Essential Roles of Long‑Chain Acyl‑Coa Synthetases (Review)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cell Death Via Lipid Peroxidation and Protein Aggregation Diseases
biology Review Cell Death via Lipid Peroxidation and Protein Aggregation Diseases Katsuya Iuchi * , Tomoka Takai and Hisashi Hisatomi Department of Materials and Life Science, Faculty of Science and Technology, Seikei University, 3-3-1 Kichijojikitamachi, Musashino-shi, Tokyo 180-8633, Japan; [email protected] (T.T.); [email protected] (H.H.) * Correspondence: [email protected] or [email protected]; Tel.: +81-422-37-3523 Simple Summary: It is essential for cellular homeostasis that biomolecules, such as DNA, proteins, and lipids, function properly. Disturbance of redox homeostasis produces aberrant biomolecules, including oxidized lipids and misfolded proteins, which increase in cells. Aberrant biomolecules are removed by excellent cellular clearance systems. However, when excess aberrant biomolecules remain in the cell, they disrupt organelle and cellular functions, leading to cell death. These aberrant molecules aggregate and cause apoptotic and non-apoptotic cell death, leading to various protein aggregation diseases. Thus, we investigated the cell-death cross-linking between lipid peroxidation and protein aggregation. Abstract: Lipid peroxidation of cellular membranes is a complicated cellular event, and it is both the cause and result of various diseases, such as ischemia-reperfusion injury, neurodegenerative diseases, and atherosclerosis. Lipid peroxidation causes non-apoptotic cell death, which is associated with cell fate determination: survival or cell death. During the radical chain reaction of lipid peroxidation, Citation: Iuchi, K.; Takai, T.; various oxidized lipid products accumulate in cells, followed by organelle dysfunction and the Hisatomi, H. Cell Death via Lipid induction of non-apoptotic cell death. Highly reactive oxidized products from unsaturated fatty acids Peroxidation and Protein are detected under pathological conditions. -
Remodeling of Lipid Droplets During Lipolysis and Growth in Adipocytes
Remodeling of Lipid Droplets during Lipolysis and Growth in Adipocytes Margret Paar*1, Christian Jungst§1,2, Noemi A. Steinert, Christoph Magnes ~, Frank Sinner~, Dagmar Kolbll, Achim Lass*, Robert Zimmermann*, Andreas Zumbusch§, Sepp D. Kohlwein*, and Heimo Wolinski*3 From the *Institute of Molecular Biosciences, Lipidomics Research Center LRC Graz, University of Graz, 8070 Graz, Austria, the §Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany, ~HEAL TH, Institute for Biomedicine and Health Sciences, Joanneum Research, 8036 Graz, Austria, and the IIlnstitute of Cell Biology, Histology and Embryology, and ZMF, Center for Medical Research, Medical University of Graz, 8070 Graz, Austria Background: Micro-lipid droplets (mLDs) appear in adipocytes upon lipolytic stimulation. LDs may grow by spontaneous, homotypic fusion. Results: Scavenging of fatty acids prevents mLD formation. LDs grow by a slow transfer of lipids between LDs. Conclusion: mLDs form due to fatty acid overflow. I.D growth is a controlled process. Significance: Novel mechanistic insights into LD remodeling are provided. Synthesis, storage, and turnover oftriacylglycerols (TAGs) in mation of large LOs requires a yet uncharacterized protein adipocytes are critical cellular processes to maintain lipid and machinery mediating LO interaction and lipid transfer. energy homeostasis in mammals. TAGs are stored in metaboli cally highly dynamic lipid droplets (LOs), which are believed to undergo fragmentation and fusion under lipolytic and lipogenic Most eukaryotic organisms deal with a typically fluctuating conditions, respectively. Time lapse fluorescence microscopy food supply by storing or mobilizing lipids as an energy source. showed that stimulation of lipolysis in 3T3-Ll adipocytes causes Malfunction of the synthesis or degradation of fat stores is progressive shrinkage and almost complete degradation of all linked to prevalent diseases, such as obesity, type II diabetes, or cellular LDs but without any detectable fragmentation into various forms of lipodystrophy (1). -
