2011-12 Polar Program Season Report Final

Total Page:16

File Type:pdf, Size:1020Kb

2011-12 Polar Program Season Report Final Geodetic Technologies Support to the National Science Foundation Office of Polar Programs Antarctic Program 2011-2012 Season Report Submitted by Joe Pettit www.unavco.org/polar Support funded by the National Science Foundation Office of Polar Programs Supplement to EAR-0735156- UNAVCO Community and Facility Support: Geodesy Advancing Earth Science Research Cover photo: GPS measurements are taken at site of debris covered glacier in the upper Taylor Valley, 2011. 2 Table of Contents Summary ................................................................................................................................................................................................ 4 Table 1: 2011- 2012 Antarctic Project Support Provided ....................................................................................................................................... 7 Long-term Continuous Data Collection and Network Support ................................................................................................................ 8 Technology Development ...................................................................................................................................................................................... 8 ANET ....................................................................................................................................................................................................................... 9 Table 2: ANET network status as of August 2012 ................................................................................................................................................ 11 LARISSA ................................................................................................................................................................................................................ 12 Erebus Network ................................................................................................................................................................................................... 12 South Pole Station ................................................................................................................................................................................................ 12 Palmer Station ...................................................................................................................................................................................................... 12 McMurdo Station ................................................................................................................................................................................................. 12 WAIS Divide Camp ................................................................................................................................................................................................ 12 Community Equipment Pool ................................................................................................................................................................. 13 GPS Receivers ....................................................................................................................................................................................................... 13 LiDAR Terrestrial Laser Scanner ........................................................................................................................................................................... 13 Table 3: The UNAVCO/USAP Equipment Pool 31 December 2010 ................................................................................................................... 14 Equipment Deployed Long Term .......................................................................................................................................................................... 15 Table 4: UNAVCO/USAP Equipment deployed Long Term at Remote Locations ................................................................................................. 15 Science Support Services .................................................................................................................................................................... 17 Science Advisory Committee ................................................................................................................................................................................ 17 Training ................................................................................................................................................................................................................ 17 Field Support ........................................................................................................................................................................................................ 18 Data Processing .................................................................................................................................................................................................... 18 Data Archiving ...................................................................................................................................................................................................... 18 Appendix A - Detailed Summary of Support Provided ......................................................................................................................... 19 B-504 (Fountain) .................................................................................................................................................................................................. 19 Dr. Andrew Fountain, a McMurdo LTER participant, returned to the Taylor Valley with his field team to continue research on the Commonwealth, Canada and Taylor glaciers, as well as to study features in the Garwood valley. Studies focused on surface snow and ice accumulation and ablation, while monitoring solar and other environmental influences on the overall dynamics of the glaciers. This season the B-504 team once again requested use of the ground based terrestrial LiDAR to scan portions of the Commonwealth Glacier and their study site in the Garwood Valley. A UNAVCO engineer performed the laser scans and provided data post processing. GPS PPK gear was supplied for the season as well. ........................................................................................................................................................................... 19 B-505 (Doran) ....................................................................................................................................................................................................... 19 B-518 (Kennicutt) ................................................................................................................................................................................................. 19 C-514/515 LARISSA (Domack) .............................................................................................................................................................................. 19 C-520 (Anandakrishnan) ....................................................................................................................................................................................... 19 G-049 (Rack) ......................................................................................................................................................................................................... 20 G-058 (Harvey) ..................................................................................................................................................................................................... 20 G-079 (Wilson) ..................................................................................................................................................................................................... 20 G-081 (Kyle) .......................................................................................................................................................................................................... 20 G-098 (Blankenship) ............................................................................................................................................................................................. 21 G-501 (Putkonen) ................................................................................................................................................................................................. 21 I-156 (Balco) ......................................................................................................................................................................................................... 21 I-158 (Rupper) ...................................................................................................................................................................................................... 21 I-181 (Winberry) ................................................................................................................................................................................................... 22 I-196 (Hall) ...........................................................................................................................................................................................................
