Block Ciphers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Differential Cryptanalysis of the BSPN Block Cipher Structure
Differential Cryptanalysis of the BSPN Block Cipher Structure Liam Keliher AceCrypt Research Group Department of Mathematics & Computer Science Mount Allison University Sackville, New Brunswick, Canada [email protected] Abstract. BSPN (byte-oriented SPN ) is a general block cipher struc ture presented at SAC’96 by Youssef et al. It was designed as a more ef ficient version of the bit-oriented SPN structure published earlier in 1996 by Heys and Tavares in the Journal of Cryptology. BSPN is a flexible SPN structure in which only the linear transformation layer is exactly specified, while s-boxes, key-scheduling details, and number of rounds are intentionally left unspecified. Because BSPN can be implemented very efficiently in hardware, several researchers have recommended the 64-bit version as a lightweight cipher for use in wireless sensor networks (WSNs). Youssef et al. perform preliminary analysis on BSPN (using typical block sizes and numbers of rounds) and claim it is resistant to differential and linear cryptanalysis. However, in this paper we show that even if BSPN (similarly parameterized) is instantiated with strong AES- like s-boxes, there exist high probability differentials that allow BSPN to be broken using differential cryptanalysis. In particular, up to 9 rounds of BSPN with a 64-bit block size can be attacked, and up to 18 rounds with a 128-bit block size can be attacked. Keywords: BSPN, block cipher, SPN, differential cryptanalysis, wire less sensor network (WSN) 1 Introduction BSPN (byte-oriented SPN ) is a general block cipher structure presented at SAC’96 by Youssef et al. [19]. It was designed as a more efficient byte-oriented version of the bit-oriented SPN structure published by Heys and Tavares in the Journal of Cryptology [5]. -
VHDL Implementation of Twofish Algorithm
VHDL Implementation of Twofish Algorithm Purnima Gehlot Richa Sharma S. R. Biradar Mody Institute of Mody Institute of Mody Institute of Technology Technology Technology and Science and Science and Science Laxmangarh, Sikar Laxmangarh, Sikar Laxmangarh, Sikar Rajasthan,India Rajasthan,India Rajasthan,India [email protected] [email protected] [email protected] which consists of two modules of function g, one MDS i.e. maximum ABSTRACT distance separable matrix,a PHT i.e. pseudo hadamard transform and Every day hundreds and thousands of people interact electronically, two adders of 32-bit for one round. To increase the complexity of the whether it is through emails, e-commerce, etc. through internet. For algorithm we can perform Endian function over the input bit stream. sending sensitive messages over the internet, we need security. In this Different modules of twofish algorithms are: paper a security algorithms, Twofish (Symmetric key cryptographic algorithm) [1] has been explained. All the important modules of 2.1 ENDIAN FUNCTION Twofish algorithm, which are Function F and g, MDS, PHT, are implemented on Xilinx – 6.1 xst software and there delay calculations Endian Function is a transformation of the input data. It is used as an interface between the input data provided to the circuit and the rest has been done on FPGA families which are Spartan2, Spartan2E and of the cipher. It can be used with all the key-sizes [5]. Here 128-bit VirtexE. input is divided into 16 bytes from byte0 to byte15 and are rearranged to get the output of 128-bit. Keywords Twofish, MDS, PHT, symmetric key, Function F and g. -
The Whirlpool Secure Hash Function
Cryptologia, 30:55–67, 2006 Copyright Taylor & Francis Group, LLC ISSN: 0161-1194 print DOI: 10.1080/01611190500380090 The Whirlpool Secure Hash Function WILLIAM STALLINGS Abstract In this paper, we describe Whirlpool, which is a block-cipher-based secure hash function. Whirlpool produces a hash code of 512 bits for an input message of maximum length less than 2256 bits. The underlying block cipher, based on the Advanced Encryption Standard (AES), takes a 512-bit key and oper- ates on 512-bit blocks of plaintext. Whirlpool has been endorsed by NESSIE (New European Schemes for Signatures, Integrity, and Encryption), which is a European Union-sponsored effort to put forward a portfolio of strong crypto- graphic primitives of