Modulation of Triglyceride and Cholesterol Ester Synthesis Impairs
THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 289, NO. 31, pp. 21276–21288, August 1, 2014 Author’s Choice © 2014 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A. Modulation of Triglyceride and Cholesterol Ester Synthesis Impairs Assembly of Infectious Hepatitis C Virus*□S Received for publication, May 20, 2014, and in revised form, June 8, 2014 Published, JBC Papers in Press, June 10, 2014, DOI 10.1074/jbc.M114.582999 Jolanda M. P. Liefhebber‡1, Charlotte V. Hague‡1, Qifeng Zhang§, Michael J. O. Wakelam§, and John McLauchlan‡2 From the ‡Medical Research Council-University of Glasgow Centre for Virus Research, 8 Church Street, Glasgow G11 5JR, Scotland, United Kingdom and §The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom Background: Lipid droplets have been implicated in HCV virion assembly. Results: Inhibitors of the synthesis of triacylglycerol and cholesterol ester, the main components of lipid droplets, impair virion assembly. Conclusion: Production of infectious HCV is linked integrally with the biosynthesis of the major components of lipid droplets. Significance: Inhibitors of enzymes that generate acylglycerols and cholesterol esters have antiviral activity. In hepatitis C virus infection, replication of the viral genome including cirrhosis, hepatocellular carcinoma, and liver failure and virion assembly are linked to cellular metabolic processes. (1). Metabolic diseases including insulin resistance and steato- In particular, lipid droplets, which store principally triacylglyc- sis are particular features of chronic infection (2, 3), and there is Downloaded from erides (TAGs) and cholesterol esters (CEs), have been impli- now conclusive evidence that factors and pathways involved in cated in production of infectious virus. -
Long-Chain Acyl-Coa Synthetase Is Associated with the Growth of Malassezia Spp
Journal of Fungi Article Long-Chain Acyl-CoA Synthetase is Associated with the Growth of Malassezia spp. Tenagy, Kengo Tejima, Xinyue Chen , Shun Iwatani and Susumu Kajiwara * School of Life Science and Technology, Tokyo Institute of Technology, J3-7, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa 226-8501, Japan; [email protected] (T.); [email protected] (K.T.); [email protected] (X.C.); [email protected] (S.I.) * Correspondence: [email protected]; Tel.: +81-45-924-5715; Fax: +81-45-924-5773 Received: 14 July 2019; Accepted: 9 September 2019; Published: 21 September 2019 Abstract: The lipophilic fungal pathogen Malassezia spp. must acquire long-chain fatty acids (LCFAs) from outside the cell. To clarify the mechanism of LCFA acquisition, we investigated fatty acid uptake by this fungus and identified the long-chain acyl-CoA synthetase (ACS) gene FAA1 in three Malassezia spp.: M. globosa, M. pachydermatis, and M. sympodialis. These FAA1 genes could compensate for the double mutation of FAA1 and FAA4 in Saccharomyces cerevisiae, suggesting that Malassezia Faa1 protein recognizes exogenous LCFAs. MgFaa1p and MpFaa1p utilized a medium-chain fatty acid, lauric acid (C12:0). Interestingly, the ACS inhibitor, triacsin C, affected the activity of the Malassezia Faa1 proteins but not that of S. cerevisiae. Triacsin C also reduced the growth of M. globosa, M. pachydermatis, and M. sympodialis. These results suggest that triacsin C and its derivatives are potential compounds for the development of new anti-Malassezia drugs. Keywords: Malassezia; acyl-CoA synthetase; fatty acid uptake 1. Introduction Malassezia spp. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
ACSL6 (C) Antibody, Rabbit Polyclonal