Recommended publications
  • Rapid Transport of Ash and Sulfate from the 2011 Puyehue-Cordón
    PUBLICATIONS Journal of Geophysical Research: Atmospheres RESEARCH ARTICLE Rapid transport of ash and sulfate from the 2011 10.1002/2017JD026893 Puyehue-Cordón Caulle (Chile) eruption Key Points: to West Antarctica • Ash and sulfate from the June 2011 Puyehue-Cordón Caulle eruption were Bess G. Koffman1,2 , Eleanor G. Dowd1 , Erich C. Osterberg1 , David G. Ferris1, deposited in West Antarctica 3 3 3,4 1 • Depositional phasing and duration Laura H. Hartman , Sarah D. Wheatley , Andrei V. Kurbatov , Gifford J. Wong , 5 6 3,4 4 suggest rapid transport through the Bradley R. Markle , Nelia W. Dunbar , Karl J. Kreutz , and Martin Yates troposphere • Ash/sulfate phasing, ash size 1Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire, USA, 2Now at Department of Geology, Colby distributions, and geochemistry College, Waterville, Maine, USA, 3Climate Change Institute, University of Maine, Orono, Maine, USA, 4School of Earth and distinguish this midlatitude eruption Climate Sciences, University of Maine, Orono, Maine, USA, 5Department of Earth and Space Sciences, University of from low- and high-latitude eruptions Washington, Seattle, Washington, USA, 6New Mexico Bureau of Geology and Mineral Resources, Socorro, New Mexico, USA Supporting Information: • Supporting Information S1 Abstract The Volcanic Explosivity Index 5 eruption of the Puyehue-Cordón Caulle volcanic complex (PCC) in central Chile, which began 4 June 2011, provides a rare opportunity to assess the rapid transport and Correspondence to: deposition of sulfate and ash from a midlatitude volcano to the Antarctic ice sheet. We present sulfate, B. G. Koffman, [email protected] microparticle concentrations of fine-grained (~5 μm diameter) tephra, and major oxide geochemistry, which document the depositional sequence of volcanic products from the PCC eruption in West Antarctic snow and shallow firn.
    [Show full text]
  • Integrated Tephrochonology Copyedited
    U.S. Geological Survey and The National Academies; USGS OFR-2007-xxxx, Extended Abstract.yyy, 1- Integrated tephrochronology of the West Antarctic region- Implications for a potential tephra record in the West Antarctic Ice Sheet (WAIS) Divide Ice Core N.W. Dunbar,1 W.C. McIntosh,1 A.V. Kurbatov,2 and T.I Wilch 3 1NMGB/EES Department, New Mexico Tech, Socorro NM, 87801, USA ( [email protected] , [email protected] ) 2Climate Change Institute 303 Bryand Global Sciences Center, Orono, ME, 04469, USA ([email protected]) 3Department of Geological Sciences, Albion College, Albion MI, 49224, USA ( [email protected] ) Summary Mount Berlin and Mt. Takahe, two West Antarctica volcanic centers have produced a number of explosive, ashfall generating eruptions over the past 500,000 yrs. These eruptions dispersed volcanic ash over large areas of the West Antarctic ice sheet. Evidence of these eruptions is observed at two blue ice sites (Mt. Waesche and Mt. Moulton) as well as in the Siple Dome and Byrd (Palais et al., 1988) ice cores. Geochemical correlations between tephra sampled at the source volcanoes, at blue ice sites, and in the Siple Dome ice core suggest that at least some of the eruptions covered large areas of the ice sheet with a volcanic ash, and 40 Ar/ 39 Ar dating of volcanic material provides precise timing when these events occurred. Volcanic ash from some of these events expected to be found in the WAIS Divide ice core, providing chronology and inter-site correlation. Citation: Dunbar, N.W., McIntosh, W.C., Kurbatov, A., and T.I Wilch (2007), Integrated tephrochronology of the West Antarctic region- Implications for a potential tephra record in the West Antarctic Ice Sheet (WAIS) Divide Ice Core, in Antarctica: A Keystone in a Changing World – Online Proceedings of the 10 th ISAES X, edited by A.
