Entropy and Gibbs Energy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Transport of Dangerous Goods
ST/SG/AC.10/1/Rev.16 (Vol.I) Recommendations on the TRANSPORT OF DANGEROUS GOODS Model Regulations Volume I Sixteenth revised edition UNITED NATIONS New York and Geneva, 2009 NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. ST/SG/AC.10/1/Rev.16 (Vol.I) Copyright © United Nations, 2009 All rights reserved. No part of this publication may, for sales purposes, be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying or otherwise, without prior permission in writing from the United Nations. UNITED NATIONS Sales No. E.09.VIII.2 ISBN 978-92-1-139136-7 (complete set of two volumes) ISSN 1014-5753 Volumes I and II not to be sold separately FOREWORD The Recommendations on the Transport of Dangerous Goods are addressed to governments and to the international organizations concerned with safety in the transport of dangerous goods. The first version, prepared by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods, was published in 1956 (ST/ECA/43-E/CN.2/170). In response to developments in technology and the changing needs of users, they have been regularly amended and updated at succeeding sessions of the Committee of Experts pursuant to Resolution 645 G (XXIII) of 26 April 1957 of the Economic and Social Council and subsequent resolutions. -
6.2 Electron Configuration and the Periodic Table
CK-12 Chemistry - Intermediate Quizzes and Tests Donald Calbreath, Ph.D. Say Thanks to the Authors Click http://www.ck12.org/saythanks (No sign in required) www.ck12.org AUTHOR Donald Calbreath, Ph.D. To access a customizable version of this book, as well as other interactive content, visit www.ck12.org CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-source, collaborative, and web-based compilation model, CK-12 pioneers and promotes the creation and distribution of high-quality, adaptive online textbooks that can be mixed, modified and printed (i.e., the FlexBook® textbooks). Copyright © 2015 CK-12 Foundation, www.ck12.org The names “CK-12” and “CK12” and associated logos and the terms “FlexBook®” and “FlexBook Platform®” (collectively “CK-12 Marks”) are trademarks and service marks of CK-12 Foundation and are protected by federal, state, and international laws. Any form of reproduction of this book in any format or medium, in whole or in sections must include the referral attribution link http://www.ck12.org/saythanks (placed in a visible location) in addition to the following terms. Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made available to Users in accordance with the Creative Commons Attribution-Non-Commercial 3.0 Unported (CC BY-NC 3.0) License (http://creativecommons.org/ licenses/by-nc/3.0/), as amended and updated by Creative Com- mons from time to time (the “CC License”), which is incorporated herein by this reference. -
Honors Chemistry - Final Exam Review Final Exam Dates: Thursday, June 5, 2014 and Tuesday, June 10, 2014
Name:______________________________________________________Pd:________Date:__________________ Honors Chemistry - Final Exam Review Final Exam Dates: Thursday, June 5, 2014 and Tuesday, June 10, 2014. The final exam is worth 100 points and is multiple choice format. Part 1 will assess Sections 1 – 6; Part 2 will assess Sections 7 - 12. Final Review Practice Directions: Complete on a separate sheet of paper. Show all work. Section 1 and 2 – Introduction to Chemistry and Measurement 1. Is the following set of data accurate, precise, both, or neither if the actual value is 23.4 mL? 20.4 mL 20.3 mL 20.1 mL 20.5 mL The measurements are precise but not accurate. 2. Indicate the number of significant figures in the following: a. 1040 b. 600 c. 12.40 d. 0.00230 e. 0.82 3 1 4 3 2 3. Solve each expression using correct number of significant figures and units. a. 24.4g + 110g 134 g b. 145.30 mL – 12.8 mL 132.5 mL c. 9.8 g / 0.123 L 80. g/L d. 1.4500 cm x 2.55 cm x 1.5 cm 5.5 cm3 4. Solve the following using dimensional analysis (factor label method). a. Convert 23.5 yd to ft. 70.5 ft b. A pound of coffee beans yields 50 cups (this number is obtained by counting) of coffee. How many milliliters of coffee can be obtained from 1.00 g of coffee beans? (1 cup = 240mL) 26.4 mL 2 2 84.60 km/min2 c. Convert 23.50 m/s to km/min . -
Nomenclature of Inorganic Chemistry (IUPAC Recommendations 2005)
