Long Noncoding Rnas: the Search for Function Monya Baker

Total Page:16

File Type:pdf, Size:1020Kb

Long Noncoding Rnas: the Search for Function Monya Baker TECHNOLOGY FEATURE Tool box 380 Getting structure 382 Box 1: Long noncoding RNAs regulating genes 380 Box 2: Possible roles for long noncoding RNA 381 Long noncoding RNAs: the search for function Monya Baker Transcripts are easy to find: sorting out what they do is a challenge. In the late 1990s, before the publication of the human genome, John Rinn, then at Protein X Yale University, was hunting for protein ? genes on chromosome 22 with his gradu- ate student adviser Michael Snyder. The lncRNA only genes they found were ones that had (iii) Protein X Activate or already been discovered, but their arrays repress protein identified a steady stream of transcribed gene ? regions with no apparent purpose. These POL II long noncoding RNAs (lncRNAs) came Gene A Gene B ... from genome regions that were known to lack protein genes. The transcripts also lncRNA lacked open reading frames and other (i) ? Z properties necessary for them to be trans- Protein X lated into proteins. lncRNA X Most scientists at the time dismissed (ii) such transcripts as noise, but Rinn kept doing experiments. “I started cloning Y them,” he recalls, “and I realized that if I X Nature America, Inc. All rights reserved. All rights Inc. America, Nature 1 could clone them, they must be stable.” And if they were stable, he thought, per- © 201 haps they were functional, too. In 2004, Z Rinn took a postdoctoral position with Rinn J. Howard Chang at Stanford University, Long noncoding RNAs (lncRNAs) could be a byproduct of transcription (i), a scaffold linking after the two came up with a scheme to proteins (ii) or a guide bringing proteins to specified parts of the genome (iii). The same lncRNA learn what, if anything, these mysterious can function simultaneously as a scaffold and a guide. POL II, RNA polymerase II. transcripts were doing. This work led eventually to the dis- covery of a noncoding RNA they named Function focus different cells. Other researchers have HOTAIR1. This 2.2-kilobase spliced RNA Everyone has favorite analogies for how suggested an effector component: lncRNA transcript interacts with the protein com- lncRNAs might function. Chang recently binds to a protein, changing its structure plex polycomb to modify chromatin and showed that HOTAIR serves as a ‘modu- and activating it4. Tom Cech, a scientist repress transcription of the human HOX lar scaffold’, assembling a molecular cargo at the University of Colorado at Boulder genes, which regulate development. How of specific combinations of enzymes that who won the Nobel Prize for his work on exactly it does so is still unclear. are equipped to regulate target genes2. RNA, believes that each of these mecha- What is clear is that HOTAIR is just one Rinn likens some of these scaffolds to an nisms and more may be in play. of thousands of lncRNAs. Although less air traffic controller, guiding regulatory The possibilities seem endless (Box 2). than 2% of a mammalian genome codes machinery to the appropriate spots in the Some lncRNAs may even enhance tran- for protein, studies consistently show that genome. His work has shown that hun- scription through chromosome looping half or even more of the genome is tran- dreds of lncRNAs are physically associ- or other means5,6. “I don’t know why peo- scribed. Partly because suitable research ated with polycomb and other chromatin- ple think that lncRNAs are all doing one tools are in their infancy, scientists are modifying complexes3. That, he says, thing,” says Rinn. “They are just new types only beginning to uncover the functions would explain why the same protein of genes, and their repertoire of functions of these transcripts (Box 1). complexes act on different sequences in I think will rival the proteome.” NATURE METHODS | VOL.8 NO.5 | MAY 2011 | 379 TECHNOLOGY FEATURE BOX 1 LONG NONCODING RNAs REGULATING GENES Although researchers are still struggling to uncover the stress, DNA damage and p53, a protein that regulates the cell mechanisms and protein partners of long noncoding RNAs cycle and is implicated in about half of all human cancers12. (lncRNAs), evidence of their importance in basic biology Another set of experiments hinted at extensive regulatory is pouring in. systems featuring lncRNAs. Several lncRNAs were found to be Last year, John Rinn at the Broad Institute and colleagues regulated by p53; one transcript, lncRNA-21, binds a protein used a specially designed microarray to test the expression known as heterogeneous nuclear ribonucleoprotein K (hnRNP-K). of about 900 lncRNAs in human fibroblasts and pluripotent Almost 600 genes are affected in common by all three—p53, stem cells. Just over 100 lncRNAs were induced when lncRNA-21 and hnRNP-K (ref. 13). fibroblasts were reprogrammed to pluripotency; a similar This March, Howard Chang at Stanford University described number of lncRNAs were repressed. The team focused on how a lncRNA called HOTTIP can help to activate the transcription a couple of dozen lncRNAs that were more