    [Show full text]
  • Antarctic Primer
    Antarctic Primer By Nigel Sitwell, Tom Ritchie & Gary Miller By Nigel Sitwell, Tom Ritchie & Gary Miller Designed by: Olivia Young, Aurora Expeditions October 2018 Cover image © I.Tortosa Morgan Suite 12, Level 2 35 Buckingham Street Surry Hills, Sydney NSW 2010, Australia To anyone who goes to the Antarctic, there is a tremendous appeal, an unparalleled combination of grandeur, beauty, vastness, loneliness, and malevolence —all of which sound terribly melodramatic — but which truly convey the actual feeling of Antarctica. Where else in the world are all of these descriptions really true? —Captain T.L.M. Sunter, ‘The Antarctic Century Newsletter ANTARCTIC PRIMER 2018 | 3 CONTENTS I. CONSERVING ANTARCTICA Guidance for Visitors to the Antarctic Antarctica’s Historic Heritage South Georgia Biosecurity II. THE PHYSICAL ENVIRONMENT Antarctica The Southern Ocean The Continent Climate Atmospheric Phenomena The Ozone Hole Climate Change Sea Ice The Antarctic Ice Cap Icebergs A Short Glossary of Ice Terms III. THE BIOLOGICAL ENVIRONMENT Life in Antarctica Adapting to the Cold The Kingdom of Krill IV. THE WILDLIFE Antarctic Squids Antarctic Fishes Antarctic Birds Antarctic Seals Antarctic Whales 4 AURORA EXPEDITIONS | Pioneering expedition travel to the heart of nature. CONTENTS V. EXPLORERS AND SCIENTISTS The Exploration of Antarctica The Antarctic Treaty VI. PLACES YOU MAY VISIT South Shetland Islands Antarctic Peninsula Weddell Sea South Orkney Islands South Georgia The Falkland Islands South Sandwich Islands The Historic Ross Sea Sector Commonwealth Bay VII. FURTHER READING VIII. WILDLIFE CHECKLISTS ANTARCTIC PRIMER 2018 | 5 Adélie penguins in the Antarctic Peninsula I. CONSERVING ANTARCTICA Antarctica is the largest wilderness area on earth, a place that must be preserved in its present, virtually pristine state.
    [Show full text]
  • The Human Footprint of the IPY 2007-2008 in Antarctica
    IP 86 Agenda Item: ATCM 10 CEP 5 Presented by: ASOC Original: English The Human Footprint of the IPY 2007-2008 in Antarctica Attachments: 1 IP 86 The Human Footprint of the IPY 2007-2008 in Antarctica Information Paper Submitted by ASOC to ATCM XXX (CEP Agenda Item 5; ATCM Agenda Item 10) Abstract The International Polar Year (IPY) 2007-2008 is ambitious in scope and scale. At least 350 research activities with Antarctic or bipolar focus will take place during the IPY period of March 2007-March 2009. 82% (or 286) of them are planning to conduct fieldwork in Antarctica (Fig. 1a). 105 activities are planning to leave behind physical infrastructure, ranging from extensive arrays of instrumentation to new facilities. The Antarctic Treaty Secretariat’s database of environmental impact assessments lists only 7 completed assessments that are directly linked to science or logistics that are planned for the IPY. During the IPY, research and its corresponding logistical support activity will intensify around existing centers of research, such as the Antarctic Peninsula, Dronning Maud Land, Prydz Bay and the Weddell and Ross Seas. A number of large-scale research activities has also been planned in areas which have been hitherto seldom accessed, including the Gamburtsev Mountains in East Antarctica, the Amundsen Sea embayment and the West Antarctic ice sheet and subglacial lakes (Fig. 2). Many of them have been planned as the precursor of long-term research programs. In view of the ensemble of the research projects that have been endorsed, the IPY is likely to lead to: ! a direct increase in human activity in Antarctica; ! an increase in infrastructure in Antarctica; ! an increased pressure on Antarctica’s wilderness values; ! an increased level of interest in Antarctica, which can indirectly generate more activities other than scientific research, adding to the current trend of rapid growth and diversification of Antarctic tourism.
