Raman Spectroscopy

Total Page:16

File Type:pdf, Size:1020Kb

Raman Spectroscopy In: Conners, Terrance E.; Banerjee, Sukit, eds. Surface analysis of paper. Boca Raton, FL: CRC Press, Inc.: 152-181; 1995. Chapter 8 8 Raman Spectroscopy Umesh P. Agarwal and Rajai H. Atalla USDA Forest Products Laboratory, Madison, Wisconsin, U.S.A. INTRODUCTION Since the discovery of the Raman effect in 1928, Raman spectroscopy has been a field of major advances. In the early years, the technique was primarily used to study vibrational states of simple molecules. This was due to the unavailability of intense monochromatic light sources and the lack of suitable optical components and detectors. However, with the discovery of lasers in 1960s and the development of high-throughput mono- chromators and sensitive detectors, Raman spectroscopy has been increasingly applied to solve problems of both fundamental and technological interest. In the area of wood, pulp, and paper research, however, Raman spectroscopy has not been used very much. Primarily, this seems to be due to the fact that in conventional Raman spectroscopy sample-generated laser-induced fluorescence (LIF) overwhelms the Raman signal. It was only when means to suppress the LIF contribution (to a Raman spectrum) were found, that useful spectra were obtained. Additional factors responsible for limited Raman use in pulp and paper research were instrumentation costs, spectrum acquisition time, the lack of trained personnel, and a perception that Raman and infrared (IR) spectroscopies provide the same information. In reality, the two techniques are complementary. With the development of near-IR FT Raman spectroscopy, LIF is no longer a problem for most paper and lignocellulosic samples. This is evident from the fact that even unbleached kraft pulps (strongly fluorescent in conventional Raman) have been success- fully analyzed using the near-IR FT Raman approach.1,2 Another advantage with the FT technique is that the time needed to acquire a spectrum has been drastically reduced. With these developments behind us, no barriers exist to using Raman spectroscopy and its application in pulp and paper research is expected to increase. Indeed, FT Raman systems are now available in industrial laboratories affiliated with the pulp and paper industry. None of the experimental difficulties encountered in complex lignocellulosic systems are present when cellulose and lignin models are studied using conventional Raman 152 1995 by CRC Press, Inc. Raman Spectroscopy 153 spectroscopy. 3-10 Normal coordinate analyses of such models have been carried out to provide a conceptual framework for interpretation of spectra of cellulose and lignin. Although such studies contributed significantly to the Raman studies of wood, pulp, and paper, additional studies of models and other simpler systems will be needed in the future to solve problems using Raman spectroscopy. PRINCIPLES The phenomena underlying Raman spectroscopy can be described with reference to infrared spectroscopy as shown schematically in Figure 1. The primary event in infrared absorption is the transition of a molecule from a ground state (M) to a vibrationally excited state (M*) by absorption of an infrared photon with energy equal to the differ- ence between the energies of the ground and the excited states. The reverse process, infrared emission, occurs when a molecule in the excited state (M*) emits a photon during the transition to a ground state (M). In infrared spectroscopy, one derives information by measuring the frequencies of infrared photons a molecule absorbs and interpreting these frequencies in terms of the characteristic vibrational motions of the molecule. In complex molecules, some of the frequencies are associated with functional groups that have characteristic localized modes of vibration. 154 Surface Analysis of Paper As shown in Figure 1, the same transitions between molecular vibrational states (M) and (M*) can result in Raman scattering. A key difference between the Raman and infrared processes is that the photons involved are not absorbed or emitted but rather shifted in frequency by an amount corresponding to the energy of the particular vibra- tional transition. In the Stokes process, which is the parallel of absorption, the scattered photons are shifted to lower frequencies as the molecules abstract energy from the exciting photons; in the anti-Stokes process, which is parallel to emission, the scattered photons are shifted to higher frequencies as they pick up the energy released by the molecules in the course of transitions to the ground state. In addition, a substantial number of the scattered photons are not shifted in frequency. The process which gives rise to these photons is known as Rayleigh scattering. This scattering arises from density variations and optical heterogeneities and is many orders of magnitude more intense than Raman scattering. Figure 1 depicts another major difference between Raman scattering and infrared processes. To be active in the infrared spectra, transitions must have a change in the molecular dipole associated with them. For Raman