(Furan-3-Yl)Barbiturate/Thiobarbiturate Derivatives Via a Multi-Component Reaction Between Arylglyoxals, Acetylacetone and Barbituric/Thiobarbituric Acid
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Synthesis and Antimicrobial Evaluation of Some Novel Thiazole, Pyridone, Pyrazole, Chromene, Hydrazone Derivatives Bearing a Biologically Active Sulfonamide Moiety
Int. J. Mol. Sci. 2014, 15, 1237-1254; doi:10.3390/ijms15011237 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article Synthesis and Antimicrobial Evaluation of Some Novel Thiazole, Pyridone, Pyrazole, Chromene, Hydrazone Derivatives Bearing a Biologically Active Sulfonamide Moiety Elham S. Darwish *, Azza M. Abdel Fattah, Fawzy A. Attaby and Oqba N. Al-Shayea Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt; E-Mails: [email protected] (A.M.A.F.); [email protected] (F.A.A.); [email protected] (O.N.A.-S.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +20-100-588-1771; Fax: +202-570-8480. Received: 10 November 2013; in revised form: 10 January 2014 / Accepted: 13 January 2014 / Published: 17 January 2014 Abstract: This study aimed for the synthesis of new heterocyclic compounds incorporating sulfamoyl moiety suitable for use as antimicrobial agents via a versatile, readily accessible N-[4-(aminosulfonyl)phenyl]-2-cyanoacetamide (3). The 2-pyridone derivatives were obtained via reaction of cyanoacetamide with acetylacetone or arylidenes malononitrile. Cycloaddition reaction of cyanoacetamide with salicyaldehyde furnished chromene derivatives. Diazotization of 3 with the desired diazonium chloride gave the hydrazone derivatives 13a–e. Also, the reactivity of the hydrazone towards hydrazine hydrate to give Pyrazole derivatives was studied. In addition, treatment of 3 with elemental sulfur and phenyl isothiocyanate or malononitrile furnished thiazole and thiophene derivatives respectively. Reaction of 3 with phenyl isothiocyanate and KOH in DMF afforded the intermediate salt 17 which reacted in situ with 3-(2-bromoacetyl)-2H-chromen-2-one and methyl iodide afforded the thiazole and ketene N,S-acetal derivatives respectively. -
Feiii, Cuii and Znii Complexes of the Rigid 9-Oxido-Phenalenone Ligand—Spectroscopy, Electrochemistry, and Cytotoxic Properties
International Journal of Molecular Sciences Article FeIII, CuII and ZnII Complexes of the Rigid 9-Oxido-phenalenone Ligand—Spectroscopy, Electrochemistry, and Cytotoxic Properties Katharina Butsch 1, Alexander Haseloer 1 , Simon Schmitz 1, Ingo Ott 2, Julia Schur 2 and Axel Klein 1,* 1 Department für Chemie, Institut für Anorganische Chemie, Universität zu Köln, Greinstraße 6, D-50939 Köln, Germany; [email protected] (K.B.); [email protected] (A.H.); [email protected] (S.S.) 2 Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, D-38106 Braunschweig, Germany; [email protected] (I.O.); [email protected] (J.S.) * Correspondence: [email protected] Abstract: The three complexes [Fe(opo)3], [Cu(opo)2], and [Zn(opo)2] containing the non-innocent anionic ligand opo− (opo− = 9-oxido-phenalenone, Hopo = 9-hydroxyphenalonone) were synthe- 1 sised from the corresponding acetylacetonates. [Zn(opo)2] was characterised using H nuclear magnetic resonance (NMR) spectroscopy, the paramagnetic [Fe(opo)3] and [Cu(opo)2] by electron paramagnetic resonance (EPR) spectroscopy. While the EPR spectra of [Cu(opo)2] and [Cu(acac)2] in dimethylformamide (DMF) solution are very similar, a rather narrow spectrum was observed for [Fe(opo)3] in tetrahydrofuran (THF) solution in contrast to the very broad spectrum of [Fe(acac)3] in − Citation: Butsch, K.; Haseloer, A.; THF (Hacac = acetylacetone, 2,4-pentanedione; acac = acetylacetonate). The narrow, completely Schmitz, S.; Ott, I.; Schur, J.; Klein, A. isotropic signal of [Fe(opo)3] disagrees with a metal-centred S = 5/2 spin system that is observed FeIII, CuII and ZnII Complexes of the in the solid state. -
Glycosyl Barbiturate Ligands of Bacterial Lectins: from Monomer Design to Glycoclusters and Glycopolymers François Portier, Anne Imberty, Sami Halila