    [Show full text]
  • U.S. Advance Exchange of Operational Information, 2005-2006
    Advance Exchange of Operational Information on Antarctic Activities for the 2005–2006 season United States Antarctic Program Office of Polar Programs National Science Foundation Advance Exchange of Operational Information on Antarctic Activities for 2005/2006 Season Country: UNITED STATES Date Submitted: October 2005 SECTION 1 SHIP OPERATIONS Commercial charter KRASIN Nov. 21, 2005 Depart Vladivostok, Russia Dec. 12-14, 2005 Port Call Lyttleton N.Z. Dec. 17 Arrive 60S Break channel and escort TERN and Tanker Feb. 5, 2006 Depart 60S in route to Vladivostok U.S. Coast Guard Breaker POLAR STAR The POLAR STAR will be in back-up support for icebreaking services if needed. M/V AMERICAN TERN Jan. 15-17, 2006 Port Call Lyttleton, NZ Jan. 24, 2006 Arrive Ice edge, McMurdo Sound Jan 25-Feb 1, 2006 At ice pier, McMurdo Sound Feb 2, 2006 Depart McMurdo Feb 13-15, 2006 Port Call Lyttleton, NZ T-5 Tanker, (One of five possible vessels. Specific name of vessel to be determined) Jan. 14, 2006 Arrive Ice Edge, McMurdo Sound Jan. 15-19, 2006 At Ice Pier, McMurdo. Re-fuel Station Jan. 19, 2006 Depart McMurdo R/V LAURENCE M. GOULD For detailed and updated schedule, log on to: http://www.polar.org/science/marine/sched_history/lmg/lmgsched.pdf R/V NATHANIEL B. PALMER For detailed and updated schedule, log on to: http://www.polar.org/science/marine/sched_history/nbp/nbpsched.pdf SECTION 2 AIR OPERATIONS Information on planned air operations (see attached sheets) SECTION 3 STATIONS a) New stations or refuges not previously notified: NONE b) Stations closed or refuges abandoned and not previously notified: NONE SECTION 4 LOGISTICS ACTIVITIES AFFECTING OTHER NATIONS a) McMurdo airstrip will be used by Italian and New Zealand C-130s and Italian Twin Otters b) McMurdo Heliport will be used by New Zealand and Italian helicopters c) Extensive air, sea and land logistic cooperative support with New Zealand d) Twin Otters to pass through Rothera (UK) upon arrival and departure from Antarctica e) Italian Twin Otter will likely pass through South Pole and McMurdo.
