Cons for depositing various materials Physical vs. Chemical Deposition Metallization - depositing metal layers or thin films - E-beam & Thermal Evaporation, Sputtering, Plating - Contact layer, mask/protection layer, interface layers Dielectric Deposition - depositing dielectric layers or thin films -CVD, e-beam, sputtering - insulating/capacitor layer, mask/protecting layer, interface layers *Dielectric = an electrical insulator that can be polarized by an applied electric field. ~energy storing capacity → capacitor Environment of the Deposition *Cleanroom is not enough! Must also be in vacuum! Purity of the deposited film depends on the quality of the vacuum, and on the purity of the source material. Cryo pumps Evaporation is a common method of thin-film deposition. The source material is evaporated in a vacuum. The vacuum allows vapor particles to travel directly to the target object (substrate), where they condense back to a solid state. Evaporation is used in microfabrication, and to make macro-scale products such as metallized plastic film. Any evaporation system includes a vacuum pump. It also includes an energy source that evaporates the material to be deposited. Many different energy sources exist: ● In the thermal method, metal material (in the form of wire, pellets, shot) is fed onto heated semimetal (ceramic) evaporators known as "boats" due to their shape. A pool of melted metal forms in the boat cavity and evaporates into a cloud above the source. -
Electron Microscopy
Electron microscopy 1 Plan 1. De Broglie electron wavelength. 2. Davisson – Germer experiment. 3. Wave-particle dualism. Tonomura experiment. 4. Wave: period, wavelength, mathematical description. 5. Plane, cylindrical, spherical waves. 6. Huygens-Fresnel principle. 7. Scattering: light, X-rays, electrons. 8. Electron scattering. Born approximation. 9. Electron-matter interaction, transmission function. 10. Weak phase object (WPO) approximation. 11. Electron scattering. Elastic and inelastic scattering 12. Electron scattering. Kinematic and dynamic diffraction. 13. Imaging phase objects, under focus, over focus. Transport of intensity equation. 2 Electrons are particles and waves 3 De Broglie wavelength PhD Thesis, 1924: “With every particle of matter with mass m and velocity v a real wave must be associated” h p 2 h mv p mv Ekin eU 2 2meU Louis de Broglie (1892 - 1987) – wavelength h – Planck constant hc eU – electron energy in eV eU eU2 m c2 eU m0 – electron rest mass 0 c – speed of light The Nobel Prize in Physics 1929 was awarded to Prince Louis-Victor Pierre Raymond de Broglie "for his discovery of the wave nature of electrons." 4 De Broigle “Recherches sur la Théorie des Quanta (Researches on the quantum theory)” (1924) Electron wavelength 142 pm 80 keV – 300 keV 5 Davisson – Germer experiment (1923 – 1929) The first direct evidence confirming de Broglie's hypothesis that particles can have wave properties as well 6 C. Davisson, L. H. Germer, "The Scattering of Electrons by a Single Crystal of Nickel" Nature 119(2998), 558 (1927) Davisson – Germer experiment (1923 – 1929) The first direct evidence confirming de Broglie's hypothesis that particles can have wave properties as well Clinton Joseph Davisson (left) and Lester Germer (right) George Paget Thomson Nobel Prize in Physics 1937: Davisson and Thomson 7 C. -
Evaporation Sources
MATERIALS EVAPORATION I SOURCES • Evaporation Source Selection Guide ................... .I 02 • Tungsten Filaments for Vacuum Metalizing.......... .I 04 I • Tungsten Rod Source ..................................... .I 07 • Point Source Loop Filaments............................. .I 08 • Heater Filaments ............................................ I 10 • Baskets ........................................................ .I 11 • Crucibles ...................................................... .I 14 • Heat Shielded Crucible Heaters ......................... .I 16 • Boat Sources ................................................. .I 18 • Folded Boats ................................................. .I 29 • Alumina Coated Evaporation Sources.................. .I 31 • Special Tantalum Boats.................................... I 37 • Folded Baffled Box Sources .............................. .I 41 • Baffled Box Sources for SiO, ZnS ....................... .I 43 • Microelectronic Sources Tungsten – Tantalum – Molybdenum .................................. .I 48 • Chrome Plated Tungsten Rods .......................... .I 53 • Tungsten Screens .......................................... .I 54 I 01 MATERIALS EvaporatioN SOUrces ManufacturingEvaporation Source Processes Selection Guide Evaporation Source Selection Guide This source selection guide is provided to help you determine which evaporation source type might fit your needs. How to use the Guide: 1. Determine how much current your power supply is capable of safely producing. 2. Establish the vapor -
Technical Paper