upregulated in of several HOXA genes in vivo. The molecule is transcribed from induced pluripotent stem cells than in embryonic stem cells, the tip of the HOXA@ locus, where it binds adaptor proteins reasoning that these would be particularly important for and sets nearby chromatin marks to drive transcription. When reprogramming. Previously published data indicated that HOTTIP was knocked down, the proteins MLL1 and WDR5 were Oct4, an essential transcription factor for pluripotency, was not observed on the transcription start sites of HOX5 genes as binding sites in the genome identified as coding for lncRNAs. they normally are. However, these effects could not be rescued by Gain- and loss-of-function experiments showed that at expressing HOTTIP from another region on the genome, indicating least one of these, called lincRNA-RoR, for long intergenic that the lncRNA must work from the chromosome on which noncoding RNA and regulator of reprogramming, was it is transcribed. Indeed, chromosome conformation capture essential for a variety of functions, including reprogramming techniques have indicated that chromatin looping brings the RNA as well as modulating genes known to respond to oxidative into close proximity to the activated genes3. Because their functions are difficult to that are sticking well above the pack.” And really proof,” he says. “Ultimately we have study, long noncoding RNAs are gener- though the work is still in early stages, it to go in and do experiments to demon- ally classified by their origins. They seem seems to be paying off. Knocking down strate that things have function.” to come from everywhere in the genome: or ectopically expressing these transcripts Advances in uncovering the function the noncoding side of genes, alongside and changes cells’ phenotypes for about half of of lncRNAs could be self-reinforcing, between the protein-coding regions and, the cases he has investigated, he says. says Chang. Standard approaches often especially, the long stretches in genomes Still, the debate over just what propor- neglect noncoding genes. Whole-exon where no protein-coding genes are thought tion of all noncoding RNAs are function- capture used in disease association stud- to exist at all. Noncoding transcripts are al is surprisingly fierce. “It is difficult to ies, for example, restricts sequencing to Nature America, Inc. All rights reserved. All rights Inc. America, Nature 1 traditionally classified as long at around discriminate functional transcripts from regions that code for proteins. And when 200 nucleotides, an arbitrary distinction those that may be byproducts of other researchers find that a transcription factor © 201 based on RNA purification technologies. processes,” says Tim Hughes, a genome binds to an intergenic region, their first Most are thousands of nucleotides long. biologist at the University of Toronto, instinct is often to investigate the nearest Nowadays, new putative lncRNAs are “but many transcripts that come from ‘protein gene’. “The knowledge that there generally identified by an RNA sequenc- intergenic regions are starting to look like are long noncoding RNA genes could ing technique called RNA-seq, which uses real signals. They show up relatively con- change someone’s strategy,” says Chang. high-throughput sequencing to profile sistently in different experiments, contain cell transcripts. Chromatin analysis also splice junctions and are present in high Tool box helps. Work by Rinn and others showed numbers,” says Hughes. Still, he advocates As more researchers begin to investi- that histone methylation patterns that are caution. Differential expression could be gate lncRNAs, there is a greater need to characteristic of transcribed protein genes explained by activity in nearby protein- annotate them so that researchers know also apply to lncRNAs, and resulting ‘chro- coding genes, for example. “Higher abun- what to look for, know if they find some- matin-state maps’ have now been used to dance presumably increases the likelihood thing new and know how to name what flag thousands of putative lncRNAs6. that a transcript is functional, but it’s not they find. In general, microarrays cannot So many lncRNAs are being identified distinguish between different forms of a that it is difficult to know what to study transcript, and sequencing often indicates in depth, says John Mattick, a genome multiple ‘isoforms’ of a transcript without biologist at the University of Queensland. indicating which is the most biologically His tactic is to use microarray data to find relevant. “Protein-coding RNA has been transcripts with the greatest change in studied for long enough that most major expression between tissues; differences lab Lee J. Sarma, K. forms of the transcripts are known, but of more than 20-fold are not uncommon, RNA FISH probes (green) that bind the lncRNA lncRNAs are too new for that,” says Rinn. he says. “When you have a mountain of Xist (right) can be displaced using specially Right now, he says, it is not always clear things to look at, you just want the ones designed sequences of locked nucleic acids (left).