Order: (888)-282-5810 (Phone) (818)-707-0392 (Fax) [email protected] Web: www.Abiocode.com ACSL6 (C) Antibody, Rabbit Polyclonal Cat#: R2712-2 Lot#: Refer to vial Quantity: 100 ul Application: WB Predicted I Observed M.W.: 78 kDa Uniprot ID: Q9UKU0 Background: Activation of long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta- oxidation. ACSL6 plays an important role in fatty acid metabolism in brain and the acyl-CoAs produced may be utilized exclusively for the synthesis of the brain lipid. Translocations with the ETV6 gene are causes of myelodysplastic syndrome with basophilia, acute myelogenous leukemia with eosinophilia, and acute eosinophilic leukemia. Other Names: Long-chain-fatty-acid--CoA ligase 6, Long-chain acyl-CoA synthetase 6, LACS 6, ACS2, FACL6, KIAA0837, LACS5 Source and Purity: Rabbit polyclonal antibodies were produced by immunizing animals with a GST-fusion protein containing C-terminal region of human ACSL6. Antibodies were purified by affinity purification using immunogen. Storage Buffer and Condition: Supplied in 1 x PBS (pH 7.4), 100 ug/ml BSA, 40% Glycerol, 0.01% NaN3. Store at -20 °C. Stable for 6 months from date of receipt. Species Specificity: Human, Mouse Tested Applications: WB: 1:1,000-1:3,000 (detect endogenous protein*) *: The apparent protein size on WB may be different from the calculated M.W. due to modifications. For research use only. Not for therapeutic or diagnostic purposes. Abiocode, Inc., 29397 Agoura Rd., Ste 106, Agoura Hills, CA 91301 Order: (888)-282-5810 (Phone) (818)-707-0392 (Fax) [email protected] Web: www.Abiocode.com Product Data: kDa A B C 175 80 58 46 Fig 1. -
Loss of Fam60a, a Sin3a Subunit, Results in Embryonic Lethality and Is Associated with Aberrant Methylation at a Subset of Gene
RESEARCH ARTICLE Loss of Fam60a, a Sin3a subunit, results in embryonic lethality and is associated with aberrant methylation at a subset of gene promoters Ryo Nabeshima1,2, Osamu Nishimura3,4, Takako Maeda1, Natsumi Shimizu2, Takahiro Ide2, Kenta Yashiro1†, Yasuo Sakai1, Chikara Meno1, Mitsutaka Kadota3,4, Hidetaka Shiratori1†, Shigehiro Kuraku3,4*, Hiroshi Hamada1,2* 1Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan; 2Laboratory for Organismal Patterning, RIKEN Center for Developmental Biology, Kobe, Japan; 3Phyloinformatics Unit, RIKEN Center for Life Science Technologies, Kobe, Japan; 4Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan Abstract We have examined the role of Fam60a, a gene highly expressed in embryonic stem cells, in mouse development. Fam60a interacts with components of the Sin3a-Hdac transcriptional corepressor complex, and most Fam60a–/– embryos manifest hypoplasia of visceral organs and die in utero. Fam60a is recruited to the promoter regions of a subset of genes, with the expression of these genes being either up- or down-regulated in Fam60a–/– embryos. The DNA methylation level of the Fam60a target gene Adhfe1 is maintained at embryonic day (E) 7.5 but markedly reduced at –/– *For correspondence: E9.5 in Fam60a embryos, suggesting that DNA demethylation is enhanced in the mutant. [email protected] (SK); Examination of genome-wide DNA methylation identified several differentially methylated regions, [email protected] (HH) which were preferentially hypomethylated, in Fam60a–/– embryos. Our data suggest that Fam60a is †These authors contributed required for proper embryogenesis, at least in part as a result of its regulation of DNA methylation equally to this work at specific gene promoters. -
Mergeomics: Multidimensional Data Integration to Identify Pathogenic Perturbations to Biological Systems
Shu et al. BMC Genomics (2016) 17:874 DOI 10.1186/s12864-016-3198-9 METHODOLOGY ARTICLE Open Access Mergeomics: multidimensional data integration to identify pathogenic perturbations to biological systems Le Shu1, Yuqi Zhao1, Zeyneb Kurt1, Sean Geoffrey Byars2,3, Taru Tukiainen4, Johannes Kettunen4, Luz D. Orozco5, Matteo Pellegrini5, Aldons J. Lusis6, Samuli Ripatti4, Bin Zhang7, Michael Inouye2,3,8, Ville-Petteri Mäkinen1,9,10,11* and Xia Yang1,12* Abstract Background: Complex diseases are characterized by multiple subtle perturbations to biological processes. New omics platforms can detect these perturbations, but translating the diverse molecular and statistical information into testable mechanistic hypotheses is challenging. Therefore, we set out to create a public tool that integrates these data across multiple datasets, platforms, study designs and species in order to detect the most promising targets for further mechanistic studies. Results: We developed Mergeomics, a computational pipeline consisting of independent modules that 1) leverage multi-omics