    [Show full text]
  • Thurston Island
    RESEARCH ARTICLE Thurston Island (West Antarctica) Between Gondwana 10.1029/2018TC005150 Subduction and Continental Separation: A Multistage Key Points: • First apatite fission track and apatite Evolution Revealed by Apatite Thermochronology ‐ ‐ (U Th Sm)/He data of Thurston Maximilian Zundel1 , Cornelia Spiegel1, André Mehling1, Frank Lisker1 , Island constrain thermal evolution 2 3 3 since the Late Paleozoic Claus‐Dieter Hillenbrand , Patrick Monien , and Andreas Klügel • Basin development occurred on 1 2 Thurston Island during the Jurassic Department of Geosciences, Geodynamics of Polar Regions, University of Bremen, Bremen, Germany, British Antarctic and Early Cretaceous Survey, Cambridge, UK, 3Department of Geosciences, Petrology of the Ocean Crust, University of Bremen, Bremen, • ‐ Early to mid Cretaceous Germany convergence on Thurston Island was replaced at ~95 Ma by extension and continental breakup Abstract The first low‐temperature thermochronological data from Thurston Island, West Antarctica, ‐ fi Supporting Information: provide insights into the poorly constrained thermotectonic evolution of the paleo Paci c margin of • Supporting Information S1 Gondwana since the Late Paleozoic. Here we present the first apatite fission track and apatite (U‐Th‐Sm)/He data from Carboniferous to mid‐Cretaceous (meta‐) igneous rocks from the Thurston Island area. Thermal history modeling of apatite fission track dates of 145–92 Ma and apatite (U‐Th‐Sm)/He dates of 112–71 Correspondence to: Ma, in combination with kinematic indicators, geological
    [Show full text]
  • The WAIS Divide Deep Ice Core WD2014 Chronology – Part 2: Annual-Layer Counting (0–31 Ka BP)
    Clim. Past, 12, 769–786, 2016 www.clim-past.net/12/769/2016/ doi:10.5194/cp-12-769-2016 © Author(s) 2016. CC Attribution 3.0 License. The WAIS Divide deep ice core WD2014 chronology – Part 2: Annual-layer counting (0–31 ka BP) Michael Sigl1,2, Tyler J. Fudge3, Mai Winstrup3,a, Jihong Cole-Dai4, David Ferris5, Joseph R. McConnell1, Ken C. Taylor1, Kees C. Welten6, Thomas E. Woodruff7, Florian Adolphi8, Marion Bisiaux1, Edward J. Brook9, Christo Buizert9, Marc W. Caffee7,10, Nelia W. Dunbar11, Ross Edwards1,b, Lei Geng4,5,12,d, Nels Iverson11, Bess Koffman13, Lawrence Layman1, Olivia J. Maselli1, Kenneth McGwire1, Raimund Muscheler8, Kunihiko Nishiizumi6, Daniel R. Pasteris1, Rachael H. Rhodes9,c, and Todd A. Sowers14 1Desert Research Institute, Nevada System of Higher Education, Reno, NV 89512, USA 2Laboratory for Radiochemistry and Environmental Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland 3Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195, USA 4Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD 57007, USA 5Dartmouth College Department of Earth Sciences, Hanover, NH 03755, USA 6Space Science Laboratory, University of California, Berkeley, Berkeley, CA 94720, USA 7Department of Physics and Astronomy, PRIME Laboratory, Purdue University, West Lafayette, IN 47907, USA 8Department of Geology, Lund University, 223 62 Lund, Sweden 9College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA 10Department of Earth, Atmospheric,
    [Show full text]
  • West Antarctic Ice Sheet Divide Ice Core Climate, Ice Sheet History, Cryobiology
    WAIS DIVIDE SCIENCE COORDINATION OFFICE West Antarctic Ice Sheet Divide Ice Core Climate, Ice Sheet History, Cryobiology A GUIDE FOR THE MEDIA AND PUBLIC Field Season 2011-2012 WAIS (West Antarctic Ice Sheet) Divide is a United States deep ice coring project in West Antarctica funded by the National Science Foundation (NSF). WAIS Divide’s goal is to examine the last ~100,000 years of Earth’s climate history by drilling and recovering a deep ice core from the ice divide in central West Antarctica. Ice core science has dramatically advanced our understanding of how the Earth’s climate has changed in the past. Ice cores collected from Greenland have revolutionized our notion of climate variability during the past 100,000 years. The WAIS Divide ice core will provide the first Southern Hemisphere climate and greenhouse gas records of comparable time resolution and duration to the Greenland ice cores enabling detailed comparison of environmental conditions between the northern and southern hemispheres, and the study of greenhouse gas concentrations in the paleo-atmosphere, with a greater level of detail than previously possible. The WAIS Divide ice core will also be used to test models of WAIS history and stability, and to investigate the biological signals contained in deep Antarctic ice cores. 