Recommended publications
  • Modes of Interaction of KMT2 Histone H3 Lysine 4 Methyltransferase/COMPASS Complexes with Chromatin
    cells Review Modes of Interaction of KMT2 Histone H3 Lysine 4 Methyltransferase/COMPASS Complexes with Chromatin Agnieszka Bochy ´nska,Juliane Lüscher-Firzlaff and Bernhard Lüscher * ID Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstrasse 30, 52057 Aachen, Germany; [email protected] (A.B.); jluescher-fi[email protected] (J.L.-F.) * Correspondence: [email protected]; Tel.: +49-241-8088850; Fax: +49-241-8082427 Received: 18 January 2018; Accepted: 27 February 2018; Published: 2 March 2018 Abstract: Regulation of gene expression is achieved by sequence-specific transcriptional regulators, which convey the information that is contained in the sequence of DNA into RNA polymerase activity. This is achieved by the recruitment of transcriptional co-factors. One of the consequences of co-factor recruitment is the control of specific properties of nucleosomes, the basic units of chromatin, and their protein components, the core histones. The main principles are to regulate the position and the characteristics of nucleosomes. The latter includes modulating the composition of core histones and their variants that are integrated into nucleosomes, and the post-translational modification of these histones referred to as histone marks. One of these marks is the methylation of lysine 4 of the core histone H3 (H3K4). While mono-methylation of H3K4 (H3K4me1) is located preferentially at active enhancers, tri-methylation (H3K4me3) is a mark found at open and potentially active promoters. Thus, H3K4 methylation is typically associated with gene transcription. The class 2 lysine methyltransferases (KMTs) are the main enzymes that methylate H3K4. KMT2 enzymes function in complexes that contain a necessary core complex composed of WDR5, RBBP5, ASH2L, and DPY30, the so-called WRAD complex.
    [Show full text]
  • A Long Noncoding RNA Maintains Active Chromatin to Coordinate Homeotic Gene Expression
    LETTER doi:10.1038/nature09819 A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression Kevin C. Wang1,2, Yul W. Yang1*, Bo Liu3*, Amartya Sanyal4, Ryan Corces-Zimmerman1, Yong Chen5, Bryan R. Lajoie4, Angeline Protacio1, Ryan A. Flynn1, Rajnish A. Gupta1, Joanna Wysocka6, Ming Lei5, Job Dekker4, Jill A. Helms3 & Howard Y. Chang1 The genome is extensively transcribed into long intergenic non- we suggest the name HOTTIP for ‘HOXA transcript at the distal tip’, coding RNAs (lincRNAs), many of which are implicated in gene exhibits bivalent H3K4me3 and H3K27me3, a histone modification silencing1,2. Potential roles of lincRNAs in gene activation are pattern associated with poised regulatory sequences16. Comparison much less understood3–5. Development and homeostasis require with RNA polymerase II occupancy and RNA expression showed that coordinate regulation of neighbouring genes through a process the bivalent H3K4me3 and H3K27me3 modifications on HOTTIP gene termed locus control6. Some locus control elements and enhancers do not require HOTTIP transcription, but transcription of HOTTIP is transcribe lincRNAs7–10, hinting at possible roles in long-range associated with increased H3K4me3 and decreased H3K27me3 (Fig. 1a, control. In vertebrates, 39 Hox genes, encoding homeodomain left). Chromatin immunoprecipitation (ChIP) analysis confirmed that transcription factors critical for positional identity, are clustered the HOTTIP gene is occupied by both polycomb repressive complex 2 in four chromosomal loci; the Hox genes are expressed in nested (PRC2) and MLL complex, consistent with the bivalent histone marks anterior-posterior and proximal-distal patterns colinear with their (Supplementary Fig. 1a). genomic position from 39 to 59of the cluster11.