association data to identify biological processes that are perturbed in disease, and 2) overlay the disease- associated processes onto molecular interaction networks to pinpoint hubs as potential key regulators. Unlike existing tools that are mostly dedicated to specific data type or settings, the Mergeomics pipeline accepts and integrates datasets across platforms, data types and species. We optimized and evaluated the performance of Mergeomics using simulation and multiple independent datasets, and benchmarked the results against alternative methods. We also demonstrate the versatility of Mergeomics in two case studies that include genome-wide, epigenome-wide and transcriptome-wide datasets from human and mouse studies of total cholesterol and fasting glucose. -
Regulation of Mitochondrial and Nonmitochondrial Protein Turnover by the PINK1-Parkin Pathway
Regulation of mitochondrial and nonmitochondrial protein turnover by the PINK1-Parkin pathway Evelyn S. Vincow A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2013 Reading Committee: Leo J. Pallanck, Chair Sandra M. Bajjalieh Michael J. MacCoss Program Authorized to Offer Degree: Neurobiology and Behavior © Copyright 2013 Evelyn S. Vincow University of Washington Abstract Regulation of mitochondrial and nonmitochondrial protein turnover by the PINK1-Parkin pathway Evelyn Sandra Vincow Chair of the Supervisory Committee: Associate Professor Leo J. Pallanck Genome Sciences The accumulation of damaged mitochondria has been proposed as a key factor in aging and in the pathogenesis of many common age-related diseases, including Parkinson disease (PD). Recently, in vitro studies of the PD-related proteins Parkin and PINK1 have found that these factors act in a common pathway to promote the selective autophagic degradation of damaged mitochondria (mitophagy). However, whether PINK1 and Parkin promote mitophagy in vivo is unknown. To address this question, I used a proteomic approach in Drosophila to study the effects of null mutations in parkin or PINK1 on mitochondrial protein turnover. The parkin null mutants showed a significant overall slowing of mitochondrial protein turnover, similar to but less severe than the slowing seen in autophagy-deficient Atg7 mutants, consistent with the model that Parkin acts upstream of Atg7 to promote mitophagy. By contrast, the turnover of many mitochondrial respiratory chain (RC) subunits showed greater impairment in parkin than in Atg7 mutants, and RC turnover was also selectively impaired in PINK1 mutants. These findings demonstrate that the PINK1-Parkin pathway promotes mitophagy in vivo and, unexpectedly, also promotes selective turnover of mitochondrial RC components. -
DYSREGULATION of LONG-CHAIN ACYL-Coa SYNTHETASES in CANCER and THEIR TARGETING STRATEGIES in ANTICANCER THERAPY Md Amir Hossain1, Jun Ma2, Yong Yang1 1
Hossain et al RJLBPCS 2020 www.rjlbpcs.com Life Science Informatics Publications Original Review Article DOI: 10.26479/2020.0603.06 DYSREGULATION OF LONG-CHAIN ACYL-CoA SYNTHETASES IN CANCER AND THEIR TARGETING STRATEGIES IN ANTICANCER THERAPY Md Amir Hossain1, Jun Ma2, Yong Yang1 1. Academic Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China. 2. Ningxia Baoshihua Hospital, Ningxia, China. ABSTRACT: Cancer is a leading cause of death worldwide, and the number of cases globally continues to increase. Cancer is caused by certain changes in genes that are involved in controlling cell functions and cell division. Notably, metabolic dysregulation is one the hallmarks of cancer, and increases in fatty acid metabolism have been demonstrated to promote the growth and survival of a variety of cancers. In human, fatty acids either can be breakdown into acetyl-CoA through catabolic metabolism and aid in ATP generation or in the anabolic metabolism they can incorporate into triacylglycerol and phospholipid. Importantly, both of these pathways need activation of fatty acids, and the key players in this activation of fatty acids are the long-chain acyl-CoA synthetases (ACSLs) that are commonly dysregulated in cancer and associated with oncogenesis and survival. Therefore, it provides a rationale to target ACSLs in cancer. This review summarizes the current understanding of long-chain acyl-CoA synthetases in cancer and their targeting opportunities. KEYWORDS: Acyl-CoA synthetases, cancer, fatty acid, lipid metabolism. Article History: Received: April 15, 2020; Revised: May 10, 2020; Accepted: May 30, 2020. Corresponding Author: Prof. Yong Yang* Academic Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China. -