activity, in contrast, the change has to be in the polarizability of the molecule. These two molecular characteristics are qualitatively inversely related. A Raman spectrum is obtained by exposure of a sample to a monochromatic source of exciting photons, and measurement of the light intensity at the frequencies of the scattered light. Because the intensity of the Raman scattered component is much lower than that of the Rayleigh scattered component, filters and diffraction gratings are used to suppress the latter component. A highly sensitive detector is required to detect weakly scattered Raman photons. In conventional Raman spectroscopy where visible laser radiation is used, the exciting photons are typically of much higher energies than those of the fundamental vibrations of most chemical bonds or systems of bonds, usually by a factor ranging from about 6 for O-H and C-H bonds to about 200 for bonds between very heavy atoms, as for example in I2. The 514.5 and 488 nm lines from an argon ion laser are often used as exciting frequencies. In contrast, in the case of FT Raman spectroscopy, excitation with a laser is usually carried out in the near-IR region (1064 nm). The energies of the exciting photons are higher by factors that are one-half or less of the above-mentioned values. Another point to consider in near-IR excited Raman is that, for some samples, absorption of Raman scattered photons due to overtone and combination modes of molecular vibra- tions can occur. An important difference between the conventional and near-IR FT approaches is the difference in the scattering efficiencies at the absolute Raman frequencies. Because Raman scattering is directly proportional to the fourth power of the absolute frequency of a Raman line, in the FT approach, Raman scattering is lower by factors anywhere between 18 to 53 when compared to the 514.5 nm excited spectra. However, this is not Raman Spectroscopy 155 a problem because of the “multiplex” and throughput advantages of the interferometer in the FT approach. 11 lNSTRUMENTATlON CONVENTIONAL RAMAN A number of stages are involved in the acquisition of a Raman spectrum using a conven- tional approach. A sample is mounted in the sample chamber and laser light is focused on it with the help of a lens. Generally, liquids and solids are sampled in a Pyrex capillary tube. Solids are sampled either as pellets or are examined directly without any sample preparation. The scattered light is collected using another lens and is focused at the entrance slit of the monochromator. Monochromator slit widths are set for the desired spectral resolution. The monochromator effectively rejects Raleigh scattering and stray light and serves as a dispersing element for the incoming radiation; sometimes more than one monochromator is used to obtain high resolution and/or better suppression of the Rayleigh line. The light leaving the exit slit of the monochromator is collected and focused on the surface of a detector. This optical signal is converted to an electrical signal withn the detector and further manipulated using detector electronics. In a conventional Raman system using a photomultiplier tube (PMT) detector, the light intensity at various frequencies is measured by scanning the monochromator. In contrast, when a multichannel detector is used a spectral range is simultaneously recorded. A typical conventional Raman system consists of the following basic components: i) an exatation source, usually a visible-light laser; ii) optics for sample illumination and collection of sample-scattered light; iii) a monochromator; and iv) a signal processing system consisting of a detector and a data processing unit. A diagram showing the various components of a Raman spectrometer is shown in Figure 2. 156 Surface Analysis of Paper Although argon and krypton ion lasers are routinely used for sample excitation, for special purposes UV lasers have also been used.12 The choice of a suitable mono- chromator is dictated both by the spectral resolution desired and by the spectral range in which the spectrometer is to be used. A number of detector types exist in conventional Raman spectroscopy. For the scanning instruments, the most frequently used detector is the PMT. More recently, however, multichannel detectors mounted in the plane of the exit slit have been increasingly used. These consist of charge coupled devices and silicon photodiode arrays. These are especially desirable if high resolution is not required and rapid spectral acquisition is needed. FT RAMAN The instrumentation needs of conventional and FT Raman techniques are different. Although the former technique has been available for quite some time and has benefited from developments, FT Raman instruments have only recently become available. In fact, the feasibility of FT Raman was demonstrated for the first time in 1986.13 It is likely, therefore, that further developments will improve the available FT instrumentation. Conventional Raman systems are based upon the use of dispersive monochromators of various kinds. FT Raman instruments, on the other hand, are built around an interfer- ometer.