    [Show full text]
  • Aberrant Activity of Histone–Lysine N-Methyltransferase 2 (KMT2) Complexes in Oncogenesis
    International Journal of Molecular Sciences Review Aberrant Activity of Histone–Lysine N-Methyltransferase 2 (KMT2) Complexes in Oncogenesis Elzbieta Poreba 1,* , Krzysztof Lesniewicz 2 and Julia Durzynska 1,* 1 Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Pozna´nskiego6, 61-614 Pozna´n,Poland 2 Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Pozna´nskiego6, 61-614 Pozna´n,Poland; [email protected] * Correspondence: [email protected] (E.P.); [email protected] (J.D.); Tel.: +48-61-829-5857 (E.P.) Received: 19 November 2020; Accepted: 6 December 2020; Published: 8 December 2020 Abstract: KMT2 (histone-lysine N-methyltransferase subclass 2) complexes methylate lysine 4 on the histone H3 tail at gene promoters and gene enhancers and, thus, control the process of gene transcription. These complexes not only play an essential role in normal development but have also been described as involved in the aberrant growth of tissues. KMT2 mutations resulting from the rearrangements of the KMT2A (MLL1) gene at 11q23 are associated with pediatric mixed-lineage leukemias, and recent studies demonstrate that KMT2 genes are frequently mutated in many types of human cancers. Moreover, other components of the KMT2 complexes have been reported to contribute to oncogenesis. This review summarizes the recent advances in our knowledge of the role of KMT2 complexes in cell transformation. In addition, it discusses the therapeutic targeting of different components of the KMT2 complexes. Keywords: histone–lysine N-methyltransferase 2; COMPASS; COMPASS-like; H3K4 methylation; oncogenesis; cancer; epigenetics; chromatin 1.
    [Show full text]
  • Rna-Mediated Programming of Active Chromatin A
    RNA-MEDIATED PROGRAMMING OF ACTIVE CHROMATIN A DISSERTATION SUBMITTED TO THE PROGRAM IN CANCER BIOLOGY AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Yul Wonjun Yang August 2012 © 2012 by Yul Wonjun Yang. All Rights Reserved. Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution- Noncommercial 3.0 United States License. http://creativecommons.org/licenses/by-nc/3.0/us/ This dissertation is online at: http://purl.stanford.edu/zj169pb5921 ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Howard Chang, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Paul Khavari I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Seung Kim I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Joanna Wysocka Approved for the Stanford University Committee on Graduate Studies. Patricia J. Gumport, Vice Provost Graduate Education This signature page was generated electronically upon submission of this dissertation in electronic format. An original signed hard copy of the signature page is on file in University Archives.
    [Show full text]
  • Regulation of DNA Replication and Chromosomal Polyploidy by The
    © 2016. Published by The Company of Biologists Ltd | Biology Open (2016) 5, 1449-1460 doi:10.1242/bio.019729 RESEARCH ARTICLE Regulation of DNA replication and chromosomal polyploidy by the MLL-WDR5-RBBP5 methyltransferases Fei Lu1,2,*, Xiaojun Wu1,*, Feng Yin1, Christina Chia-Fang Lee2, Min Yu1, Ivailo S. Mihaylov2, Jiekai Yu3, Hong Sun2,3 and Hui Zhang2,3,‡ ABSTRACT CDT1 onto specific DNA replication origins (Blow and Dutta, DNA replication licensing occurs on chromatin, but how the chromatin 2005). The licensing process of the replication origins further template is regulated for replication remains mostly unclear. Here, we requires the recruitment of the minichromosome maintenance have analyzed the requirement of histone methyltransferases for a protein complex (MCM), consisting of six MCM proteins specific type of replication: the DNA re-replication induced by the (MCM2-7) that form a replicative helicase complex, onto downregulation of either Geminin, an inhibitor of replication licensing chromatin for the next round of DNA replication (Remus et al., protein CDT1, or the CRL4CDT2 ubiquitin E3 ligase. We found that 2009). In metazoans, a critical regulation that prevents DNA re- siRNA-mediated reduction of essential components of the MLL- replication at replication origins in a cell cycle is mediated through WDR5-RBBP5 methyltransferase complexes including WDR5 or Geminin, a negative regulatory protein that directly binds to CDT1 RBBP5, which transfer methyl groups to histone H3 at K4 (H3K4), to inhibit the key licensing activity of CDT1 for replication initiation suppressed DNA re-replication and chromosomal polyploidy. (Blow and Dutta, 2005; McGarry and Kirschner, 1998; Melixetian Reduction of WDR5/RBBP5 also prevented the activation of H2AX and Helin, 2004; Mihaylov et al., 2002; Wohlschlegel et al., 2000; checkpoint caused by re-replication, but not by ultraviolet or X-ray Zhu et al., 2004).
