Rulers Vs. Calipers in This Experiment, You Will Compare the Precision And

Total Page:16

File Type:pdf, Size:1020Kb

Rulers Vs. Calipers in This Experiment, You Will Compare the Precision And Experiment 1: Rulers vs. Calipers In this experiment, you will compare the precision and accuracy measuring the same objects with a ruler and a caliper. Materials 1 Marble (1) 8 oz. Styrofoam® Cup Ruler Vernier Caliper String 1 Washer Procedure Using the ruler, measure the diameter of the marble. Record your measurement in Table 1. 1. Indicate your uncertainty. Record the uncertainty in Table 1. 2. Repeat Steps 1 and 2 for the outer diameter of the washer, inner diameter of the washer, washer thickness, length of the string and the height of the Styrofoam® cup. 3. Repeat Steps 1 - 3 using a Vernier caliper. Table 1: Ruler and Caliper Measurements Ruler Caliper Object Measurement Uncertainty Measurement Uncertainty (cm) (cm) (cm) (cm) Marble Diameter 1.0cm 0.05cm 1.20cm 0.0025cm Washer (Outer Diameter) 1.8cm 0.05cm 1.80cm 0.0025cm Washer (Inner Diameter) 0.8cm 0.05cm 0.80cm 0.0025cm Washer Thickness 0.1cm 0.05cm 0.13cm 0.0025cm String Length 5.9cm 0.05cm 5.94cm 0.0025cm Styrofoam® Cup Height 9.1cm 0.05cm 9.02cm 0.0025cm Post-Lab Questions © 2014 eScience Labs, LLC. All Rights Reserved 1. Compare the measurements for objects using the ruler and caliper and write a general statement on when it is more beneficial to use a ruler rather than a caliper. Measurements on a ruler are less exact than that on a caliper. Additionally, a ruler would be a more useful when you are measuring a 2D object because the caliper does not lay smoothly against a surface. 2. Comment on accuracy vs. precision for rulers and calipers. The caliper always give a more precise and accurate reading and you can use one more decimal place because of how exact the measurements are laid out. Accuracy is how close the measurement is to the true value, and because you can measure to a smaller measurement the readings are more exact. The ruler is less exact and so is unable to provide the amount of exactness that a caliper can. 3. What are the sources of uncertainty when using a ruler and caliper? The smallest graduations on a ruler is 0.1 cm and so taking the half least count in an uncertainty you get (+/-) 0.05cm. The smallest graduations on a caliper is .05mm so using the half least count for this item you have an uncertainty of (+/-) 0.025mm or 0.0025cm. © 2014 eScience Labs, LLC. All Rights Reserved Experiment 2: The Spring Force Scale Before you begin an experiment using the spring scale, you may need to calibrate it. In this experiment, you will become familiar with how to calibrate and use the spring scale. Materials Mass Set 5 N Spring Scale Roll of Masking Tape 10 N Spring Scale Box of Modeling Clay Stopwatch Single Hole Punch Procedure Calibrating a Spring Scale 1. Hold the 5 N spring scale by the handle so that the measurement readings are right side up. This should leave the hook hanging from the bottom. 2. Observe the plunger (the plastic piece hanging from the spring) as you gently pull and release the hook. The top of the plunger that looks like a flat circular piece is called the indicator. 3. To calibrate the spring scale, observe the position of the indicator on the measurement scale. The indicator should rest at 0 g or 0 N when no force is applied (i.e., the hook is not being pulled on by anything). 4. If the indicator is in any position other than zero when at rest, adjust it by twisting the plastic bolt at the top of the spring scale until the indicator rests at the measurement 0 g or 0 N. 5. Repeat Steps 1 - 4 with the 10 N spring scale. Weighing a Mass 1. Calibrate the 5 N spring scales if necessary. 2. Hold the spring scale upright by the metal handle and hook the stopwatch onto the spring scale hook so it freely hangs. 3. Observe how far the indicator moves on the measurement scale and record the mass in Table 2. 4. Determine and record the uncertainty in Table 2. 5. Repeat Steps 1 - 5 using the 10 N spring scale. © 2014 eScience Labs, LLC. All Rights Reserved.