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archive Ouverte en Sciences de l'Information et de la Communication Expeditious Synthesis of C -Glycosyl Barbiturate Ligands of Bacterial Lectins: From Monomer Design to Glycoclusters and Glycopolymers François Portier, Anne Imberty, Sami Halila To cite this version: François Portier, Anne Imberty, Sami Halila. Expeditious Synthesis of C -Glycosyl Barbiturate Lig- ands of Bacterial Lectins: From Monomer Design to Glycoclusters and Glycopolymers. Bioconjugate Chemistry, American Chemical Society, 2019, 30 (3), pp.647-656. 10.1021/acs.bioconjchem.8b00847. hal-02322076 HAL Id: hal-02322076 https://hal.archives-ouvertes.fr/hal-02322076 Submitted on 4 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. EXPEDITIOUS SYNTHESIS OF C‐GLYCOSYL BARBITURATE LIGANDS OF BACTERIAL LECTINS: FROM MONOMER DESIGN TO GLYCOCLUSTERS AND GLYCOPOLYMERS François Portier, Anne Imberty and Sami Halila* Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France. E‐mail: [email protected]; Fax: +33 4 76 54 72 03; Tel : +33 4 76 03 76 66 ABSTRACT The approach developed here offers a straightforward and efficient access to ‐C‐glycosyl barbiturates ligands, spanning from glycomimetics to multivalent C‐neoglycoconjugates, with the aim of deciphering structural parameters impacting the binding to pathogenic lectins. -
Effect of the Titanium Isopropoxide:Acetylacetone Molar Ratio on the Photocatalytic Activity of Tio2 Thin Films
molecules Article Effect of the Titanium Isopropoxide:Acetylacetone Molar Ratio on the Photocatalytic Activity of TiO2 Thin Films Jekaterina Spiridonova 1,* , Atanas Katerski 1, Mati Danilson 2 , Marina Krichevskaya 3,* , Malle Krunks 1 and Ilona Oja Acik 1,* 1 Laboratory of Thin Films Chemical Technologies, Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia; [email protected] (A.K.); [email protected] (M.K.) 2 Laboratory of Optoelectronic Materials Physics, Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia; [email protected] 3 Laboratory of Environmental Technology, Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia * Correspondence: [email protected] (J.S.); [email protected] (M.K.); [email protected] (I.O.A.); Tel.: +372-620-3369 (I.O.A.) Academic Editors: Smagul Karazhanov, Ana Cremades and Cuong Ton-That Received: 31 October 2019; Accepted: 25 November 2019; Published: 27 November 2019 Abstract: TiO2 thin films with different titanium isopropoxide (TTIP):acetylacetone (AcacH) molar ratios in solution were prepared by the chemical spray pyrolysis method. The TTIP:AcacH molar ratio in spray solution varied from 1:3 to 1:20. TiO2 films were deposited onto the glass substrates at 350 ◦C and heat-treated at 500 ◦C. The morphology, structure, surface chemical composition, and photocatalytic activity of the obtained TiO2 films were investigated. TiO2 films showed a transparency of ca 80% in the visible spectral region and a band gap of ca 3.4 eV irrespective of the TTIP:AcacH molar ratio in the spray solution. -
Synthesis and Characterization of Schiff Bases Derived from Acetylacetone and Their Theoretical Study
International Journal of ChemTech Research CODEN( USA): IJCRGG ISSN : 0974-4290 Vol.5, No.1, pp 204-211, Jan-Mar 2013 Synthesis And Characterization Of Schiff Bases Derived From Acetylacetone And Their Theoretical Study Adnan dib Department of Chemistry, Faculty of Science, Laboratory of Organic Chemistry, University of Damascus, Syria Corres.author: [email protected] Abstract: Schiff basesderived from acetylacetone were synthesized and characterized by Ms, IR, 1H ,13C NMR and element analysis. Hyper Chem-6 program has been used to predict structural geometries of compounds in gas phase. The heat of formation (ΔHf º) and binding energy (ΔEb) at 298 ºK for the free ligand was calculated by PM3 method. Keywords: Schiff bases, acetylacetone, hydrazine, PM3 method. Introduction Experimental Schiff bases are one of the most versatile classes of Reagents and Apparatus. ligands for the study of the coordination of transition All the chemicals used were of AnalaR grade and metals[1]. Their