various types. Keywords advanced encryption standard, block cipher, hash function, sym- metric cipher, Whirlpool Introduction In this paper, we examine the hash function Whirlpool [1]. Whirlpool was developed by Vincent Rijmen, a Belgian who is co-inventor of Rijndael, adopted as the Advanced Encryption Standard (AES); and by Paulo Barreto, a Brazilian crypto- grapher. Whirlpool is one of only two hash functions endorsed by NESSIE (New European Schemes for Signatures, Integrity, and Encryption) [13].1 The NESSIE project is a European Union-sponsored effort to put forward a portfolio of strong cryptographic primitives of various types, including block ciphers, symmetric ciphers, hash functions, and message authentication codes. Background An essential element of most digital signature and message authentication schemes is a hash function. A hash function accepts a variable-size message M as input and pro- duces a fixed-size hash code HðMÞ, sometimes called a message digest, as output. -
A Lightweight Encryption Algorithm for Secure Internet of Things
Pre-Print Version, Original article is available at (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 8, No. 1, 2017 SIT: A Lightweight Encryption Algorithm for Secure Internet of Things Muhammad Usman∗, Irfan Ahmedy, M. Imran Aslamy, Shujaat Khan∗ and Usman Ali Shahy ∗Faculty of Engineering Science and Technology (FEST), Iqra University, Defence View, Karachi-75500, Pakistan. Email: fmusman, [email protected] yDepartment of Electronic Engineering, NED University of Engineering and Technology, University Road, Karachi 75270, Pakistan. Email: firfans, [email protected], [email protected] Abstract—The Internet of Things (IoT) being a promising and apply analytics to share the most valuable data with the technology of the future is expected to connect billions of devices. applications. The IoT is taking the conventional internet, sensor The increased number of communication is expected to generate network and mobile network to another level as every thing mountains of data and the security of data can be a threat. The will be connected to the internet. A matter of concern that must devices in the architecture are essentially smaller in size and be kept under consideration is to ensure the issues related to low powered. Conventional encryption algorithms are generally confidentiality, data integrity and authenticity that will emerge computationally expensive due to their complexity and requires many rounds to encrypt, essentially wasting the constrained on account of security and privacy [4]. energy of the gadgets. Less complex algorithm, however, may compromise the desired integrity. In this paper we propose a A. Applications of IoT: lightweight encryption algorithm named as Secure IoT (SIT). -
Identifying Open Research Problems in Cryptography by Surveying Cryptographic Functions and Operations 1
International Journal of Grid and Distributed Computing Vol. 10, No. 11 (2017), pp.79-98 http://dx.doi.org/10.14257/ijgdc.2017.10.11.08 Identifying Open Research Problems in Cryptography by Surveying Cryptographic Functions and Operations 1 Rahul Saha1, G. Geetha2, Gulshan Kumar3 and Hye-Jim Kim4 1,3School of Computer Science and Engineering, Lovely Professional University, Punjab, India 2Division of Research and Development, Lovely Professional University, Punjab, India 4Business Administration Research Institute, Sungshin W. University, 2 Bomun-ro 34da gil, Seongbuk-gu, Seoul, Republic of Korea Abstract Cryptography has always been a core component of security domain. Different security services such as confidentiality, integrity, availability, authentication, non-repudiation and access control, are provided by a number of cryptographic algorithms including block ciphers, stream ciphers and hash functions. Though the algorithms are public and cryptographic strength depends on the usage of the keys, the ciphertext analysis using different functions and operations used in the algorithms can lead to the path of revealing a key completely or partially. It is hard to find any survey till date which identifies different operations and functions used in cryptography. In this paper, we have categorized our survey of cryptographic functions and operations in the algorithms in three categories: block ciphers, stream ciphers and cryptanalysis attacks which are executable in different parts of the algorithms. This survey will help the budding researchers in the society of crypto for identifying different operations and functions in cryptographic algorithms. Keywords: cryptography; block; stream; cipher; plaintext; ciphertext; functions; research problems 1. Introduction Cryptography [1] in the previous time was analogous to encryption where the main task was to convert the readable message to an unreadable format. -