Recommended publications
  • Dial Caliperscalipers at the Conclusion of This Presentation, You Will Be Able To…
    Forging new generations of engineers DialDial CalipersCalipers At the conclusion of this presentation, you will be able to… identify four types of measurements that dial calipers can perform. identify the different parts of a dial caliper. accurately read an inch dial caliper. DialDial CalipersCalipers GeneralGeneral InformationInformation DialDial CalipersCalipers are arguably the most common and versatile of all the precision measuring tools. Engineers, technicians, scientists and machinists use precision measurement tools every day for: • analysis • reverse engineering • inspection • manufacturing • engineering design DialDial CalipersCalipers FourFour TypesTypes ofof MeasurementsMeasurements Dial calipers are used to perform four common measurements on parts… 1. Outside Diameter/Object Thickness 2. Inside Diameter/Space Width 3. Step Distance 4. Hole Depth OutsideOutside MeasuringMeasuring FacesFaces These are the faces between which outside length or diameter is measured. InsideInside MeasuringMeasuring FacesFaces These are the faces between which inside diameter or space width (i.e., slot width) is measured. StepStep MeasuringMeasuring FacesFaces These are the faces between which stepped parallel surface distance can be measured. DepthDepth MeasuringMeasuring FacesFaces These are the faces between which the depth of a hole can be measured. Note: Work piece is shown in section. Dial Caliper shortened for graphic purposes. DialDial CalipersCalipers NomenclatureNomenclature A standard inchinch dialdial calipercaliper will measure slightly more than 6 inches. The bladeblade scalescale shows each inch divided into 10 increments. Each increment equals one hundred thousandths (0.100”). Note: Some dial calipers have blade scales that are located above or below the rack. BladeBlade The bladeblade is the immovable portion of the dial caliper. SliderSlider The sliderslider moves along the blade and is used to adjust the distance between the measuring surfaces.
    [Show full text]
  • Check Points for Measuring Instruments
    Catalog No. E12024 Check Points for Measuring Instruments Introduction Measurement… the word can mean many things. In the case of length measurement there are many kinds of measuring instrument and corresponding measuring methods. For efficient and accurate measurement, the proper usage of measuring tools and instruments is vital. Additionally, to ensure the long working life of those instruments, care in use and regular maintenance is important. We have put together this booklet to help anyone get the best use from a Mitutoyo measuring instrument for many years, and sincerely hope it will help you. CONVENTIONS USED IN THIS BOOKLET The following symbols are used in this booklet to help the user obtain reliable measurement data through correct instrument operation. correct incorrect CONTENTS Products Used for Maintenance of Measuring Instruments 1 Micrometers Digimatic Outside Micrometers (Coolant Proof Micrometers) 2 Outside Micrometers 3 Holtest Digimatic Holtest (Three-point Bore Micrometers) 4 Holtest (Two-point/Three-point Bore Micrometers) 5 Bore Gages Bore Gages 6 Bore Gages (Small Holes) 7 Calipers ABSOLUTE Coolant Proof Calipers 8 ABSOLUTE Digimatic Calipers 9 Dial Calipers 10 Vernier Calipers 11 ABSOLUTE Inside Calipers 12 Offset Centerline Calipers 13 Height Gages Digimatic Height Gages 14 ABSOLUTE Digimatic Height Gages 15 Vernier Height Gages 16 Dial Height Gages 17 Indicators Digimatic Indicators 18 Dial Indicators 19 Dial Test Indicators (Lever-operated Dial Indicators) 20 Thickness Gages 21 Gauge Blocks Rectangular Gauge Blocks 22 Products Used for Maintenance of Measuring Instruments Mitutoyo products Micrometer oil Maintenance kit for gauge blocks Lubrication and rust-prevention oil Maintenance kit for gauge Order No.207000 blocks includes all the necessary maintenance tools for removing burrs and contamination, and for applying anti-corrosion treatment after use, etc.