An ACSL4 Hemizygous Intragenic Deletion in a Patient with Childhood Stroke
Pediatric Neurology 100 (2019) 100e101 Contents lists available at ScienceDirect Pediatric Neurology journal homepage: www.elsevier.com/locate/pnu Clinical Letter An ACSL4 Hemizygous Intragenic Deletion in a Patient With Childhood Stroke Caitlin A. Chang, MD a, Julie Lauzon, MD, MHSc a, b, Adam Kirton, MD, MSc b, c, * Bob Argiropoulos, PhD a, b, d, a Department of Medical Genetics, Alberta Children's Hospital, Calgary, Alberta, Canada b Alberta Children's Hospital Research Institute for Child and Maternal Health, Alberta Children's Hospital, Calgary, Alberta, Canada c Department of Pediatrics and Clinical Neurosciences, Pediatric Neurology, Alberta Children's Hospital, Calgary, Alberta, Canada d Genetic Laboratory Services, Cytogenetics Laboratory, Alberta Children's Hospital, Calgary, Alberta, Canada article info Article history: Received 4 March 2019 Accepted 22 June 2019 Available online 28 June 2019 Keywords: Childhood stroke ACSL4 X-linked intellectual disability Ischemia Developmental delay We describe a male with a maternally inherited 9.75-kb intra- was present. Additional evaluation for stroke risk factors, including genic deletion of ACSL4. Fewer than 25 individuals have been re- lumbar puncture, echocardiogram, and examination of blood for fl ported with ACSL4-related X-linked intellectual disability (XLID). thrombophilia and in ammatory markers were negative. This individual highlights a unique presentation of ACSL4-related At three years, severe communication delays were evident. fi XLID and reveals additional pathways for investigation. Behavioral dif culties included frequent outbursts, irritability, and tantrums. There were no limitations in gross or fine motor func- Patient description tioning. At 4.5 years, he developed seizures characterized by eye deviation and automatisms. -
FRA2 Is a STAT5 Target Gene Regulated by IL-2 in Human CD4 T Cells
FRA2 Is a STAT5 Target Gene Regulated by IL-2 in Human CD4 T Cells Aradhana Rani1, Roseanna Greenlaw1, Manohursingh Runglall1, Stipo Jurcevic1*, Susan John2* 1 Division of Transplantation Immunology and Mucosal Biology, King’s College London, London, United Kingdom,2 Department of Immunobiology, King’s College London, London, United Kingdom Abstract Signal transducers and activators of transcription 5(STAT5) are cytokine induced signaling proteins, which regulate key immunological processes, such as tolerance induction, maintenance of homeostasis, and CD4 T-effector cell differentiation. In this study, transcriptional targets of STAT5 in CD4 T cells were studied by Chromatin Immunoprecipitation (ChIP). Genomic mapping of the sites cloned and identified in this study revealed the striking observation that the majority of STAT5-binding sites mapped to intergenic (.50 kb upstream) or intronic, rather than promoter proximal regions. Of the 105 STAT5 responsive binding sites identified, 94% contained the canonical (IFN-c activation site) GAS motifs. A number of putative target genes identified here are associated with tumor biology. Here, we identified Fos-related antigen 2 (FRA2) as a transcriptional target of IL-2 regulated STAT5. FRA2 is a basic -leucine zipper (bZIP) motif ‘Fos’ family transcription factor that is part of the AP-1 transcription factor complex and is also known to play a critical role in the progression of human tumours and more recently as a determinant of T cell plasticity. The binding site mapped to an internal intron within the FRA2 gene. The epigenetic architecture of FRA2, characterizes a transcriptionally active promoter as indicated by enrichment for histone methylation marks H3K4me1, H3K4me2, H3K4me3, and transcription/elongation associated marks H2BK5me1 and H4K20me1.