ease of synthesis (by the procured from Sigma-Aldrich and Fluka. Metal salts condensation of an aldehyde/ketone with an amine), were purchased from E. Merck and were used as multidenticity (from mono to hexadentate), received. Distilled water was used in extraction combination of donor atoms (coordination usually experimentals. The solvents were saturated with through the imine nitrogen and other atoms like each other before use in order to prevent volume oxygen, sulfur or nitrogen) and stability have made changes of the phases during extraction. The C, H, them the preferred ligand system in catalysis, and N were analyzed on a Carlo-Erba 1106 biological modeling, the design of molecular elemental analyzer. -
Determination of Solvent Effects on Ketoðenol Equilibria of 1,3-Dicarbonyl Compounds Using NMR: Revisiting a Classic Physical C
In the Laboratory Determination of Solvent Effects on Keto–Enol Equilibria W of 1,3-Dicarbonyl Compounds Using NMR Revisiting a Classic Physical Chemistry Experiment Gilbert Cook* and Paul M. Feltman Department of Chemistry, Valparaiso University, Valparaiso, IN 46383; *[email protected] “The influence of solvents on chemical equilibria was discovered in 1896, simultaneously with the discovery of keto–enol tautomerism in 1,3-dicarbonyl compounds” (1). The solvents were divided into two groups according to their ability to isomerize compounds. The study of the keto–enol tautomerism of β-diketones and β-ketoesters in a variety of solvents using proton NMR has been utilized as a physical Figure 1. The β-dicarbonyl compounds studied in the experiment. chemistry experiment for many years (2, 3). The first reported use of NMR keto–enol equilibria determination was by Reeves (4). This technique has been described in detail in an experiment by Garland, Nibler, and Shoemaker (2). panded (i) to give an in-depth analysis of factors influencing The most commonly used β-diketone for these experi- solvent effects in tautomeric equilibria and (ii) to illustrate ments is acetylacetone (Scheme I). Use of proton NMR is a the use of molecular modeling in determining the origin of viable method for measuring this equilibrium because the a molecule’s polarity. The experiment’s original benefits of tautomeric keto–enol equilibrium is slow on the NMR time using proton NMR as a noninvasive method of evaluating scale, but enol (2a)–enol (2b) tautomerism is fast on this scale equilibrium are maintained. (5). It has been observed that acyclic β-diketones and β- Experimental Procedure ketoesters follow Meyer’s rule of a shift in the tautomeric equi- librium toward the keto tautomer with increasing solvent Observations of the solvent effects for three other 1,3- polarity (6). -
Acetylacetone
Safety data sheet acc. to Safe Work Australia - Code of Practice Acetylacetone ≥98 %, for synthesis article number: 6716 date of compilation: 2016-11-08 Version: GHS 2.0 en Revision: 2021-06-11 Replaces version of: 2016-11-08 Version: (GHS 1) SECTION 1: Identification of the substance/mixture and of the company/ undertaking 1.1 Product identifier Identification of the substance Acetylacetone ≥98 %, for synthesis Article number 6716 CAS number 123-54-6 Alternative name(s) Pentane-2,4-dione 1.2 Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses: Laboratory chemical Laboratory and analytical use Uses advised against: Do not use for products which come into contact with foodstuffs. Do not use for private purposes (household). 1.3 Details of the supplier of the safety data sheet Carl Roth GmbH + Co KG Schoemperlenstr. 3-5 D-76185 Karlsruhe Germany Telephone:+49 (0) 721 - 56 06 0 Telefax: +49 (0) 721 - 56 06 149 e-mail: [email protected] Website: www.carlroth.de Competent person responsible for the safety data :Department Health, Safety and Environment sheet: e-mail (competent person): [email protected] 1.4 Emergency telephone number Name Street Postal Telephone Website code/city NSW Poisons Information Centre Hawkesbury Road 2145 West- 131126 Childrens Hospital mead, NSW SECTION 2: Hazards identification 2.1 Classification of the substance or mixture Classification acc. to GHS Section Hazard class Cat- Hazard class and Hazard egory category statement 2.6 Flammable liquid 3 Flam. Liq. 3 H226 3.1O Acute toxicity (oral) 4 Acute Tox. -