NOMENCLATURE OF INORGANIC CHEMISTRY IUPAC Recommendations 2005 IUPAC Periodic Table of the Elements 118 1 2 21314151617 H He 3 4 5 6 7 8 9 10 Li Be B C N O F Ne 11 12 13 14 15 16 17 18 3456 78910 11 12 Na Mg Al Si P S Cl Ar 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 55 56 * 57− 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 Cs Ba lanthanoids Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 87 88 ‡ 89− 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 Fr Ra actinoids Rf Db Sg Bh Hs Mt Ds Rg Uub Uut Uuq Uup Uuh Uus Uuo * 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ‡ 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr International Union of Pure and Applied Chemistry Nomenclature of Inorganic Chemistry IUPAC RECOMMENDATIONS 2005 Issued by the Division of Chemical Nomenclature and Structure Representation in collaboration with the Division of Inorganic Chemistry Prepared for publication by Neil G. -
NIST–JANAF Thermochemical Tables for the Bromine Oxides
NIST–JANAF Thermochemical Tables for the Bromine Oxides Cite as: Journal of Physical and Chemical Reference Data 25, 1069 (1996); https:// doi.org/10.1063/1.555993 Submitted: 25 July 1995 . Published Online: 15 October 2009 M. W. Chase ARTICLES YOU MAY BE INTERESTED IN NIST-JANAF Thermochemical Tables for Oxygen Fluorides Journal of Physical and Chemical Reference Data 25, 551 (1996); https:// doi.org/10.1063/1.555992 NIST–JANAF Thermochemical Tables for the Iodine Oxides Journal of Physical and Chemical Reference Data 25, 1297 (1996); https:// doi.org/10.1063/1.555994 JANAF Thermochemical Tables, 1982 Supplement Journal of Physical and Chemical Reference Data 11, 695 (1982); https:// doi.org/10.1063/1.555666 Journal of Physical and Chemical Reference Data 25, 1069 (1996); https://doi.org/10.1063/1.555993 25, 1069 © 1996 American Institute of Physics for the National Institute of Standards and Technology. NIST -JANAF Thermochemical Tables for the Bromine Oxides Malcolm W. Chase Standard Reference Data Program, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 Received July 25, 1995; revised manuscript received May I, 1996 The thermodynamic and spectroscopic properties of the bromine. oxide species have been reviewed. Recommended NIST -JANAF Thermochemical Tables are given for six gaseous bromine oxides: BrO, OBrO, BrOO, BrOBr, BrBrO, and Br03' Sufficient information is not available to generate thermochemical tables for any condensed phase species. Annotated bibliographies (over 280 references) are provided for all neutral bromine oxides which have been reported in the literature. There are needs for additional experimental and theoretical data to reduce the uncertainties in the recommended values for these six species. -
Antimony Trioxide October 2018
Report on Carcinogens Monograph on Antimony Trioxide October 2018 Report on Carcinogens Monograph on Antimony Trioxide October 19, 2018 Office of the Report on Carcinogens Division of the National Toxicology Program National Institute of Environmental Health Sciences U.S. Department of Health and Human Services RoC Monograph on Antimony Trioxide 10/19/18 Foreword The National Toxicology Program (NTP) is an interagency program within the Public Health Service (PHS) of the Department of Health and Human Services (HHS) and is headquartered at the National Institute of Environmental Health Sciences of the National Institutes of Health (NIEHS/NIH). Three agencies contribute resources to the program: NIEHS/NIH, the National Institute for Occupational Safety and Health of the Centers for Disease Control and Prevention (NIOSH/CDC), and the National Center for Toxicological Research of the Food and Drug Administration (NCTR/FDA). Established in 1978, the NTP is charged with coordinating toxicological testing activities, strengthening the science base in toxicology, developing and validating improved testing methods, and providing information about potentially toxic substances to health regulatory and research agencies, scientific and medical communities, and the public. The Report on Carcinogens (RoC) is prepared in response to Section 301 of the Public Health Service Act as amended. The RoC contains a list of identified substances (i) that either are known to be human carcinogens or are reasonably anticipated to be human carcinogens and (ii) to which a significant number of persons residing in the United States are exposed. The NTP, with assistance from other Federal health and regulatory agencies and nongovernmental institutions, prepares the report for the Secretary, Department of HHS. -
Thermodynamics of Element Volatility and Its Application to Planetary Processes Paolo A
