The ANITA-I Limit on Gamma Ray Burst Neutrinos
Total Page:16
File Type:pdf, Size:1020Kb
The ANITA-I Limit on Gamma Ray Burst Neutrinos DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Kimberly J. Palladino, A.B., M.S. Graduate Program in Physics The Ohio State University 2009 Dissertation Committee: Dr. James J. Beatty, Adviser Dr. John Beacom Dr. Richard J. Furnstahl Dr. Richard E. Hughes Copyright by Kimberly J. Palladino c 2009 Abstract The ANtarctic Impulsive Transient Antenna (ANITA) searches for ultra high en- ergy neutrinos interacting in the Antarctic ice cap. It is a long duration balloon exper- iment composed of an array of broadband dual-polarized horn antennas that had its first science flight over Antarctica in December 2006 through January 2007. ANITA relies upon the Askaryan effect, in which a particle shower in a dense medium emits coherent Cherenkov radiation at radio wavelengths, for the detection of a neutrino induced shower. Using the null result reported elsewhere of the detection of neutrino candidates by the ANITA-I experiment, we place a limit upon the flux of neutrinos from Gamma Ray Bursts (GRBs). During the ANITA-I flight, 21 GRBs were detected by spacecraft, but none occurred in the primary ANITA field of view while the instru- ment was operating. Using the measured redshifts of the limited number of localized GRBs that occurred during the flight, we model their neutrino flux using a basic Waxman-Bahcall model. We are able to place a 90% CL limit on the E−4 prompt neutrino fluence from GRB061222B in the energy range of 107.7 GeV ǫ 109.7 GeV ≤ ν ≤ of ǫ4 Φ 4.65 1018 GeV3 cm−2 at a ratio of 4.81 107 to the predicted model for a ν ν ≤ × × burst time of 42 seconds. With no neutrino detections over the entire ANITA-I flight, lasting over 17 days, we set a limit with a 90% CL on a E−4 flux over the energy range of 107.65 GeV ǫ 1010 GeV of ǫ4Φ 6.5 1010 GeV3 cm−2 s−1 sr−1. ≤ ν ≤ ν ν ≤ × ii ACKNOWLEDGMENTS Many thanks to my advisor, Jim Beatty, and all the members of the ANITA collaboration, as well as NASA’s Columbia Scientific Balloon Facility and the NSF Antartic Program for their support making our research possible. Additional thanks to Kevin Hurley of Berkeley’s Space Science Lab for his help in determining potential directions of non-localized Gamma Ray Bursts. Finally, my appreciation to Brian Baughman and Brian Mercurio for their expertise with matplotlib and IceMC respectively. iii VITA 1998 ........................................Pennsbury Senior High School 2002 ........................................A.B. Physics, Princeton University 2003-2004 ..................................Physics Graduate Research Assistant, Pennsylvania State University 2004-present ................................Physics Graduate Research Assistant, The Ohio State University 2006 ........................................M.S. Physics, The Ohio State University PUBLICATIONS Gorham, P. W. et al. New Limits in the Ultra-high Energy Cosmic Neutrino Flux from the ANITA Experiment. Phys. Rev. Lett. 103: 05113, 2009. Gorham, P. W. et al. The Antarctic Impulsive Transient Antenna Ultra-high Energy Neutrino Detector Design, Performance, and Sensitivity for 2006-2007 Balloon Flight. Astropart. Phys. 32: 10-41, 2009. Besson, D. Z. et al. In situ radioglaciological measurements near Taylor Dome, Antarctica and implications for ultra-high energy (UHE) neutrino astronomy. As- tropart. Physics. 29: 130-157, 2008. Gorham, P. W. et al. Observations of the Askaryan effect in ice. Phys. Rev. Lett. 99: 171101, 2007. Barwick, S. W. et al. Constraints on cosmic neutrino fluxes from the ANITA experiment. Phys. Rev. Lett. 96: 171101, 2006. iv FIELDS OF STUDY Major Field: Physics Experimental Particle Astrophysics, Neutrino Astronomy v Contents Page Abstract....................................... ii Acknowledgments.................................. iii Vita ......................................... iv ListofTables.................................... x ListofFigures ................................... xi Chapters: 1. Introduction.................................. 1 1.1 NeutrinoParticlePhysics . 2 1.2 NeutrinoAstronomy .......................... 7 2. UltraHighEnergyNeutrinos ........................ 18 vi 2.1 GZKNeutrinos............................. 18 2.1.1 TheGZKProcess ....................... 19 2.1.2 CRSpectrumCutoff ...................... 23 2.1.3 GZKNeutrinoFluxModels . 27 2.2 Direct Astrophysical Sources: GRBs . 36 2.3 ExoticPhysicsSources. 38 3. TheANITAInstrument ........................... 41 3.1 Askaryan Effect and Radio Detection of Particle Showers . ..... 41 3.2 TheANITApayload .......................... 44 3.2.1 RFSignalChain ........................ 45 3.2.2 SignalCapture ......................... 