Recommended publications
  • A Comparison of Ultraviolet and Visible Raman Spectra of Supported Metal Oxide Catalysts
    8600 J. Phys. Chem. B 2001, 105, 8600-8606 A Comparison of Ultraviolet and Visible Raman Spectra of Supported Metal Oxide Catalysts Yek Tann Chua,† Peter C. Stair,*,† and Israel E. Wachs*,‡ Department of Chemistry, Center for Catalysis and Surface Science and Institute of EnVironmental Catalysis, Northwestern UniVersity, EVanston, Illinois 60208, and Zettlemoyer Center for Surface Studies and Department of Chemical Engineering, Lehigh UniVersity, Bethlehem, PennsylVania 18015 ReceiVed: April 11, 2001 The recent emergence of ultraviolet-wavelength-excited Raman spectroscopy as a tool for catalyst characterization has motivated the question of how UV Raman spectra compare to visible-wavelength-excited Raman spectra on the same catalyst system. Measurements of Raman spectra from five supported metal oxide systems (Al2O3-supported Cr2O3,V2O5, and MoO3 as well as TiO2-supported MoO3 and Re2O7), using visible (514.5 nm) and ultraviolet (244 nm) wavelength excitation have been compared to determine the similarities and differences in Raman spectra produced at the two wavelengths. The samples were in the form of self-supporting disks. Spectra from the oxides, both hydrated as a result of contact with ambient air and dehydrated as a result of calcination or laser-induced heating, were recorded. A combination of sample spinning and translation to produce a spiral pattern of laser beam exposure to the catalyst disk was found to be most effective in minimizing dehydration caused by laser-induced heating. Strong absorption by the samples in the ultraviolet significantly reduced the number of scatterers contributing to the Raman spectrum while producing only modest increases in the Raman scattering cross section due to resonance enhancement.
    [Show full text]
  • Atomic and Molecular Laser-Induced Breakdown Spectroscopy of Selected Pharmaceuticals
    Article Atomic and Molecular Laser-Induced Breakdown Spectroscopy of Selected Pharmaceuticals Pravin Kumar Tiwari 1,2, Nilesh Kumar Rai 3, Rohit Kumar 3, Christian G. Parigger 4 and Awadhesh Kumar Rai 2,* 1 Institute for Plasma Research, Gandhinagar, Gujarat-382428, India 2 Laser Spectroscopy Research Laboratory, Department of Physics, University of Allahabad, Prayagraj-211002, India 3 CMP Degree College, Department of Physics, University of Allahabad, Pragyagraj-211002, India 4 Physics and Astronomy Department, University of Tennessee, University of Tennessee Space Institute, Center for Laser Applications, 411 B.H. Goethert Parkway, Tullahoma, TN 37388-9700, USA * Correspondence: [email protected]; Tel.: +91-532-2460993 Received: 10 June 2019; Accepted: 10 July 2019; Published: 19 July 2019 Abstract: Laser-induced breakdown spectroscopy (LIBS) of pharmaceutical drugs that contain paracetamol was investigated in air and argon atmospheres. The characteristic neutral and ionic spectral lines of various elements and molecular signatures of CN violet and C2 Swan band systems were observed. The relative hardness of all drug samples was measured as well. Principal component analysis, a multivariate method, was applied in the data analysis for demarcation purposes of the drug samples. The CN violet and C2 Swan spectral radiances were investigated for evaluation of a possible correlation of the chemical and molecular structures of the pharmaceuticals. Complementary Raman and Fourier-transform-infrared spectroscopies were used to record the molecular spectra of the drug samples. The application of the above techniques for drug screening are important for the identification and mitigation of drugs that contain additives that may cause adverse side-effects. Keywords: paracetamol; laser-induced breakdown spectroscopy; cyanide; carbon swan bands; principal component analysis; Raman spectroscopy; Fourier-transform-infrared spectroscopy 1.
