Asset Building

Total Page:16

File Type:pdf, Size:1020Kb

Asset Building NONPROFIT ORG. U.S. POSTAGE PAID May–June 2010 CHICAGO, IL Volume 44, Numbers 1–2 PERMIT #7706 50 East Washington Street Suite 500 Clearinghouse REVIEW Chicago, Illinois 60602 Taking action to end poverty Volume 44, Volume Numbers 1–2 ASSET BUILDING May–June 2010 by People with Disabilities Local Prosecution of Real-Estate Fraud Rights of Limited-English-Proficient Individuals 1–92 Machine Translation of Legal Information Toward Veterans Courts Language Access in State Courts The September–October 2010 Clearinghouse Review Mapping to Show Discrimination Unemployment Benefits Appeals Will be a Special Issue on Postracialism or Targeted Universalism? Climate Change and a Green Economy New Advocacy Opportunities How Effective Is Machine Translation of Legal Information? By Michael Mulé and Claudia Johnson Michael Mulé nline services offer instantaneous translation of text or website content. Staff Attorney Before using translation software or “machine-translation” tools to assist Empire Justice Center Olimited-English-proficient (LEP) clients obtain meaningful access to the 1 W. Main St. Suite 200 information, advocates should consider several factors.1 Rochester, NY 14614 585.295.5724 [email protected] Machine translation is the automatic translation of text from a source language into a target language without human intervention. Machine translation generally takes a dic- Claudia Johnson tionary approach to language and does not factor in culture or custom. Here we describe Local Initiatives Coordinator the role of a human translator, discuss when and how to use machine translation in con- junction with human translation, and review available machine-translation services. Pro Bono Net 2414 Lariat Lane Richland, WA 99352 Human Translation 509.396.7934 [email protected] A translator converts written material from one or more source languages into a tar- get language. Translators must have excellent writing and analytical ability, knowl- edge of the vocabulary, context, and meaning of words in both languages, and ensure that the translated version of the text conveys with precision the idea and form of the original. A description of interpreting and translating as an occupation notes that “[t]ranslat- ing involves more than replacing a word with its equivalent in another language: sen- tences and ideas must be manipulated to flow with the same coherence as the source document so that the translation reads as though it originated in the target language.”2 This characteristic distinguishes human from machine translation, and it is why hu- man translation is usually the only option in the following circumstances: 1Meaningful access is attained when a translation accurately communicates to a limited-English-proficient individual the programs and services of an organization or agency (see U.S. Department of Justice, Guidance to Federal Financial Assistance Recipients Regarding Title VI Prohibition Against National Origin Discrimination Affecting Limited English Proficient Persons, 67 Fed. Reg. 41455, 41461 (June 18, 2002), http://bit.ly/bH3Jpe). 2U.S. Bureau of Labor Statistics, Interpreters and Translators, in Occ U P ATIONAL OUTLOOK HAND B OOK , 2010–11 EDITION (last modified Dec. 17, 2009), http://bit.ly/9BWpez. 32 Clearinghouse REVIEW Journal of Poverty Law and Policy n May–June 2010 How Effective Is Machine Translation of Legal Information? ■ Nuanced vocabulary—documents where be unacceptably inaccurate.”4 Before us- the source text or vocabulary is ambigu- ing machine translation for any text or a ous or unclear. Documents that have document, use the following suggestions text with nuanced meanings require the to improve accuracy and efficiency: skills of a translator who understands ■ the context and message behind the Most important, limit sentence length. words. Legal terminology is nuanced Sentences of more than twenty-five vocabulary since concepts do not have words often become ambiguous and too the same meaning in all legal systems. complex for machine-translation tools to translate correctly. Keeping sentenc- ■ Individualized documents—personal- es to no more than twenty words or so ized letters and documents with con- will improve the quality of the output. cepts and specialized terms. A human However, machine translation is not translator knows the vocabulary and very good at translating the names of can convey the ideas and intent of the legal documents because they include source text. legal jargon that may not be part of an- other legal culture. Short phrases such ■ Sufficient time—if the written text does as “motion for replevin,” “petition for not have to be translated immediately dissolution,” or “request for restitu- and no detriment to the client will re- tion” still require human translation to sult. Even if time is short, however, be incorporated accurately into a docu- use machine translation only for indi- ment, website, or form. vidual words or small phrases, not as a replacement for professional transla- ■ Avoid metaphors, jokes, slang, puns, tion. idiomatic expressions, and regional or national expressions. Since these are ■ Official translations—to ensure accu- often translated literally, they tend to racy when a certified or official trans- lose their meaning. The literal transla- lation of a document is necessary in a tion of “break a leg,” for example, will legal proceeding, government agen- not make sense to the target reader. cy, or application process.3 Machine translation cannot ensure the preci- ■ Avoid abbreviations, acronyms, and sion required for translation of vital contractions, which might not have documents that affect a client’s rights, equivalents in different languages. benefits, or services. Instead spell out the entire word. Machine-translation services do not Machine Translation always recognize abbreviations and may omit them from the translation. Unlike human translation, machine Instead of “Sr.,” “Jr.,” “DHS,” or “SSI,” translation merely replaces a word with use “senior,” “junior,” “department of its target language equivalent, without human services,” “supplemental secu- considering context or meaning. Trans- rity income.” lated words without context do not main- tain the idea or message of the original ■ Use simple, direct sentences with basic text. grammatical construction. Ensure that the sentence structure is grammatical- Agencies that rely on machine transla- ly correct and do not omit words (e.g., tion alone to ensure that LEP individu- “Make sure that you use grammatically als have meaningful access to document correct sentence structure” rather than and website content should know that “Make sure you use grammatically cor- machine translation has “been found to rect sentence structure”). 