    [Show full text]
  • In&Nbsp;Vivo Functional Platform Targeting Patient-Derived Xenografts Identifies WDR5-Myc Association As a Critical Determin
    Article In Vivo Functional Platform Targeting Patient- Derived Xenografts Identifies WDR5-Myc Association as a Critical Determinant of Pancreatic Cancer Graphical Abstract Authors Alessandro Carugo, Giannicola Genovese, Sahil Seth, ..., Luisa Lanfrancone, Timothy Paul Heffernan, Giulio Francesco Draetta Correspondence [email protected] (A.C.), [email protected] (L.L.), [email protected] (T.P.H.), [email protected] (G.F.D.) In Brief Carugo et al. develop Patient-Based In Vivo Lethality to Optimize Treatment (PILOT), an in vivo and patient-derived xenograft loss-of-function platform, to capture epigenetic vulnerabilities in pancreatic cancer. They report that WDR5-Myc interaction regulates the DNA replication checkpoint illuminating the opportunity to explore WDR5 and ATR inhibitors in the clinical management of pancreatic cancer. Highlights d A platform capturing molecular vulnerabilities in patient- derived xenografts is developed d Rapid engraftment efficiency enables in vivo screens in PDAC d WDR5-Myc axis protects PDAC cells from lethal DNA damage accumulation d ATR and WDR5 inhibitors phenocopy the effects of genetic WDR5 suppression Carugo et al., 2016, Cell Reports 16, 133–147 June 28, 2016 ª 2016 The Authors. http://dx.doi.org/10.1016/j.celrep.2016.05.063 Cell Reports Article In Vivo Functional Platform Targeting Patient- Derived Xenografts Identifies WDR5-Myc Association as a Critical Determinant of Pancreatic Cancer Alessandro Carugo,1,4,9,13,* Giannicola Genovese,1,4,13 Sahil Seth,2,13 Luigi Nezi,1,4
    [Show full text]
  • The H3K4 Methyltransferase Setd1b Is Essential for Hematopoietic Stem and Progenitor Cell Homeostasis in Mice
    RESEARCH ARTICLE The H3K4 methyltransferase Setd1b is essential for hematopoietic stem and progenitor cell homeostasis in mice Kerstin Schmidt1, Qinyu Zhang2, Alpaslan Tasdogan3,4, Andreas Petzold5, Andreas Dahl5, Borros M Arneth6, Robert Slany7, Hans Jo¨ rg Fehling3, Andrea Kranz2*, Adrian Francis Stewart2*, Konstantinos Anastassiadis1* 1Stem Cell Engineering, Biotechnology Center, Technische Universita¨ t Dresden, Dresden, Germany; 2Genomics, Biotechnology Center, Technische Universita¨ t Dresden, Dresden, Germany; 3Institute of Immunology, University Hospital Ulm, Ulm, Germany; 4Department of Dermatology, University Hospital Ulm, Ulm, Germany; 5Deep Sequencing Group, DFG - Center for Regenerative Therapies Dresden, Dresden, Germany; 6Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities Giessen and Marburg, Giessen, Germany; 7Department of Genetics, Friedrich Alexander Universita¨ t Erlangen, Erlangen, Germany Abstract Hematopoietic stem cells require MLL1, which is one of six Set1/Trithorax-type histone 3 lysine 4 (H3K4) methyltransferases in mammals and clinically the most important leukemia gene. Here, we add to emerging evidence that all six H3K4 methyltransferases play essential roles in the hematopoietic system by showing that conditional mutagenesis of Setd1b in adult mice provoked *For correspondence: aberrant homeostasis of hematopoietic stem and progenitor cells (HSPCs). Using both ubiquitous [email protected] (AK); and hematopoietic-specific deletion strategies, the loss of Setd1b resulted in peripheral thrombo- [email protected] and lymphocytopenia, multilineage dysplasia, myeloid-biased extramedullary hematopoiesis in the (AFS); spleen, and lethality. By transplantation experiments and expression profiling, we determined that konstantinos.anastassiadis@tu- Setd1b is autonomously required in the hematopoietic lineages where it regulates key lineage dresden.de (KA) specification components, including Cebpa, Gata1, and Klf1.