    [Show full text]
  • Laser Raman Spectroscopy As a Technique for Identification Of
    ARTICLE IN PRESS CHEMGE-15589; No of Pages 13 Chemical Geology xxx (2008) xxx–xxx Contents lists available at ScienceDirect Chemical Geology journal homepage: www.elsevier.com/locate/chemgeo Laser Raman spectroscopy as a technique for identification of seafloor hydrothermal and cold seep minerals Sheri N. White ⁎ Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA 02536, USA article info abstract Article history: In situ sensors capable of real-time measurements and analyses in the deep ocean are necessary to fulfill the Received 8 August 2008 potential created by the development of autonomous, deep-sea platforms such as autonomous and remotely Received in revised form 8 November 2008 operated vehicles, and cabled observatories. Laser Raman spectroscopy (a type of vibrational spectroscopy) is an Accepted 10 November 2008 optical technique that is capable of in situ molecular identification of minerals in the deep ocean. The goals of this Available online xxxx work are to determine the characteristic spectral bands and relative Raman scattering strength of hydrothermally- Editor: R.L. Rudnick and cold seep-relevant minerals, and to determine how the quality of the spectra are affected by changes in excitation wavelength and sampling optics. The information learned from this work will lead to the development Keywords: of new, smaller sea-going Raman instruments that are optimized to analyze minerals in the deep ocean. Raman spectroscopy Many minerals of interest at seafloor hydrothermal and cold seep sites are Raman active, such as elemental sulfur, Mineralogy carbonates, sulfates and sulfides. Elemental S8 sulfur is a strong Raman scatterer with dominant bands at ∼219 and Hydrothermal vents 472 Δcm−1.
    [Show full text]
  • Accessing Excited State Molecular Vibrations by Femtosecond Stimulated Raman Spectroscopy
    Accessing Excited State Molecular Vibrations by Femtosecond Stimulated Raman Spectroscopy Giovanni Batignani,y Carino Ferrante,y,z and Tullio Scopigno∗,y,z yDipartimento di Fisica, Universitá di Roma “La Sapienza", Roma, I-00185, Italy z Istituto Italiano di Tecnologia, Center for Life Nano Science @Sapienza, Roma, I-00161, Italy E-mail: [email protected] arXiv:2010.05029v1 [physics.optics] 10 Oct 2020 1 Abstract Excited-state vibrations are crucial for determining photophysical and photochem- ical properties of molecular compounds. Stimulated Raman scattering can coherently stimulate and probe molecular vibrations with optical pulses, but it is generally re- stricted to ground state properties. Working in resonance conditions, indeed, enables cross-section enhancement and selective excitation to a targeted electronic level, but is hampered by an increased signal complexity due to the presence of overlapping spectral contributions. Here, we show how detailed information on ground and excited state vi- brations can be disentangled, by exploiting the relative time delay between Raman and probe pulses to control the excited state population, combined with a diagrammatic formalism to dissect the pathways concurring to the signal generation. The proposed method is then exploited to elucidate the vibrational properties of ground and excited electronic states in the paradigmatic case of Cresyl Violet. We anticipate that the presented approach holds the potential for selective mapping the reaction coordinates pertaining to transient electronic stages implied in photo-active compounds. Graphical TOC Entry 2 Raman spectroscopy is a powerful tool to access the vibrational fingerprints of molecules or solid state compounds and it can be used to extract structural and dynamical information of the samples under investigation.
    [Show full text]
  • Combining Chemical Information from Grass Pollen in Multimodal Characterization
    ORIGINAL RESEARCH published: 31 January 2020 doi: 10.3389/fpls.2019.01788 Combining Chemical Information From Grass Pollen in Multimodal Characterization Sabrina Diehn 1,2, Boris Zimmermann 3, Valeria Tafintseva 3, Stephan Seifert 1,2, Murat Bag˘ cıog˘ lu 3, Mikael Ohlson 4, Steffen Weidner 2, Siri Fjellheim 5, Achim Kohler 3,6 and Janina Kneipp 1,2* 1 Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany, 2 BAM Federal Institute for Materials Research and Testing, Berlin, Germany, 3 Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway, 4 Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway, 5 Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway, 6 Nofima AS, Ås, Norway Edited by: Lisbeth Garbrecht Thygesen, fi University of Copenhagen, The analysis of pollen chemical composition is important to many elds, including Denmark agriculture, plant physiology, ecology, allergology, and climate studies. Here, the Reviewed by: potential of a combination of different spectroscopic and spectrometric methods Wesley Toby Fraser, regarding the characterization of small biochemical differences between pollen samples Oxford Brookes University, United Kingdom was evaluated using multivariate statistical approaches. Pollen samples, collected from Åsmund Rinnan, three populations of the grass Poa alpina, were analyzed using Fourier-transform infrared University of Copenhagen, Denmark (FTIR) spectroscopy, Raman spectroscopy, surface enhanced Raman scattering (SERS), Anna De Juan, and matrix assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS). The University of Barcelona, Spain variation in the sample set can be described in a hierarchical framework comprising three *Correspondence: populations of the same grass species and four different growth conditions of the parent Janina Kneipp [email protected] plants for each of the populations.