    [Show full text]
  • Micro-Ruler MR-1 a NPL (NIST Counterpart in the U.K.)Traceable Certified Reference Material
    Micro-Ruler MR-1 A NPL (NIST counterpart in the U.K.)Traceable Certified Reference Material . ATraceable “Micro-Ruler”. Markings are all on one side. Mirror image markings are provided so right reading numbers are always seen. The minimum increment is 0.01mm. The circles (diameter) and square boxes (side length) are 0.02, 0.05, 0.10, 0.50, 1.00, 2.00 and 5.00mm. 150mm OVERALL LENGTH 150mm uncertainty: ±0.0025mm, 0-10mm: ±0.0005mm) 0.01mm INCREMENTS, SQUARES & CIRCLES UP TO 5mm TED PELLA, INC. Microscopy Products for Science and Industry P. O. Box 492477 Redding, CA 96049-2477 Phone: 530-243-2200 or 800-237-3526 (USA) • FAX: 530-243-3761 [email protected] www.tedpella.com DOES THE WORLD NEED A TRACEABLE RULER? The MR-1 is labeled in mm. Its overall scale extends According to ISO, traceable measurements shall be over 150mm with 0.01mm increments. The ruler is designed to be viewed from either side as the markings made when products require the dimensions to be are both right reading and mirror images. This allows known to a specified uncertainty. These measurements the ruler marking to be placed in direct contact with the shall be made with a traceable ruler or micrometer. For sample, avoiding parallax errors. Independent of the magnification to be traceable the image and object size ruler orientation, the scale can be read correctly. There is must be measured with calibration standards that have a common scale with the finest (0.01mm) markings to traceable dimensions. read. We measure and certify pitch (the distance between repeating parallel lines using center-to-center or edge-to- edge spacing.
    [Show full text]
  • Verification Regulation of Steel Ruler
    ITTC – Recommended 7.6-02-04 Procedures and guidelines Page 1 of 15 Effective Date Revision Calibration of Micrometers 2002 00 ITTC Quality System Manual Sample Work Instructions Work Instructions Calibration of Micrometers 7.6 Control of Inspection, Measuring and Test Equipment 7.6-02 Sample Work Instructions 7.6-02-04 Calibration of Micrometers Updated / Edited by Approved Quality Systems Group of the 28th ITTC 23rd ITTC 2002 Date: 07/2017 Date: 09/2002 ITTC – Recommended 7.6-02-04 Procedures and guidelines Page 2 of 15 Effective Date Revision Calibration of Micrometers 2002 00 Table of Contents 1. PURPOSE .............................................. 4 4.6 MEASURING FORCE ......................... 9 4.6.1 Requirements: ............................... 9 2. INTRODUCTION ................................. 4 4.6.2 Calibration Method: ..................... 9 3. SUBJECT AND CONDITION OF 4.7 WIDTH AND WIDTH DIFFERENCE CALIBRATION .................................... 4 OF LINES .............................................. 9 3.1 SUBJECT AND MAIN TOOLS OF 4.7.1 Requirements ................................ 9 CALIBRATION .................................... 4 4.7.2 Calibration Method ...................... 9 3.2 CALIBRATION CONDITIONS .......... 5 4.8 RELATIVE POSITION OF INDICATOR NEEDLE AND DIAL.. 10 4. TECHNICAL REQUIREMENTS AND CALIBRATION METHOD ................. 7 4.8.1 Requirements .............................. 10 4.8.2 Calibration Method: ................... 10 4.1 EXTERIOR ............................................ 7 4.9 DISTANCE
    [Show full text]
  • MICHIGAN STATE COLLEGE Paul W
    A STUDY OF RECENT DEVELOPMENTS AND INVENTIONS IN ENGINEERING INSTRUMENTS Thai: for III. Dean. of I. S. MICHIGAN STATE COLLEGE Paul W. Hoynigor I948 This]: _ C./ SUPP! '3' Nagy NIH: LJWIHL WA KOF BOOK A STUDY OF RECENT DEVELOPMENTS AND INVENTIONS IN ENGINEERING’INSIRUMENTS A Thesis Submitted to The Faculty of MICHIGAN‘STATE COLLEGE OF AGRICULTURE AND.APPLIED SCIENCE by Paul W. Heyniger Candidate for the Degree of Batchelor of Science June 1948 \. HE-UI: PREFACE This Thesis is submitted to the faculty of Michigan State College as one of the requirements for a B. S. De- gree in Civil Engineering.' At this time,I Iish to express my appreciation to c. M. Cade, Professor of Civil Engineering at Michigan State Collegeafor his assistance throughout the course and to the manufacturers,vhose products are represented, for their help by freely giving of the data used in this paper. In preparing the laterial used in this thesis, it was the authors at: to point out new develop-ants on existing instruments and recent inventions or engineer- ing equipment used principally by the Civil Engineer. 20 6052 TAEEE OF CONTENTS Chapter One Page Introduction B. Drafting Equipment ----------------------- 13 Chapter Two Telescopic Inprovenents A. Glass Reticles .......................... -32 B. Coated Lenses .......................... --J.B Chapter three The Tilting Level- ............................ -33 Chapter rear The First One-Second.Anerican Optical 28 “00d011 ‘6- -------------------------- e- --------- Chapter rive Chapter Six The Latest Type Altineter ----- - ................ 5.5 TABLE OF CONTENTS , Chapter Seven Page The Most Recent Drafting Machine ........... -39.--- Chapter Eight Chapter Nine SmOnnB By Radar ....... - ------------------ In”.-- Chapter Ten Conclusion ------------ - ----- -.