    [Show full text]
  • WDR5 Regulates Epithelial-To-Mesenchymal Transition in Breast Cancer Cells Via Tgfβ
    bioRxiv preprint doi: https://doi.org/10.1101/348532; this version posted June 16, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. WDR5 regulates epithelial-to-mesenchymal transition in breast cancer cells via TGFb Punzi Simona1, Balestrieri Chiara1,10, D’Alesio Carolina1,11, Bossi Daniela1,12, Dellino Gaetano Ivan1,2, Gatti Elena1, Pruneri Giancarlo3,4,13, Criscitiello Carmen5, Carugo Alessandro6, Curigliano Giuseppe5,7, Natoli Gioacchino1,8,10, Pelicci Pier Giuseppe1,9, Lanfrancone Luisa1 *. Affiliations 1Department of Experimental Oncology, European Institute of Oncology, Milan, Italy 2Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy 3School of Medicine, University of Milan, 20122 Milan, Italy 4Biobank for Translational Medicine Unit, Department of Pathology, European Institute of Oncology, Milan 20141, Italy 5Division of Early Drug Development for Innovative Therapy, University of Milano, European Institute of Oncology, Milan, Italy 6Institute for Applied Cancer Science, UT MD Anderson Cancer Center, Houston, TX 77030, USA 7Department of Oncology and Hemato-Oncology, University of Milano, European Institute of Oncology, Milan, Italy 8Humanitas Clinical and Research Institute, Rozzano, Milan, Italy. 9Department of Oncology, University of Milan, Milan, Italy Current address: 10Department of Biomedical Sciences, School of Medicine, Humanitas University, Pieve Emanuele, Milan, Italy. 1 bioRxiv preprint doi: https://doi.org/10.1101/348532; this version posted June 16, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 11Department of Internal Medicine and Medical Specialities (Di.M.I), University of Genova, Genova, Italy, 12Institute of Oncology Research (IOR), Bellinzona, Switzerland.
    [Show full text]
  • FOXP2 and Language Alterations in Psychiatric Pathology Salud Mental, Vol
    Salud mental ISSN: 0185-3325 Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz Castro Martínez, Xochitl Helga; Moltó Ruiz, María Dolores; Morales Marin, Mirna Edith; Flores Lázaro, Julio César; González Fernández, Javier; Gutiérrez Najera, Nora Andrea; Alvarez Amado, Daniel Eduardo; Nicolini Sánchez, José Humberto FOXP2 and language alterations in psychiatric pathology Salud mental, vol. 42, no. 6, 2019, pp. 297-308 Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz DOI: 10.17711/SM.0185-3325.2019.039 Available in: http://www.redalyc.org/articulo.oa?id=58262364007 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative REVIEW ARTICLE Volume 42, Issue 6, November-December 2019 doi: 10.17711/SM.0185-3325.2019.039 FOXP2 and language alterations in psychiatric pathology Xochitl Helga Castro Martínez,1 María Dolores Moltó Ruiz,2,3 Mirna Edith Morales Marin,1 Julio César Flores Lázaro,4 Javier González Fernández,2 Nora Andrea Gutiérrez Najera,1 Daniel Eduardo Alvarez Amado,5 José Humberto Nicolini Sánchez1 1 Laboratorio de Genómica de Enfer- ABSTRACT medades Psiquiátricas y Neurode- generativas, Instituto Nacional de From the first reports of the linguist Noam Chomsky it has become clear that the development Medicina Genómica, Ciudad de Background. México, México. of language has an important genetic component. Several reports in families have shown the relationship 2 Departamento de Genética. Univer- between language disorders and genetic polymorphisms. The FOXP2 gene has been a fundamental piece sitat de València.