Lightweight Diffusion Layer from the Kth Root of the MDS Matrix
Lightweight Diffusion Layer from the kth root of the MDS Matrix Souvik Kolay1, Debdeep Mukhopadhyay1 1Dept. of Computer Science and Engineering Indian Institute of Technology Kharagpur, India fsouvik1809,[email protected] Abstract. The Maximum Distance Separable (MDS) mapping, used in cryptog- raphy deploys complex Galois field multiplications, which consume lots of area in hardware, making it a costly primitive for lightweight cryptography. Recently in lightweight hash function: PHOTON, a matrix denoted as ‘Serial’, which re- quired less area for multiplication, has been multiplied 4 times to achieve a lightweight MDS mapping. But no efficient method has been proposed so far to synthesize such a serial matrix or to find the required number of repetitive multiplications needed to be performed for a given MDS mapping. In this pa- per, first we provide an generic algorithm to find out a low-cost matrix, which can be multiplied k times to obtain a given MDS mapping. Further, we optimize the algorithm for using in cryptography and show an explicit case study on the MDS mapping of the hash function PHOTON to obtain the ‘Serial’. The work also presents quite a few results which may be interesting for lightweight imple- mentation. Keywords: MDS Matrix, kth Root of a Matrix, Lightweight Diffusion Layer 1 Introduction With several resource constrained devices requiring support for cryptographic algo- rithms, the need for lightweight cryptography is imperative. Several block ciphers, like Kasumi[19], mCrypton[24], HIGHT[20], DESL and DESXL[23], CLEFIA[34], Present[8], Puffin[11], MIBS[22], KATAN[9], Klein[14], TWINE[36], LED[16], Pic- colo [33] etc and hash functions like PHOTON[33], SPONGENT[7], Quark [3] etc. -
ICEBERG : an Involutional Cipher Efficient for Block Encryption in Reconfigurable Hardware
1 ICEBERG : an Involutional Cipher Efficient for Block Encryption in Reconfigurable Hardware. Francois-Xavier Standaert, Gilles Piret, Gael Rouvroy, Jean-Jacques Quisquater, Jean-Didier Legat UCL Crypto Group Laboratoire de Microelectronique Universite Catholique de Louvain Place du Levant, 3, B-1348 Louvain-La-Neuve, Belgium standaert,piret,rouvroy,quisquater,[email protected] Abstract. We present a fast involutional block cipher optimized for re- configurable hardware implementations. ICEBERG uses 64-bit text blocks and 128-bit keys. All components are involutional and allow very effi- cient combinations of encryption/decryption. Hardware implementations of ICEBERG allow to change the key at every clock cycle without any per- formance loss and its round keys are derived “on-the-fly” in encryption and decryption modes (no storage of round keys is needed). The result- ing design offers better hardware efficiency than other recent 128-key-bit block ciphers. Resistance against side-channel cryptanalysis was also con- sidered as a design criteria for ICEBERG. Keywords: block cipher design, efficient implementations, reconfigurable hardware, side-channel resistance. 1 Introduction In October 2000, NIST (National Institute of Standards and Technology) se- lected Rijndael as the new Advanced Encryption Standard. The selection pro- cess included performance evaluation on both software and hardware platforms. However, as implementation versatility was a criteria for the selection of the AES, it appeared that Rijndael is not optimal for reconfigurable hardware im- plementations. Its highly expensive substitution boxes are a typical bottleneck but the combination of encryption and decryption in hardware is probably as critical. In general, observing the AES candidates [1, 2], one may assess that the cri- teria selected for their evaluation led to highly conservative designs although the context of certain cryptanalysis may be considered as very unlikely (e.g. -