TECHNICAL PAPER Materials & Deposition Technology for Coating Optical Surfaces Understanding the Components of the Process Author: Samuel Pellicori Materion Coating Materials News The materials and deposition processes employed to make coatings that are intended for use at wavelength regions between UV and far IR are described in this overview of the technology. Coatings composed of special materials are deposited as nano- and micro- meter thicknesses by specific techniques to control the optical, mechanical, chemical and electrical properties of optical surfaces. Design & Engineering Considerations for Coating Optical Components The components of the deposition process, starting with the performance specifications and continuing through the finished coated surface, are diagrammed in Figure 1. It is evident from the number and descriptions of the process components that material science and deposition technology play complex interdependent roles in the overall process of producing optical coatings. It is important for the system designer to understand the individual components of the process and their interactions. When presented with the spectral and environmental requirements and the substrate material to be coated, the coating engineer has the responsibility of selecting the appropriate coating materials and deposition process. A thin-film design is then generated that includes the wavelength dependencies of the optical constants, refractive index and extinction coefficient - quantities that need to be pre-determined for specific materials and their deposition process parameters. From this theoretical layer-by-layer design, the performance is predicted and evaluated with respect to spectral coverage, incidence angle, surface shape, substrate temperature constraints, mechanical durability and verification measurement. The technology of preparing the coating material is equally complex and includes consideration of such factors as chemical composition, form, and deposition technique. -
Studying Charged Particle Optics: an Undergraduate Course
IOP PUBLISHING EUROPEAN JOURNAL OF PHYSICS Eur. J. Phys. 29 (2008) 251–256 doi:10.1088/0143-0807/29/2/007 Studying charged particle optics: an undergraduate course V Ovalle1,DROtomar1,JMPereira2,NFerreira1, RRPinho3 and A C F Santos2,4 1 Instituto de Fisica, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/n◦. Gragoata,´ Niteroi,´ 24210-346 Rio de Janeiro, Brazil 2 Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, Brazil 3 Departamento de F´ısica–ICE, Universidade Federal de Juiz de Fora, Campus Universitario,´ 36036-900, Juiz de Fora, MG, Brazil E-mail: [email protected] (A C F Santos) Received 23 August 2007, in final form 12 December 2007 Published 17 January 2008 Online at stacks.iop.org/EJP/29/251 Abstract This paper describes some computer-based activities to bring the study of charged particle optics to undergraduate students, to be performed as a part of a one-semester accelerator-based experimental course. The computational simulations were carried out using the commercially available SIMION program. The performance parameters, such as the focal length and P–Q curves are obtained. The three-electrode einzel lens is exemplified here as a study case. Introduction For many decades, physicists have been employing charged particle beams in order to investigate elementary processes in nuclear, atomic and particle physics using accelerators. In addition, many areas such as biology, chemistry, engineering, medicine, etc, have benefited from using beams of ions or electrons so that their phenomenological aspects can be understood. Among all its applications, electron microscopy may be one of the most important practical applications of lenses for charged particles. -
1 Transport of Charged Particle Beams
COURSE OUTLINE Final September 30, 2013 CPOTS 2013 CHARGED PARTICLE OPTICS – THEORY AND SIMULATION (CPOTS) Erasmus Intensive Programme Physics Department University of Crete August 15 – 31, 2013 Heraklion, Crete, Greece Participating Institutions and Instructors 1. University of Crete (UoC) Prof. Theo Zouros* (Project coordinator) 2. Afyon Kocatepe University (AKU) Prof. Mevlut Dogan (contact) Dr. Zehra Nur Ӧzer* 3. Selçuk University (SU) Prof. Hamdi Sukur Kilic (contact) 4. Universidad Computense Madrid (UCM) Prof. Genoveva Martinez - Lopez (contact) Pilar Garcés* 5. University of Ioannina (UoI) Prof. Manolis Benis* (contact) 6. Technische Universität Wien (TUW) Prof. Christoph Lemell* 7. Queen’s University Belfast (QUB) Prof. Jason Greenwood* (contact) Louise Belshaw* 8. University of Debrecen (UoD) Prof. Béla Sulik (contact) 9. University of Athens (UoA) Prof. Theo Mertzimekis (contact – was not able to be present) *SIMION user CPOTS 2013 – Erasmus IP August 15 –31, Heraklion, Crete Page 1 COURSE OUTLINE Final September 30, 2013 CPOTS 2013 Medical University of South Carolina Prof. Dan Knapp (guest) General IP rules and participant information Attendance sheet An attendance sheet will be maintained for all lectures and labs for all participants (teachers and students). Teachers 1. Minimum suggested stay at an Erasmus IP including travel both ways: 5 days (as certified by the attendance sheet). 2. Minimum number of suggested lecturing + lab hours at an Erasmus IP: 5 hours(as certified by the attendance sheet). 3. A minimum of two laboratory instructors will be available at every afternoon laboratory session. 4. The instructor in charge of each unit will be responsible for: i) The proper execution of the lectures as described in the work program. -