    [Show full text]
  • 1. Hand Tools 3. Related Tools 4. Chisels 5. Hammer 6. Saw Terminology 7. Pliers Introduction
    1 1. Hand Tools 2. Types 2.1 Hand tools 2.2 Hammer Drill 2.3 Rotary hammer drill 2.4 Cordless drills 2.5 Drill press 2.6 Geared head drill 2.7 Radial arm drill 2.8 Mill drill 3. Related tools 4. Chisels 4.1. Types 4.1.1 Woodworking chisels 4.1.1.1 Lathe tools 4.2 Metalworking chisels 4.2.1 Cold chisel 4.2.2 Hardy chisel 4.3 Stone chisels 4.4 Masonry chisels 4.4.1 Joint chisel 5. Hammer 5.1 Basic design and variations 5.2 The physics of hammering 5.2.1 Hammer as a force amplifier 5.2.2 Effect of the head's mass 5.2.3 Effect of the handle 5.3 War hammers 5.4 Symbolic hammers 6. Saw terminology 6.1 Types of saws 6.1.1 Hand saws 6.1.2. Back saws 6.1.3 Mechanically powered saws 6.1.4. Circular blade saws 6.1.5. Reciprocating blade saws 6.1.6..Continuous band 6.2. Types of saw blades and the cuts they make 6.3. Materials used for saws 7. Pliers Introduction 7.1. Design 7.2.Common types 7.2.1 Gripping pliers (used to improve grip) 7.2 2.Cutting pliers (used to sever or pinch off) 2 7.2.3 Crimping pliers 7.2.4 Rotational pliers 8. Common wrenches / spanners 8.1 Other general wrenches / spanners 8.2. Spe cialized wrenches / spanners 8.3. Spanners in popular culture 9. Hacksaw, surface plate, surface gauge, , vee-block, files 10.
    [Show full text]
  • CVP-19: Procedures for the Checking of Critical Dimensions of The
    OMR-CVP-19 PROCEDURES FOR THE CHECKING OF CRITICAL DIMENSIONS OF THE CONICAL MOLD AND TAMPER AND THE CALIBRATION OF PYCNOMETERS AASHTO T 84 A. PURPOSE These procedures are intended to provide instruction for the verification of critical dimensions of the conical mold and tamper. B. APPARATUS REQUIRED 1. Calibrated calipers readable to 0.001 inch (.025 mm) 2. Calibrated balance capable of weighing 500 grams and readable to 0.1 gram. 3. Straightedge or ruler. 4. Thermometer readable to 0.1 °F or 0.1 °C. C. PROCEDURE Conical Cone 1. Measure the inside diameter of the top of the conical cone to the nearest 0.001 inch (.025 mm) by taking two (2) readings 90° apart with calipers and record results. 2. Invert cone and repeat Step 1 and record. 3. Place cone on a flat glass plate. Measure and determine the height of the cone by using the calipers and a straightedge and record results. 4. Measure and record the thickness of the cone to the nearest 0.001inch (.025 mm) with calipers by taking two (2) readings 90° apart on the top and bottom of cone. Tamper 1. Measure diameter of face of tamper by taking two (2) readings 90° apart. 2. Weigh and record weight of tamper to nearest 0.1 gram. Pycnometers Volumetric Flask (500 cm) calibrated annually at 21.3 °C – 24.7 °C (70.4 °F – 76.4 °F) by the following procedure: 1. Volumetric flasks are weighed empty and recorded to the nearest 0.1 gram. 2. Volumetric flasks are filled with water to the mark at which it is calibrated.