    [Show full text]
  • Raman Scattering and Fluorescence
    Fluorescence 01 Raman Scattering and Fluorescence Introduction The existence of such virtual states also explains why the non-resonance Raman effect Raman scattering and Fluorescence emission does not depend on the wavelength of the are two competing phenomena, which have excitation, since no real states are involved in similar origins. Generally, a laser photon this interaction mechanism. In fact, the Raman bounces off a molecule and looses a certain spectrum generally does not depend on the amount of energy that allows the molecule to laser excitation. vibrate (Stokes process). The scattered photon is therefore less energetic and the associated However, when the energy of the excitation light exhibits a frequency shift. The various photon gets close to the transition energy frequency shifts associated with different between two electronic states, one then deals molecular vibrations give rise to a spectrum, with resonance Raman or resonance that is characteristic of a specific compound. fluorescence (fig.1, case (d)). The basic difference between these two processes is In contrast, fluorescence or luminescence related to the time scales involved, as well as emission follows an absorption process. For a with the nature of the so-called intermediate better understanding, one can refer to the states. In contrast with resonant fluorescent, diagram below. relaxed fluorescence results from the emission of a photon from the lowest vibrational level of an excited electronic state, following a direct absorption of the photon and relaxation of the molecule from its vibrationally excited level of the electronic state back to the lowest vibrational level of the electronic state. A fluorescence process typically requires more than 10-9 s.
    [Show full text]
  • Nitrogen-15 Magnetic Resonance Spectroscopy, I
    VOL. 51, 1964 CHEMISTRY: LAMBERT, BINSCH, AND ROBERTS 735 11 Felsenfeld, G., G. Sandeen, and P. von Hippel, these PROCEEDINGS, 50, 644 (1963). 12Bollum, F. J., J. Cell. Comp. Physiol., 62 (Suppi. 1), 61 (1963); Von Borstel, R. C., D. M. Prescott, and F. J. Bollum, J. Cell Biol., 19, 72A (1963). 13 Huang, R. C., and J. Bonner, these PROCEEDINGS, 48, 216 (1962); Allfrey, V. G., V. C. Littau, and A. E. Mirsky, these PROCEEDINGS, 49, 414 (1963). 14 Baxill, G. W., and J. St. L. Philpot, Biochim. Biophys. Acta, 76, 223 (1963). NITROGEN-15 MAGNETIC RESONANCE SPECTROSCOPY, I. CHEMICAL SHIFTS* BY JOSEPH B. LAMBERT, GERHARD BINSCH, AND JOHN D. ROBERTS GATES AND CRELLIN LABORATORIES OF CHEMISTRY, t CALIFORNIA INSTITUTE OF TECHNOLOGY Communicated March 23, 1964 Except for the original determination' of nuclear moments, nitrogen magnetic resonance spectroscopy has been limited to the isotope of mass number 14. Al- though N14 is an abundant isotope, it possesses an electric quadrupole moment, which seriously broadens the resonances of nitrogen in all but the most sym- metrical of environments.2 Consequently, nitrogen n.m.r. spectroscopy has seen only limited use in the determination of organic structure. It might be expected that N15, which has a spin of 1/2 and no quadrupole moment, would be very useful, but the low natural abundance (0.36%) and the inherently low signal intensity (1.04 X 10-3 that of H' at constant field) have thus far precluded utilization of N15 in n.m.r. spectroscopy'3 Resonance signals from N'5 have now been obtained from a series of N"5-enriched (30-99%) compounds with a Varian model 4300B spectrometer operated at 6.08 Mc/sec and 14,100 gauss.