1 Additional copies of this document are available from the project website at http://www.waisdivide.unh.edu Produced by the WAIS Divide Science Coordination Office with support from the National Science Foundation, Office of Polar Programs. 2 Contents
    [Show full text]
  • Tectonic and Oceanographic Controls on Abbot Ice Shelf
    Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | The Cryosphere Discuss., 7, 5509–5540, 2013 Open Access www.the-cryosphere-discuss.net/7/5509/2013/ The Cryosphere TCD doi:10.5194/tcd-7-5509-2013 Discussions © Author(s) 2013. CC Attribution 3.0 License. 7, 5509–5540, 2013 This discussion paper is/has been under review for the journal The Cryosphere (TC). Tectonic and Please refer to the corresponding final paper in TC if available. oceanographic controls on Abbot Ice Tectonic and oceanographic controls on Shelf Abbot Ice Shelf thickness and stability J. R. Cochran et al. J. R. Cochran, S. S. Jacobs, K. J. Tinto, and R. E. Bell Title Page Lamont-Doherty Earth Observatory of Columbia University Palisades, NY 10964, USA Abstract Introduction Received: 29 October 2013 – Accepted: 10 November 2013 – Published: 19 November 2013 Conclusions References Correspondence to: J. R. Cochran ([email protected]) Published by Copernicus Publications on behalf of the European Geosciences Union. Tables Figures J I J I Back Close Full Screen / Esc Printer-friendly Version Interactive Discussion 5509 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract TCD Ice shelves play key roles in stabilizing Antarctica’s ice sheets and returning freshwater to the Southern Ocean. Improved data sets of ice shelf draft and underlying bathymetry 7, 5509–5540, 2013 are important for assessing ocean–ice interactions and modeling ice response to cli- 5 mate change. The long, narrow Abbot Ice Shelf south of Thurston Island produces Tectonic and large volumes of meltwater but is in overall mass balance unlike other ice shelves in oceanographic the region that are losing mass.
    [Show full text]
  • Latady Formation
    ied consist of a north-northwest-trending set of major folds A total distance of 15,700 kilometers was flown in 78.5 hours with subordinate thrusts. The existence of previously unrec- using all the fuel available. Four lines were flown at maximum ognized major folds was determined from detailed study of range of the aircraft to the Bryan Coast and Pine Island Glacier, minor-fold geometry as well as reinterpretation of some Cre- four lines at maximum range over the Ronne Ice Shelf towards taceous stratigraphic boundaries. The folds involve Upper Jur- the Antarctic Peninsula, and two lines covering local features assic through Upper Cretaceous rocks, while Tertiary sedi- within and around the Ellsworth Mountains. mentary rocks occur in a monoclinal belt along the eastern The survey delimited the catchment area of Pine Island Gla- edge of the study area. A well-devloped cleavage is present cier and gave valuable information on the nature of the sub- throughout. A structural profile of the transect is being con- ice surface as well as the sub-ice topography itself (Doake and structed. Crabtree, Antarctic Journal, this issue). Wilson also measured detailed stratigraphic sections in the The British Antarctic Survey scientists most closely involved Lower Cretaceous rocks. Together with sedimentologic data with the work are Charles Swithinbank, head of the Earth and petrographic results, these sections will provide a more Sciences Section, Christopher Doake, and Richard Crabtree. detailed understanding of the early evolution of the Magal- Peter Clarkson, Geoffrey Renner, and Michael Thomson par- lanes basin. ticipated in planning the flight program.