Physical Vapor Deposition
EE-527: MicroFabrication Physical Vapor Deposition R. B. Darling / EE-527 / Winter 2013 Physical Vapor Deposition (PVD) Gas Phase Gas Phase Transport Evaporation Condensation Condensed Phase Condensed Phase (solid or liquid) (usually solid) R. B. Darling / EE-527 / Winter 2013 Equilibrium Vapor Pressure • P* is the partial pressure of a gas in equilibrium with its condensed phase at a given temperature T. – There is no net transfer of material from one state to the other. • For a given material, P* is only a function of T. – But the dependence of P* on T is rather complicated. R. B. Darling / EE-527 / Winter 2013 Evaporation Rates - 1 • P* is the equilibrium vapor pressure of the evaporant at T. • P is the ambient hydrostatic pressure acting upon the evaporant in the condensed phase. • Heinrich Hertz found experimentally that the evaporation rate was proportional to (P* - P). – This is consistent with kinetic theory in which the impingement rates are proportional to pressure. – Hertz also found that the evaporation rate could not be increased by supplying more heat unless the equilibrium vapor pressure was also increased by this action. – Thus, there is a maximum evaporation rate set by P*, and this is only achieved in a vacuum, where P = 0. R. B. Darling / EE-527 / Winter 2013 Evaporation Rates - 2 • This can be viewed as two opposing fluxes: The net evaporation flux is the difference between the impingement rates for the evaporant vapor two fluxes: rate goes as P dNe 1/ 2 * 2mkBT P P Aedt rate goes as P* condensed evaporant R. B. -
Angle-Resolved Photoemission Spectroscopy Studies on Cuprate and Iron-Pnictide High-Tc Superconductors
University of Colorado, Boulder CU Scholar Physics Graduate Theses & Dissertations Physics Spring 1-1-2011 Angle-Resolved Photoemission Spectroscopy Studies on Cuprate and Iron-Pnictide High-Tc Superconductors Qiang Wang University of Colorado at Boulder, [email protected] Follow this and additional works at: http://scholar.colorado.edu/phys_gradetds Part of the Condensed Matter Physics Commons Recommended Citation Wang, Qiang, "Angle-Resolved Photoemission Spectroscopy Studies on Cuprate and Iron-Pnictide High-Tc Superconductors" (2011). Physics Graduate Theses & Dissertations. Paper 49. This Dissertation is brought to you for free and open access by Physics at CU Scholar. It has been accepted for inclusion in Physics Graduate Theses & Dissertations by an authorized administrator of CU Scholar. For more information, please contact [email protected]. Angle-Resolved Photoemission Spectroscopy Studies on Cuprate and Iron-Pnictide High-T c Superconductors by Qiang Wang B.S., University of Science and Technology of China, 2003 M.S., University of Colorado, 2008 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Physics 2011 This thesis entitled: Angle-Resolved Photoemission Spectroscopy Studies on Cuprate and Iron-Pnictide High-T c Superconductors written by Qiang Wang has been approved for the Department of Physics Daniel S. Dessau Assoc. Prof. Dmitry Reznik Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. Wang, Qiang (Ph.D., Physics) Angle-Resolved Photoemission Spectroscopy Studies on Cuprate and Iron-Pnictide High-T c Super- conductors Thesis directed by Prof. -
Geometrical Optics for Electrons Quite Similar to the Optics of Light
THE ELECTRON MICROSCOPE A NEW ToOL FOR BACTERIOLOGICAL RESEARCH L. MARTON Research Laboratories, RCA Manufacturing Company Received for publication August 1, 1940 The science of bacteriology could hardly exist without the microscope, and it is almost providential that pathogenic bacteria are within the limits of visibility of the present-day microscope. However, the limits of microscopical observation have been severely felt since early in the development of bacteriological research, and many attempts have been made to extend the range of- observation. These attempts brought the realization that the sizes of micro-organisms extended far beyond the limits of visibility of light microscopes, and therefore the need has been constantly felt for a better instrument which would give more detail. Such an instrument is provided in the electron micro- scope which, in its present-day development, extends the obser- vation range by a factor of about 50 to 100, with possible further extensions in the future. Electron microscopy is based on the discovery of geometrical optics for electrons quite similar to the optics of light. To understand the term "geometrical optics" let us first consider the action of an electric or magnetic field on an electron beam. It is well known that an electron beam is deflected by such fields, and we can therefore compare their action on the beam to the action of a refractive medium on a light beam. A lens is nothing but a refractive medium of special symmetry-in this particular case of rotational symmetry. If we create an electric or mag- netic field of rotational symmetry, such a field acts on an electron beam as a lens, i.e., the electron beam is concentrated or made divergent in the same way that the light beam is acted upon 397 398 L.