Polarography As a Measure of Ionic Environment
University of the Pacific Scholarly Commons University of the Pacific Theses and Dissertations Graduate School 1965 Polarography As A Measure Of Ionic Environment James Wilburne Larsen University of the Pacific Follow this and additional works at: https://scholarlycommons.pacific.edu/uop_etds Part of the Chemistry Commons Recommended Citation Larsen, James Wilburne. (1965). Polarography As A Measure Of Ionic Environment. University of the Pacific, Dissertation. https://scholarlycommons.pacific.edu/uop_etds/2881 This Dissertation is brought to you for free and open access by the Graduate School at Scholarly Commons. It has been accepted for inclusion in University of the Pacific Theses and Dissertations by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. .. i:' ~)~-~;~::"',:'.,·~-~ -~·-:.·: ~ -~ ·. ,. '~:-··~· ··:.\';~<_; i ~~ .:•i'{O" .1"' POLAROGRAPHY AS A MEASURE OF IONIC ENVIRONMENT A Dissertation _Presented to the Faculty of the Graduate School University of the Pacific In Partial Fulfillment of the Requirements for the Degree (f ' Doctor of Philosophy by James Wilburne Larsen June 1965 This disseljtatic;m,, written apd submitted by is approved for recornrnendat,ipn to the Graduate Co~ncil, University of th~ P~(::.ific • . D~partmept Chairwan or Dean: ACKNOWLEDGEMENTS The writer wishes to express his appreciation to the faculty of the Chemistry Department for their assistance, especially Dr. Herschel Frye for his criticisms and guidance. TABLE OF CONTENTS CHAPTER PAGE I. INTRODUCTION -
89 Abstract Biological Activity and Analytical
BIOLOGICAL ACTIVITY AND ANALYTICAL CHARACTERIZATION OF BARBITURIC ACID Vijaya Laxmi S, Janardhan B, Rajitha B ijcrr Vol 04 issue 07 Department of Chemistry, National Institute of Technology, Warangal Category: Review Received on:12/12/11 E-mail of Corresponding Author: [email protected] Revised on:15/01/12 Accepted on:28/02/12 ABSTRACT Earlier literature reports imply that this scaffold is having activity on central nervous system. According to the present studies it has become an attractive target for the development of drugs, which hold variety of biological activities. Derivatives of barbituric acid have attracted the attention of researchers in synthetic organic chemistry, as well as medicinal chemistry, for a long time as a result of their exceptionally diverse biological activity. Present review highlights the importance of the barbituric acid in the present context. ____________________________________________________________________________________ Keywords: Barbituric acid, Biological activity, biological activities that stand apart from Spectral studies, X-ray Crystallography, Dye previous medical utilization of barbituric acid properties. derivatives.4 However it is a precursor to barbituric acid derivatives widely been used in 1 INTRODUCTION the manufacturing of plastics,5 textiles,6 Barbituric acid (BA) is documented as the parent polymers,7 and pharmaceuticals,8-9 dental compound of the barbiturate drugs. (Fig.1). It is materials,10 water thinned or oil-based inks,11 used in the production of riboflavin, Nembutal, and as polymerization catalysts.12 In view of the and Phenobarbital.1-2 This class of compounds above observations it is worthwhile to make a has been extensively used in medical and brief review on it. -
Biosynthesis of Acetylacetone Inspired by Its Biodegradation