    [Show full text]
  • GEOLOGICAL SURVEY RESEARCH 1971 Chapter B
    GEOLOGICAL SURVEY RESEARCH 1971 Chapter B GEOLOGICAL SURVEY PROFESSIONAL PAPER 750-8 Scientific notes and summaries of investigations in geology, hydrology, and related fields UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1971 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. 0. MORTON, Secretary GEOLOGICAL SURVEY William T. Pecora, Director -- For sale by the Superintendent of Documsnh, U.S. Government Printing Office Washington, D.C. 20402 - Price $3.50 GEOLOGIC STUDIES Structural geology Page Structures related to thrust faults in the Stansbury Mountains, Utah, by E. W. Tooker and R. J. Roberts- - - - - - - - - - - - B1 Displacement of the Pocahontas Formation by the Russell Fork fault, southwest Virginia, by K. J. Englund- - - - - - - - - - 13 Paleontology and stratigraphy The Twowells Sandstone Tongue of the Dakota Sandstone and the Tres Hermanos Sandstone as used by Herrick (1900), western New Mexico, by C. H. Dane, E. R. Landis, and W. A. Cobban ........................................ 17 Lisburne Group, Cape Lewis-Niak Creek, northwestern Alaska, by A. K. Armstrong, B. L. Mamet, and J. T. Dutro, Jr- 23 Stratigraphic interpretations of some Cretaceous microfossil floras of.the Middle Atlantic States, by J. A. Wolfe and H. M. Pakiser----------------------------------------------------------------------------------------,-------- 35 Paleocene mollusks from the Gulf of Alaska Tertiary province-A significant new occurrence on the North Pacific rim, by W. 0. Addioottand George Plafker------------------------------------------------------------------------ 48 Two new fossil pollen genera from upper Campanian (Cretaceous) rocks of Montana, by B. D. Tschudy-- - - - - - - - - - - - - 53 Petrology The Landfall Peak Adamellite and regional comparison of petrochemical and age data from the Thurston Island-Eights Coast area, West Antarctica, by A. A. Drake, Jr., R. F. Marvin, T. W.
    [Show full text]
  • Station Openings
    Information Exchange Under United States Antarctic Activities Articles III and VII(5) of the Activities Planned for 2008- 2009 ANTARCTIC TREATY III. Stations III. Stations Section III of the 2008-2009 season plans lists the names, locations, and opening dates of the Party's bases and subsidiary stations established in the Antarctic Treaty Area, and whether they are for summer and/or winter operations. Year Round Stations McMurdo Station Location: Hut Point Peninsula on Ross Island in McMurdo Sound 77° 55'S Latitude 166° 39'E Longitude Annual Relief: 30 September 2008 Amundsen-Scott South Pole Station Location: 90° 00'S Latitude Annual Relief: 23 October 2008 Palmer Station Location: Anvers Island near Bonaparte Point 64° 46'S Latitude 64° 05'W Longitude Annual Relief: 19 September 2008 National Science Foundation Section III, page 1 Arlington, Virginia 22230 October 1, 2008 Information Exchange Under United States Antarctic Activities Articles III and VII(5) of the Activities Planned for 2008- 2009 ANTARCTIC TREATY III. Stations Austral Summer Camps Siple Dome Camp Location: 81° 39'S Latitude 149° 04'W Longitude Open: 25 October 2008 Close: 07 February 2009 WAIS Divide Camp Location: 79°40.87'S Latitude 112°5.16'E Longitude Open: 01 November 2008 Close: 07 February 2009 Lake Bonney Camp Location: 77°42'S Latitude 162°27'E Longitude Open: 10 October 2008 Close: 10 February 2009 Lake Hoare Location: 76°38'S Latitude 162°57'E Longitude Open: 10 October 2008 Close: 10 February 2009 National Science Foundation Section III, page 2 Arlington, Virginia 22230 October 1, 2008 Information Exchange Under United States Antarctic Activities Articles III and VII(5) of the Activities Planned for 2008- 2009 ANTARCTIC TREATY III.
    [Show full text]