    [Show full text]
  • FIELD EXTENSIONS and the CLASSICAL COMPASS and STRAIGHT-EDGE CONSTRUCTIONS 1. Introduction to the Classical Geometric Problems 1
    FIELD EXTENSIONS AND THE CLASSICAL COMPASS AND STRAIGHT-EDGE CONSTRUCTIONS WINSTON GAO Abstract. This paper will introduce the reader to field extensions at a rudi- mentary level and then pursue the subject further by looking to its applications in a discussion of some constructibility issues in the classical straight-edge and compass problems. Field extensions, especially their degrees are explored at an introductory level. Properties of minimal polynomials are discussed to this end. The paper ends with geometric problems and the construction of polygons which have their proofs in the roots of field theory. Contents 1. introduction to the classical geometric problems 1 2. fields, field extensions, and preliminaries 2 3. geometric problems 5 4. constructing regular polygons 8 Acknowledgments 9 References 9 1. Introduction to the Classical Geometric Problems One very important and interesting set of problems within classical Euclidean ge- ometry is the set of compass and straight-edge questions. Basically, these questions deal with what is and is not constructible with only an idealized ruler and compass. The ruler has no markings (hence technically a straight-edge) has infinite length, and zero width. The compass can be extended to infinite distance and is assumed to collapse when lifted from the paper (a restriction that we shall see is irrelevant). Given these, we then study the set of constructible elements. However, while it is interesting to note what kinds objects we can create, it is far less straight forward to show that certain objects are impossible to create with these tools. Three famous problems that we will investigate will be the squaring the circle, doubling the cube, and trisecting an angle.
    [Show full text]
  • Verification Regulation of Steel Ruler
    ITTC – Recommended 7.6 - 02- 01 Procedures and Guidelines Page 1 of 7 Sample Work Instructions Effective Date Revision 2002 00 Calibration of Steel Rulers Table of Contents PURPOSE…………………………………...2 Edges………………………………….4 3.5.1 Requirements ...............................4 WORK INSTRUCTION……………………2 3.5.2 Method of Calibration..................4 3.6 Thickness of the Side Edge………….5 1 Introduction…………………………2 3.6.1 Method of Calibration..................5 2 Items and Condition of Calibration…..2 3.7 Arc Radius at the Intersecting Position of the End and the Side 3 Technical Requirements and Calibration Edges………………………………….5 Method……………………………………….2 3.7.1 Requirements ...............................5 3.1 Exterior………………………………2 3.7.2 Method Calibration......................5 3.1.1 Requirements ...............................2 3.8 Width and Difference Between the 3.2 Flatness of ruler face………………..3 Lines…………………………………..5 3.2.1 Requirements ...............................3 3.8.1 Requirements ...............................5 3.2.2 Method of Calibration..................4 3.8.2 Method of Calibration..................5 3.3 Elasticity……………………………..4 3.9 Error of Indication…………………..5 3.3.1 Requirements ...............................4 3.9.1 Requirements ...............................5 3.3.2 Method of Calibration..................4 3.9.2 Method of Calibration..................6 3.4 Linearity of the Ruler End and Side 4 Treatment of the Calibration Result and Edges………………………………….4 the Calibration Period………………….7 3.4.1 Requirements ...............................4
    [Show full text]
  • Marking Gauge
    Online Extra accurate layouts with a Marking Gauge When it comes to fast and accurate layouts, this traditional tool will more than earns its keep in the woodworking shop. Thumb If I were to make a list of the If you take a look at the various the amount of brass details used screw most-used tools in my shop, the marking gauges being sold today, in the construction. The more marking gauge would be you’ll notice two distinct types. expensive gauges have brass thumb near the top. Even with the Some use a steel pin to scribe a line myriad of rulers, calipers, while others use a flat blade. This and digital measuring second type is often called a “cut- devices that are available ting gauge” because the blade slices today, it’s hard to beat this the wood fibers rather than tearing simple tool for accuracy them, like the pin-style marking and ease of use. gauges (see photos at right). Of the two, I prefer the blade-style gauge. Blade Wedge It scores a cleaner, crisper line. DESIGN. A marking gauge is one of those simple tools whose basic design hasn’t changed much over the years. It has a beam and an adjustable fence (or stock) that is Brass wear strip held in place with a thumb screw, or sometimes, a wedge. Fence The only other differences you’re (or stock) Beam likely to find between the various { A marking gauge (top) tears gauges on the market have to do its way across the wood, while with the level of fit and finish and a cutting gauge scores a line.