    [Show full text]
  • Mechanisms and Functions of Long Non-Coding Rnas at Multiple Regulatory Levels
    International Journal of Molecular Sciences Review Mechanisms and Functions of Long Non-Coding RNAs at Multiple Regulatory Levels Xiaopei Zhang 1, Wei Wang 1 , Weidong Zhu 2, Jie Dong 1, Yingying Cheng 1, Zujun Yin 2,* and Fafu Shen 1,* 1 State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, NO. 61 Daizong Street, Tai’an 271018, Shandong, China; [email protected] (X.Z.); [email protected] (W.W.); [email protected] (J.D.); [email protected] (Y.C.) 2 State Key Laboratory of Cotton Biology, Chinese Academy of Agricultural Sciences Cotton Research Institute, Key Laboratory for Cotton Genetic Improvement, Anyang 45500, Henan, China; [email protected] * Correspondence: [email protected] (Z.Y.); [email protected] (F.S.); Tel.: +86-372-256-2219 (Z.Y.); +86-538-824-6011 (F.S.); Fax: +86-372-256-2311 (Z.Y.); +86-538-824-2226 (F.S.) Received: 20 September 2019; Accepted: 6 November 2019; Published: 8 November 2019 Abstract: Long non-coding (lnc) RNAs are non-coding RNAs longer than 200 nt. lncRNAs primarily interact with mRNA, DNA, protein, and miRNA and consequently regulate gene expression at the epigenetic, transcriptional, post-transcriptional, translational, and post-translational levels in a variety of ways. They play important roles in biological processes such as chromatin remodeling, transcriptional activation, transcriptional interference, RNA processing, and mRNA translation. lncRNAs have important functions in plant growth and development; biotic and abiotic stress responses; and in regulation of cell differentiation, the cell cycle, and the occurrence of many diseases in humans and animals.
    [Show full text]
  • Phenotype Informatics
    Freie Universit¨atBerlin Department of Mathematics and Computer Science Phenotype informatics: Network approaches towards understanding the diseasome Sebastian Kohler¨ Submitted on: 12th September 2012 Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) am Fachbereich Mathematik und Informatik der Freien Universitat¨ Berlin ii 1. Gutachter Prof. Dr. Martin Vingron 2. Gutachter: Prof. Dr. Peter N. Robinson 3. Gutachter: Christopher J. Mungall, Ph.D. Tag der Disputation: 16.05.2013 Preface This thesis presents research work on novel computational approaches to investigate and characterise the association between genes and pheno- typic abnormalities. It demonstrates methods for organisation, integra- tion, and mining of phenotype data in the field of genetics, with special application to human genetics. Here I will describe the parts of this the- sis that have been published in peer-reviewed journals. Often in modern science different people from different institutions contribute to research projects. The same is true for this thesis, and thus I will itemise who was responsible for specific sub-projects. In chapter 2, a new method for associating genes to phenotypes by means of protein-protein-interaction networks is described. I present a strategy to organise disease data and show how this can be used to link diseases to the corresponding genes. I show that global network distance measure in interaction networks of proteins is well suited for investigat- ing genotype-phenotype associations. This work has been published in 2008 in the American Journal of Human Genetics. My contribution here was to plan the project, implement the software, and finally test and evaluate the method on human genetics data; the implementation part was done in close collaboration with Sebastian Bauer.
    [Show full text]
  • Moonlighting with WDR5: a Cellular Multitasker
    Journal of Clinical Medicine Review Moonlighting with WDR5: A Cellular Multitasker Alissa duPuy Guarnaccia and William Patrick Tansey * Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-615-322-1993 Received: 19 December 2017; Accepted: 18 January 2018; Published: 30 January 2018 Abstract: WDR5 is a highly conserved WD40 repeat-containing protein that is essential for proper regulation of multiple cellular processes. WDR5 is best characterized as a core scaffolding component of histone methyltransferase complexes, but emerging evidence demonstrates that it does much more, ranging from expanded functions in the nucleus through to controlling the integrity of cell division. The purpose of this review is to describe the current molecular understandings of WDR5, discuss how it participates in diverse cellular processes, and highlight drug discovery efforts around WDR5 that may form the basis of new anti-cancer therapies. Keywords: WDR5; WD40 repeat; epigenetics; transcription; cancer; drug discovery 1. Introduction Increased understanding of the complexity of eukaryotic life has led to growing awareness of the phenomenon of ‘moonlighting’, in which a protein characterized in one context is found to play roles in other, often quite diverse, cellular processes [1]. That proteins defy neat and simple labeling is not surprising, but the mechanisms through which this occurs, and the implications it creates, are often intriguing and profound. This review is focused on WDR5, which has been extensively studied in the context of histone methylation, but more recently shown to be a preeminent cellular multitasker.
    [Show full text]