Variations to the Cryptographic Algorithms Aes and Twofish
VARIATIONS TO THE CRYPTOGRAPHIC ALGORITHMS AES AND TWOFISH P. Freyre∗1, N. D´ıaz ∗ and O. Cuellar y2 ∗Faculty of Mathematics and Computer Science, University of Havana, Cuba. yFaculty of Mathematics, Physical and Computer Science, Central University of Las Villas, Cuba. 1e-mail: [email protected] 2e-mail: [email protected] Abstract The cryptographic algorithms AES and Twofish guarantee a high diffusion by the use of fixed 4×4 MDS matrices. In this article variations to the algorithms AES and Twofish are made. They allow that the process of cipher - decipher come true with MDS matrices selected randomly from the set of all MDS matrices with the use of proposed algorithm. A new key schedule with a high diffusion is designed for the algorithm AES. Besides proposed algorithm generate new S - box that depends of the key. Key words: Block Cipher, AES, Twofish, S - boxes, MDS matrix. 1 1 Introduction. The cryptographic algorithms Rijndael (see [DR99] and [DR02]) and Twofish (see [SKWHF98] and [GBS13]) were finalists of the contest to select the Advanced Encryption Standard (AES) convened by the National Institute of Standards and Technology from the United States (NIST). The contest finished in October 2000 with the selection of the algorithm Rijndael as the AES, stated algorithm was proposed by Joan Daemen and Vincent Rijmen from Belgium. In order to reach a high diffusion, the algorithms AES and Twofish, use a MDS (Maximal Distance Separable) matrices, selected a priori. In this article we will explain the variations of these algorithms, where the MDS matrices are selected randomly as function of the secret key. -
On Constructions of MDS Matrices from Circulant-Like Matrices for Lightweight Cryptography
On Constructions of MDS Matrices From Circulant-Like Matrices For Lightweight Cryptography Technical Report No. ASU/2014/1 Dated : 14th February, 2014 Kishan Chand Gupta Applied Statistics Unit Indian Statistical Institute 203, B. T. Road, Kolkata 700108, INDIA. [email protected] Indranil Ghosh Ray Applied Statistics Unit Indian Statistical Institute 203, B. T. Road, Kolkata 700108, INDIA. indranil [email protected] On Constructions of MDS Matrices From Circulant-Like Matrices For Lightweight Cryptography Kishan Chand Gupta and Indranil Ghosh Ray Applied Statistics Unit, Indian Statistical Institute. 203, B. T. Road, Kolkata 700108, INDIA. [email protected], indranil [email protected] Abstract. Maximum distance separable (MDS) matrices have applications not only in coding theory but are also of great importance in the design of block ciphers and hash functions. It is highly nontrivial to find MDS matrices which could be used in lightweight cryptography. In a SAC 2004 paper, Junod et. al. constructed a new class of efficient MDS matrices whose submatrices were circulant matrices and they coined the term circulating-like matrices for these new class of matrices which we rename as circulant-like matrices. In this paper we study this construction and propose efficient 4 × 4 and 8 × 8 circulant-like MDS matrices. We prove that such d × d circulant-like MDS matrices can not be involutory or orthogonal which are good for designing SPN networks. Although these matrices are efficient, but the inverse of such matrices are not guaranteed to be efficient. Towards this we design a new type of circulant- like MDS matrices which are by construction involutory. -
On Constructions of MDS Matrices from Companion Matrices for Lightweight Cryptography
On Constructions of MDS Matrices from Companion Matrices for Lightweight Cryptography Kishan Chand Gupta and Indranil Ghosh Ray Applied Statistics Unit, Indian Statistical Institute. 