    [Show full text]
  • 2. Molecular Stucture/Basic Spectroscopy the Electromagnetic Spectrum
    2. Molecular stucture/Basic spectroscopy The electromagnetic spectrum Spectral region fooatocadr atomic and molecular spectroscopy E. Hecht (2nd Ed.) Optics, Addison-Wesley Publishing Company,1987 Per-Erik Bengtsson Spectral regions Mo lecu lar spec troscopy o ften dea ls w ith ra dia tion in the ultraviolet (UV), visible, and infrared (IR) spectltral reg ions. • The visible region is from 400 nm – 700 nm • The ultraviolet region is below 400 nm • The infrared region is above 700 nm. 400 nm 500 nm 600 nm 700 nm Spectroscopy: That part of science which uses emission and/or absorption of radiation to deduce atomic/molecular properties Per-Erik Bengtsson Some basics about spectroscopy E = Energy difference = c /c h = Planck's constant, 6.63 10-34 Js ergy nn = Frequency E hn = h/hc /l E = h = hc / c = Velocity of light, 3.0 108 m/s = Wavelength 0 Often the wave number, , is used to express energy. The unit is cm-1. = E / hc = 1/ Example The energy difference between two states in the OH-molecule is 35714 cm-1. Which wavelength is needed to excite the molecule? Answer = 1/ =35714 cm -1 = 1/ = 280 nm. Other ways of expressing this energy: E = hc/ = 656.5 10-19 J E / h = c/ = 9.7 1014 Hz Per-Erik Bengtsson Species in combustion Combustion involves a large number of species Atoms oxygen (O), hydrogen (H), etc. formed by dissociation at high temperatures Diatomic molecules nitrogen (N2), oxygen (O2) carbon monoxide (CO), hydrogen (H2) nitr icoxide (NO), hy droxy l (OH), CH, e tc.
    [Show full text]
  • The Power of Crowding for the Origins of Life
    Orig Life Evol Biosph (2014) 44:307–311 DOI 10.1007/s11084-014-9382-5 ORIGIN OF LIFE The Power of Crowding for the Origins of Life Helen Greenwood Hansma Received: 2 October 2014 /Accepted: 2 October 2014 / Published online: 14 January 2015 # Springer Science+Business Media Dordrecht 2015 Abstract Molecular crowding increases the likelihood that life as we know it would emerge. In confined spaces, diffusion distances are shorter, and chemical reactions produce fewer and more regular products. Crowding will occur in the spaces between Muscovite mica sheets, which has many advantages as a site for life’s origins. Keywords Muscovite mica . Molecular crowding . Origin of life . Mechanochemistry. Abiogenesis . Chemical confinement effects . Chirality. Protocells Cells are crowded. Protein molecules in cells are typically so close to each other that there is room for only one protein molecule between them (Phillips, Kondev et al. 2008). This is nothing like a dilute ‘prebiotic soup.’ Therefore, by analogy with living cells, the origins of life were probably also crowded. Molecular Confinement Effects Many chemical reactions are limited by the time needed for reactants to diffuse to each other. Shorter distances speed up these reactions. Molecular complementarity is another principle of life in which pairs or groups of molecules form specific interactions (Root-Bernstein 2012). Current examples are: enzymes & substrates & cofactors; nucleic acid base pairs; antigens & antibodies; nucleic acid - protein interactions. Molecular complementarity is likely to have been involved at life’s origins and also benefits from crowding. Mineral surfaces are a likely place for life’s origins and for formation of polymeric molecules (Orgel 1998).
    [Show full text]
  • Venus Elemental and Mineralogical Camera (Vemcam)
    EPSC Abstracts Vol. 13, EPSC-DPS2019-827-1, 2019 EPSC-DPS Joint Meeting 2019 c Author(s) 2019. CC Attribution 4.0 license. Venus Elemental and Mineralogical Camera (VEMCam) Samuel M. Clegg (1), Brett S. Okhuysen (1), David S. DeCroix (1), Raymond T. Newell (1), Roger C. Wiens (1), Shiv K. Sharma (2), Sylvestre Maurice (3), Ronald K. Martinez (1), Adriana Reyes-Newell (1), and Melinda D. Dyar (4), (1) Los Alamos National Laboratory, Los Alamos, NM, [email protected], (2) Hawaii Inst. of Geophysics and Planetology, Univ. of Hawaii, Honolulu, USA, (3) L'Institut de Recherche en Astrophysique et Planétologie, Toulouse France, (4) Planetary Science Inst., Tucson, AZ, USA Abstract The Venus Elemental and Mineralogical Camera The Venus Elemental and Mineralogical Camera (VEMCam) is an integrated remote LIBS and Raman (VEMCam) can make thousands of measurements instrument concept designed to operate from within within the first two hours on the surface, providing the safety of the lander. The extreme Venus surface an unprecedented description of the Venus surface. conditions requires rapid analyses and VEMCam can VEMCam is based on the ChemCam instrument on collect over 1000 chemical and mineralogical spectra the Mars Science Laboratory rover and the within the first hour. Here, we discuss the VEMCam SuperCam instrument selected for the Mars 2020 prototype calibration and analysis in which samples rover. VEMCam includes an integrated Raman and are placed in a 2 m long chamber capable of Laser-Induced Breakdown Spectroscopy (LIBS) simulating the Venus surface atmosphere. instrument capable of probing many disparate locations around the lander. VEMCam also includes 1.