    [Show full text]
  • Chisel Quilts
    1501 Easy Chisel Quilts REQUIRED GO! Baby Friendly Twelve Star Quilt Quilt 49” x 61” Finished Block SizeSize 11½”11½” Teresa Varnes Amie Potter Long Braid Tablee RunneRunnerr 14” x 102” Finished Width ooff BrBraidaid 6” Eleanor Burns Judy Jackson Medium Length Braid Table Runner 14” x 54” 2 Select from a Star Lap Robe or Braid Table Runer in two sizes featuring AccuQuilt® Die #55039 for Chisels. The Star also uses Die #55009 for Half Square Triangles. This die is #3 from the 6” Mix and Match series. The Chisel die cuts two shapes at a time. Chisels #55039 The Half Square Half Square Triangle Triangle die cuts four #55009 shapes at a time. Carefully follow cutting instructions, because they are not the same for both projects. Chisels for Star Lap Robe are cut from strips placed right side up. Chisels for Braid Table Runner are cut from strips placed wrong sides together in pairs. 3 Fabric Selection Decide on the theme or era of your projects, such as Civil War, Depression, Traditional, Modern, Juvenile, or Holiday. It's easy to select from a line that a designer put together in a variety of prints and solids, or ones that appear solid. A total of eighteen fat quar- ters is enough for both projects, including two Table Runners in the medium length. Select twelve medium to dark print fat quarters in a variety of values, colors, and scales. Select six Background prints in similar values but different textures that appear solid and do not distract from prints. Twelve Fat Quarters Six Backgrounds In additional, purchase fabric listed on page 5 for finishing your project.
    [Show full text]
  • Schut for Precision
    Schut for Precision Protractors / Clinometers / Spirit levels Accuracy of clinometers/spirit levels according DIN 877 Graduation Flatness (µm) µm/m " (L = length in mm) ≤ 50 ≤ 10 4 + L / 250 > 50 - 200 > 10 - 40 8 + L / 125 L > 200 > 40 16 + / 60 C08.001.EN-dealer.20110825 © 2011, Schut Geometrische Meettechniek bv 181 Measuring instruments and systems 2011/2012-D Schut.com Schut for Precision PROTRACTORS Universal digital bevel protractor This digital bevel protractor displays both decimal degrees and degrees-minutes-seconds at the same time. Measuring range: ± 360 mm. Reversible measuring direction. Resolution: 0.008° and 30". Fine adjustment. Accuracy: ± 0.08° or ± 5'. Delivery in a case with three blades (150, 200 Mode: 0 - 90°, 0 - 180° or 0 - 360°. and 300 mm), a square and an acute angle On/off switch. attachment. Reset/preset. Power supply: 1 battery type CR2032. Item No. Description Price 907.885 Bevel protractor Option: 495.157 Spare battery Single blades Item No. Blade length/mm Price 909.380 150 909.381 200 909.382 300 909.383 500 909.384 600 909.385 800 C08.302.EN-dealer.20110825 © 2011, Schut Geometrische Meettechniek bv 182 Measuring instruments and systems 2011/2012-D Schut.com Schut for Precision PROTRACTORS Universal digital bevel protractor This stainless steel, digital bevel protractor is Item No. Description Price available with blades from 150 to 1000 mm. The blades and all the measuring faces are hardened. 855.820 Bevel protractor Measuring range: ± 360°. Options: Resolution: 1', or decimal 0.01°. 495.157 Spare battery Accuracy: ± 2'. 905.409 Data cable 2 m Repeatability: 1'.
    [Show full text]