203, B. T. Road, Kolkata 700108, INDIA. [email protected], indranil [email protected] Abstract. Maximum distance separable (MDS) matrices have applications not only in coding theory but also are of great importance in the design of block ciphers and hash functions. It is highly nontrivial to find MDS matrices which could be used in lightweight cryptography. In a crypto 4 2011 paper, Guo et. al. proposed a new MDS matrix Serial(1; 2; 1; 4) over F28 . This representation has a compact hardware implementation of the AES MixColumn operation. No general study of d MDS properties of this newly introduced construction of the form Serial(z0; : : : ; zd−1) over F2n for arbitrary d and n is available in the literature. In this paper we study some properties of d MDS matrices and provide an insight of why Serial(z0; : : : ; zd−1) leads to an MDS matrix. For 2 efficient hardware implementation, we aim to restrict the values of zi's in f1; α; α ; α+1g, such that d Serial(z0; : : : ; zd−1) is MDS for d = 4 and 5, where α is the root of the constructing polynomial of F2n . We also propose more generic constructions of MDS matrices e.g. we construct lightweight 4 × 4 and 5 × 5 MDS matrices over F2n for all n ≥ 4. An algorithm is presented to check if a given matrix is MDS. The algorithm directly follows from the basic properties of MDS matrix and is easy to implement. -
Efficient FPGA Implementations of Block Ciphers KHAZAD and MISTY1
Efficient FPGA Implementations of Block Ciphers KHAZAD and MISTY1 Francois-Xavier Standaert, Gael Rouvroy, Jean-Jacques Quisquater, Jean-Didier Legat fstandaert,rouvroy,quisquater,[email protected] UCL Crypto Group Laboratoire de Microelectronique Universite Catholique de Louvain Place du Levant, 3, B-1348 Louvain-La-Neuve, Belgium Abstract. The technical analysis used in determining which of the NESSIE candidates will be selected as a standard block cipher includes efficiency testing of both hardware and soft- ware implementations of candidate algorithms. Reprogrammable devices such as Field Pro- grammable Gate Arrays (FPGA’s) are highly attractive options for hardware implementations of encryption algorithms and this report investigates the significance of FPGA implementa- tions of the block ciphers KHAZAD and MISTY1. A strong focus is placed on high throughput circuits and we propose designs that unroll the cipher rounds and pipeline them in order to optimize the frequency and throughput results. In addition, we implemented solutions that allow to change the plaintext and the key on a cycle-by-cycle basis with no dead cycle. The resulting designs fit on a VIRTEX1000 FPGA and have throughput between 8 and 9 Gbits=s. This is an impressive result compared with existing FPGA implementations of block ciphers within similar devices. 1 Introduction The NESSIE project1 is about to put forward a portfolio of strong cryptographic primitives that has been obtained after an open call and been evaluated using a transparent and open process. These primitives include block ciphers, stream ciphers, hash functions, MAC algorithms, digital signature schemes, and public-key encryption schemes. The technical analysis used in determining which of the NESSIE candidates will be selected as a standard block cipher includes efficiency testing of both hardware and software implementations of candidate algorithms. -
Meet-In-The-Middle and Impossible Differential Fault Analysis On
Meet-in-the-Middle and Impossible Differential Fault Analysis on AES Patrick Derbez1, Pierre-Alain Fouque1, and Delphine Leresteux2 1 Ecole´ Normale Sup´erieure, 45 rue d’Ulm, F-75230 Paris CEDEX 05 2 DGA Information Superiority, BP7, 35998 Rennes Arm´ees [email protected] [email protected] [email protected] Abstract. Since the early work of Piret and Quisquater on fault attacks against AES at CHES 2003, many works have been devoted to reduce the number of faults and to improve the time complexity of this attack. This attack is very efficient as a single fault is injected on the third round before the end, and then it allows to recover the whole secret key in 232 in time and memory. However, since this attack, it is an open problem to know if provoking a fault at a former round of the cipher allows to recover the key. Indeed, since two rounds of AES achieve a full diffusion and adding protections against fault attack decreases the performance, some countermeasures propose to protect only the three first and last rounds. In this paper, we give an answer to this problem by showing two practical crypto- graphic attacks on one round earlier of AES-128 and for all keysize variants. The first attack requires 10 faults and its complexity is around 240 in time and memory, an improvement allows only 5 faults and its complexity in memory is reduced to 224 while the second one requires either 1000 or 45 faults depending on fault model and recovers the secret key in around 240 in time and memory.