Zhou et al. Biotechnol Biofuels (2020) 13:88 https://doi.org/10.1186/s13068-020-01725-9 Biotechnology for Biofuels RESEARCH Open Access Biosynthesis of acetylacetone inspired by its biodegradation Yifei Zhou1,2, Yamei Ding3, Wenjie Gao1, Jichao Wang1, Xiutao Liu1,2, Mo Xian1, Xinjun Feng1* and Guang Zhao1,4* Abstract Background: Acetylacetone is a commercially bulk chemical with diverse applications. However, the traditional manufacturing methods sufer from many drawbacks such as multiple steps, harsh conditions, low yield, and environ- mental problems, which hamper further applications of petrochemical-based acetylacetone. Compared to conven- tional chemical methods, biosynthetic methods possess advantages such as being eco-friendly, and having mild conditions, high selectivity and low potential costs. It is urgent to develop biosynthetic route for acetylacetone to avoid the present problems. Results: The biosynthetic pathway of acetylacetone was constructed by reversing its biodegradation route, and the acetylacetone was successfully produced by engineered Escherichia coli (E. coli) by overexpression of acetylac- etone-cleaving enzyme (Dke1) from Acinetobacter johnsonii. Several promising amino acid residues were selected for enzyme improvement based on sequence alignment and structure analysis, and the acetylacetone production was improved by site-directed mutagenesis of Dke1. The double-mutant (K15Q/A60D) strain presented the highest acetylacetone-producing capacity which is 3.6-fold higher than that of the wild-type protein. Finally, the strain accu- mulated 556.3 15.2 mg/L acetylacetone in fed-batch fermentation under anaerobic conditions. ± Conclusions: This study presents the frst intuitive biosynthetic pathway for acetylacetone inspired by its biodegra- dation, and shows the potential for large-scale production. -
The Design and Synthesis of Novel Barbiturates of Pharmaceutical Interest
University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses 5-21-2004 The Design and Synthesis of Novel Barbiturates of Pharmaceutical Interest Donna Neumann University of New Orleans Follow this and additional works at: https://scholarworks.uno.edu/td Recommended Citation Neumann, Donna, "The Design and Synthesis of Novel Barbiturates of Pharmaceutical Interest" (2004). University of New Orleans Theses and Dissertations. 1040. https://scholarworks.uno.edu/td/1040 This Dissertation is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. THE DESIGN AND SYNTHESIS OF NOVEL BARBITURATES OF PHARMACEUTICAL INTEREST A Dissertation Submitted to the Graduate Faculty of the University of New Orleans in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Chemistry by Donna M. Neumann B. A. University of New Orleans, 2000 May 2004 Dedicated to: My daughter, Madeline Megan Jenkins ii ACKNOWLEDGEMENTS I would like to express my utmost gratitude to my advisor, Professor Branko S. -
Physical Chemical Studies on Inorganic Coordination Compounds. I. Metallic Complexes of Dimethylsulfoxide. II. Preparation and Spectral Studies of Vanadyl Complexes
Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1961 Physical Chemical Studies on Inorganic Coordination Compounds. I. Metallic Complexes of Dimethylsulfoxide. II. Preparation and Spectral Studies of Vanadyl Complexes. Lawrence Henry Holmes Jr Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Holmes, Lawrence Henry Jr, "Physical Chemical Studies on Inorganic Coordination Compounds. I. Metallic Complexes of Dimethylsulfoxide. II. Preparation and Spectral Studies of Vanadyl Complexes." (1961). LSU Historical Dissertations and Theses. 713. https://digitalcommons.lsu.edu/gradschool_disstheses/713 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. This dissertation has been 62-1233 microfilmed exactly as received H O L M E S , Jr., Lawrence Henry, 1935- PHYSICAL CHEMICAL STUDIES ON INORGANIC COORDINATION COMPOUNDS. I. METALLIC COMPLEXES OF DIMETHYLSULFOXIDE. II. PRE PARATION AND SPECTRAL STUDIES OF VANA DYL COMPLEXES. University Microfilms, Inc., Ann Arbor, Michigan H O L M E S , Jr., Lawrence Henry, 193 5- 62-1233 Louisiana State University, Ph.D., 1961 Chemistry, inorganic University Microfilms, Inc., Ann Arbor, Michigan PHYSICAL' CHEMICAL STUDIES ON INORGANIC COORDINATION COMPOUNDS I. METALLIC COMPLEXES OF DIMETHYIBULFOXIDE II. PREPARATION AND SPECTRAL STUDIES OF VANADYL COMPLEXES A DISSERTATION Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Ffechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Chemistry by Lawrence Henry Holmes, Jr.