Thermodynamics of Element Volatility and its Application to Planetary Processes Paolo A. Sossi Institut de Physique du Globe de Paris, 1 rue Jussieu, F-75005, Paris, France [email protected] Bruce Fegley, Jr. Planetary Chemistry Laboratory, Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, Washington University, St. Louis, Missouri, USA [email protected] This is the accepted, pre-proof version of the paper: Sossi PA & Fegley B (2018) Thermodynamics of Element Volatility and its Application to Planetary Processes. Rev Mineral Geochem 84 (1):393–459. doi: 10.2138/rmg.2018.84.11 1.0. Introduction Despite its importance in geological sciences, our understanding of interactions between gas and condensed phases (comprising solids and liquids) remains clouded by the fact that, often, only indirect evidence remains for their occurrence. This arises from the tendency for the vapour phase to escape from the condensed phase with which it interacts, owing to its much lower density and thus greater volume. For a gas that is sufficiently tenuous that interactions do not occur between its constituent molecules, this relationship is quantified in the ideal gas law (Clapeyron 1834): 푃푉 = 푛푅푇 (1) where 푃 is the total pressure exerted by the gas, 푉 its volume, 푛 is the number of moles, 푅 the gas constant (8.3145 Jmol-1K-1, Horstmann, 1873) and 푇 the absolute temperature. One mole of an ideal gas at 273.15 K and 105 Pa (standard temperature and pressure for gases)1 has a molar volume of 22,711 cm3/mol, 103 × greater than typical silicate liquids or minerals. -
1.1 Chemistry: the Central Science
01-Burrows-Chap01.indd 1 28/12/16 1:20 PM 1 Fundamentals MRSA bacteria can be detected by growing on a dish containing mannitol agar medium. Yellow areas show the presence of MRSA. Making substances: keeping ahead in the fight against bacteria Antibiotic-resistant bacteria are one of the most serious threats to world health. We have become used to the idea that bacterial diseases and infections, like tuberculosis (TB) and septicaemia, can be relatively easily cured with antibiotics, though in Victorian times they would have been deadly. But bacteria are fighting back. New strains of bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) have evolved and are threatening hospital patients. MRSA bacteria are present on the skin, nose, and throat of many healthy people where they seem to cause few problems. It is when MRSA gets into the lungs of frail or seriously ill patients that the infections become life-threatening. MRSA is not the only antibiotic-resistant bacterium. In fact, antibiotic resistance is spreading faster than new antibiotics can be introduced. This is a challenge for biomedical science across the world, and chemistry will lead the way in finding the solution. One promising discovery is teixobactin, whose discovery was reported in the journal Nature in 2015. Teixobactin treats many O NH2 common bacterial infections including TB and Clostridium difficile (a diarrhoea-causing bacterium that resists antibiotics). It was O OOH H H H isolated from bacteria found in the soil—the bacteria produce the N N N HN N N antibiotic in order to fight off other bacteria. -
Hazardous Chemicals Handbook
Hazardous Chemicals Handbook Hazardous Chemicals Handbook Second edition Phillip Carson PhD MSc AMCT CChem FRSC FIOSH Head of Science Support Services, Unilever Research Laboratory, Port Sunlight, UK Clive Mumford BSc PhD DSc CEng MIChemE Consultant Chemical Engineer Oxford Amsterdam Boston London New York Paris San Diego San Francisco Singapore Sydney Tokyo Butterworth-Heinemann An imprint of Elsevier Science Linacre House, Jordan Hill, Oxford OX2 8DP 225 Wildwood Avenue, Woburn, MA 01801-2041 First published 1994 Second edition 2002 Copyright © 1994, 2002, Phillip Carson, Clive Mumford. All rights reserved The right of Phillip Carson and Clive Mumford to be identified as the authors of this work has been asserted in accordance with the Copyright, Designs and Patents Act 1988 No part of this publication may be reproduced in any material form (including photocopying or storing in any medium by electronic means and whether or not transiently or incidentally to some other use of this publication) without the written permission of the copyright holder except in accordance with the provisions of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London, England W1T 4LP. Applications for the copyright holder’s written permission to reproduce any part of this publication should be addressed to the publishers British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Library of Congress Cataloguing