48 3.2.3 SupportSystems ........................ 49 3.2.4 Computing and Communication . 50 3.3 Prototyping and Preparing ANITA . 51 3.3.1 ANITA-lite: 2003-2004 Antarctic Flight . 51 3.3.2 Engineering Flight: Ft. Sumner, NM, 2005 . 53 3.3.3 SLACTestBeam: EndStationA,2006 . 54 4. TheFirstANITAFlight ........................... 56 4.1 ANITA-IFlightPath.......................... 56 4.2 ANITA-IRFPerformance . 59 4.3 ANITA-ILiveTime........................... 60 vii 4.4 Calibration ............................... 68 5. ANITAandGRBNeutrinos ......................... 71 5.1 GRBsduringtheANITA-IFlight. 72 5.2 Estimating GRB Neutrino Fluxes for the ANITA-I Flight . ... 83 5.3 AcceptancesandFluxLimits . 91 Bibliography .................................... 107 Appendices: A. IPN Localizations of ANITA-I Flight GRBs . 119 A.1 GRB061221............................... 119 A.2 GRB061223............................... 119 A.3 GRB061224............................... 119 A.4 GRB061225............................... 120 A.5 GRB061229............................... 120 A.6 GRB061230............................... 120 A.7 GRB070106............................... 120 A.8 GRB070113............................... 120 A.9 GRB070115A.............................. 120 A.10GRB070115B .............................. 121 A.11GRB070116A.............................. 121 viii A.12GRB070116B .............................. 121 A.13GRB070116C.............................. 121 A.14GRB070117............................... 121 ix List of Tables Table Page 5.1 GRBs that occurred during the ANITA-I Flight . .. 81 5.2 ANITAoperationattimesofGRBs . 84 5.3 GRBs with Measured Redshifts from the ANITA-I Flight . .... 87 5.4 ANITA-I Flight GRBs Flux Variables Following Razzaque etal ... 91 5.5 ANITA-I Flight GRBs Flux Variables Following Stamatikosetal... 91 x List of Figures Figure Page 1.1 Standard hierarchy neutrino mass splitting diagram . ....... 4 1.2 Standard Solar Model Neutrino Spectrum . 10 1.3 NeutrinosfromSN1987A. 12 2.1 Photo-production Cross Section Energy Dependence . ...... 20 2.2 GZKProtonSpectra ........................... 22 2.3 Feynman Decay Diagrams for π+ and µ+ ................ 24 2.4 Differential UHECR flux from the Pierre Auger Observatory ..... 25 2.5 ESSGZKModels............................. 29 xi 2.6 Three Flavor ESS GZK Model, updated in 2002 . 31 2.7 ESSandWBGZKFluxModels. 32 2.8 ProtheroeandJohnsonGZKModelFlux . 33 2.9 Comparisonof3GZKFluxModels . 34 2.10 Comparisonof8GZKFluxModels . 36 2.11 GRB Photon/Neutrino Spectral Relationships . ..... 39 3.1 Photograph of the ANITA-I Instrument . 44 3.2 ANITARFChain............................. 46 3.3 Photograph of the ANITA Engineering Flight Payload . .... 52 3.4 DiagramofANITAwiththeSLACTestBeam . 55 4.1 ANITA-IFlightPath ........................... 57 4.2 Ice Depth in ANITA’s view vs. Time . 58 xii 4.3 AverageMeasuredRFPowerindBm . 59 4.4 AverageRFPowervs.SolarAngle . 61 4.5 RF Power ADC counts vs Phi Sector from Sun . 62 4.6 GainLossinAnt23H ........................... 63 4.7 ANITA-I LiveTime: Absolute and Fractional Scales . ..... 65 4.8 CausesofDeadtimeinANITA-I. 66 4.9 Seconds Missing Data from ANITA-I . 66 4.10 Time between events showing CPU “Coffee Breaks” . ... 67 4.11 ANITA-I Gain and Noise Figure Values . 69 5.1 ANITA-INeutrinoFluxLimits . 73 5.2 ANITA’s Acceptance at 1018.5 eV .................... 74 5.3 7 Swift-detected GRB Locations during ANITA-I . ... 75 xiii 5.4 GRB061221Localization . 76 5.5 GRB061223Localization . 76 5.6 GRB061224Localization . 77 5.7 GRB061225Localization . 77 5.8 GRB061229Localization . 78 5.9 GRB061230Localization . 78 5.10 GRB070106Localization . 79 5.11 GRB070113Localization . 79 5.12 GRB070115BLocalization . 80 5.13 GRB070116BLocalization . 80 5.14 GRB070117Localization . 82 5.15 Map of ANITA’s Locationatthe Time of each GRB . 85 xiv 5.16 NeutrinoFluxModelsfor3GRBs. 92 5.17 NeutrinoFluenceModelsfor3GRBs . 93 5.18 Skymap for a GRB061222B-like Neutrino Flux . ... 95 5.19 Contoured Skymap for a GRB061222B-like Neutrino Flux . ..... 96 5.20 Skymap for a GRB070110-like Neutrino Flux. ... 97 5.21 Contoured Skymap for a GRB070110-like Neutrino Flux . ..... 98 5.22 Skymap for an E−4 NeutrinoFlux. .. .. 100 5.23 Contoured Skymap for an E−4 NeutrinoFlux . 101 5.24 GRBFluenceModelsandLimits . 102 5.25 GRB Monte Carlo Neutrino Events from GRB061222B by Flavor .. 103 5.26 GRB Monte Carlo Neutrino Events from GRB070103 by Flavor ... 104 5.27 GRBDiffuseFluxModelsandLimits . 105 xv Chapter 1 Introduction In the past century astronomy has expanded to wavelengths both larger and smaller than those of visible light, and at every point a new window was opened onto the universe, bringing new discoveries and new questions. Particle physicists have also studied the charged particles arriving