    [Show full text]
  • Crystal Structure, Raman Spectroscopy and Dielectric Properties of New Semiorganic Crystals Based on 2-Methylbenzimidazole
    crystals Article Crystal Structure, Raman Spectroscopy and Dielectric Properties of New Semiorganic Crystals Based on 2-Methylbenzimidazole E. V. Balashova 1,* , F. B. Svinarev 1, A. A. Zolotarev 2, A. A. Levin 1, P. N. Brunkov 1, V. Yu. Davydov 1 , A. N. Smirnov 1 , A. V. Redkov 3, G. A. Pankova 4 and B. B. Krichevtsov 1 1 Ioffe Institute, 26 Politekhnicheskaya, St Petersburg 194021, Russian Federation; [email protected]ffe.ru (F.B.S.); [email protected]ffe.ru (A.A.L.); [email protected]ffe.ru (P.N.B.); [email protected]ffe.ru (V.Y.D.); [email protected]ffe.ru (A.N.S.); [email protected]ffe.ru (B.B.K.) 2 Institute of Earth Sciences, Saint-Petersburg State University, 7/9 Universitetskaya Nab., St Petersburg 199034, Russian Federation; [email protected] 3 Institute of Problems of Mechanical Engineering, 61 Bolshoy pr. V.O., St Petersburg 199004, Russian Federation; [email protected] 4 Institute of macromolecular compounds, 31 Bolshoy pr. V.O., St Petersburg 199004, Russian Federation; [email protected] * Correspondence: [email protected]ffe.ru Received: 27 September 2019; Accepted: 29 October 2019; Published: 31 October 2019 Abstract: New single crystals, based on 2-methylbenzimidazole (MBI), of MBI-phosphite (C16H24N4O7P2), MBI-phosphate-1 (C16H24N4O9P2), and MBI-phosphate-2 (C8H16N2O9P2) were obtained by slow evaporation method from a mixture of alcohol solution of MBI crystals and water solution of phosphorous or phosphoric acids. Crystal structures and chemical compositions were determined by single crystal X-ray diffraction (XRD) analysis and confirmed by XRD of powders and elemental analysis.
    [Show full text]
  • Article Intends to Provide a for the Necessary Virtual Electronic Brief Overview of the Differences and Transition
    ADVANCES IN RAMAN TECHNIQUES Laser requirements and advances for Raman techniques Andreas Isemann Laser Quantum GmbH, 78467 Konstanz, Germany INTRODUCTION 473 nm and 1064 nm, a narrow Raman scattering as a probe of bandwidth output of few tens of GHz vibrational transitions has made or below 1 MHz if needed within the leaps and bounds since its discovery, linewidth of vibrational transitions and various schemes based on this for high resolution, low noise (less phenomenon have been developed than 0.02%) and excellent beam with great success. quality (fundamental transversal Applications range from basic electromagnetic mode TEM00) scientific research, to medical and provides optimised performance industrial instrumentation. Some for the resolution of the Raman schemes utilise linear Raman measurement needed. scattering, whilst others take advantage The wavelength is chosen based of high peak-power fields to probe on the sample under investigation, nonlinear Raman responses. with 532 nm being commonly used This article intends to provide a for the necessary virtual electronic brief overview of the differences and transition. In the following section, benefits, together with the laser source four examples from different areas of requirements and the advancements Raman applications show the diverse in techniques enabled by recent applications of linear Raman and what developments in lasers. advances have been achieved. An example of studying a real-world LINEAR RAMAN application, the successful control of Figure 1 An example of the RR microfluidic device counting of The advent of the laser in providing a food quality using Raman spectroscopy photosynthetic microorganisms. As the cells of the model strain high-intensity coherent light source and multivariate analysis, is described Synechocystis sp.
    [Show full text]