3See FED . R. CIV. P. 44(a)(2), http://bit.ly/9c4xpf. 4Federal Interagency Working Group on Limited English Proficiency, Top Tips from Responses to the Survey of Language Access Strategies Used by Federal Government Agencies (2008), http://bit.ly/chlup5. Clearinghouse REVIEW Journal of Poverty Law and Policy n May–June 2010 33 How Effective Is Machine Translation of Legal Information? ■ Avoid ambiguity. To produce a clear material for meaning to that target translation, minimize use of words and community. A larger group triggers sentences that have multiple meanings obligations under Title VI of the Civil (e.g., the word “right,” which can mean Rights Act of 1964 to ensure meaning- “correct” or “opposite of left”). ful access by translating vital docu- ments and thus requires a systemic ■ Avoid compound verbs, which are of- approach to implementing quality ten mistranslated. control in translations.7 ■ Use the international standard date ■ Importance of agency reputation or format (YYYY-MM-DD) when writing trust—because its results are not reli- dates, the format for which varies from ably accurate, using machine transla- country to country. Using the interna- tion can signal to the target group that tional standard format will help elimi- its needs are unimportant. nate translation problems. ■ Volume of material and degree of rep- ■ Because some languages do not use etition—a large quantity of material, the present participle verb form, use particularly if vocabulary and concepts the infinitive form instead (e.g., “click are repeated, is ideal for machine here to select the icons and to view the translation because programs usually images” rather than “click here for se- contain dictionaries that can be cus- lecting the icons and viewing the im- tomized and updated as needed. ages”). ■ Feasibility of human translation—if the ■ Give the translator a list of words that volume of material is extremely large, should remain in the source language time is short, and frequent updates will (e.g., proper names and titles and 5 be necessary, human translation may names of benefits and agencies). be unrealistic. When to Use Machine Translation ■ Possibility of “gisting”—the practice of using machine translation to get a While machine translation cannot re- rough idea of the source text content is place human translation when quality called “gisting” (from “to get the gist and accuracy are crucial, it may be suit- of”); it can be effective and appropri- able for several forms of written content ate when an “official” translation is not or to supply an initial translation that a needed and to determine if a human human translator then reviews for accu- translation is necessary. racy and context.6 Take the following fac- tors into account before relying solely on ■ Extent of dissemination
Recommended publications
  • "Machine Translation Evaluation Through Post-Editing…"
    ©inTRAlinea & Anna Fernández Torné (2016). "Machine translation evaluation through post-editing measures in audio description", inTRAlinea Vol. 18. Permanent URL: http://www.intralinea.org/archive/article/2200 inTRAlinea [ISSN 1827-000X] is the online translation journal of the Department of Interpreting and Translation (DIT) of the University of Bologna, Italy. This printout was generated directly from the online version of this article and can be freely distributed under the following Creative Commons License. Machine translation evaluation through post-editing measures in audio description By Anna Fernández Torné (Universitat Autònoma de Barcelona, Spain) Abstract & Keywords English: The number of accessible audiovisual products and the pace at which audiovisual content is made accessible need to be increased, reducing costs whenever possible. The implementation of different technologies which are already available in the translation field, specifically machine translation technologies, could help reach this goal in audio description for the blind and partially sighted. Measuring machine translation quality is essential when selecting the most appropriate machine translation engine to be implemented in the audio description field for the English-Catalan language combination. Automatic metrics and human assessments are often used for this purpose in any specific domain and language pair. This article proposes a methodology based on both objective and subjective measures for the evaluation of five different and free online machine translation systems. Their raw machine translation outputs and the post-editing effort that is involved are assessed using eight different scores. Results show that there are clear quality differences among the systems assessed and that one of them is the best rated in six out of the eight evaluation measures used.
    [Show full text]
  • A Finite-State Morphological Analyser for Sindhi
    A Finite-State Morphological Analyser for Sindhi Raveesh Motlani1, Francis M. Tyers2 and Dipti M. Sharma1 1FC Kohli Center on Intelligent Systems (KCIS), International Institute of Information Technology Hyderabad, Telangana, India 2 HSL-fakultehta, UiT Norgga árktalaš universitehta N-9019 Romsa [email protected], [email protected], [email protected] Abstract Morphological analysis is a fundamental task in natural-language processing, which is used in other NLP applications such as part-of-speech tagging, syntactic parsing, information retrieval, machine translation, etc. In this paper, we present our work on the development of free/open-source finite-state morphological analyser for Sindhi. We have used Apertium’s lttoolbox as our finite-state toolkit to implement the transducer. The system is developed using a paradigm-based approach, wherein a paradigm defines all the word forms and their morphological features for a given stem (lemma). We have evaluated our system on the Sindhi Wikipedia, which is a freely-available large corpus of Sindhi and achieved a reasonable coverage of about 81% and a precision of over 97%. Keywords: Sindhi, Morphological Analysis, Finite-State Machines [ɓ] ٻ [ɲ] ڃ [ŋ] ڱ Introduction .1 [ɠ] [ʄ] [bʱ] ڀ ڄ ڳ Morphology describes the internal structure of words in a [dʱ] ڌ [cʰ] ڇ [k] ڪ language. A morphological analysis of a word involves [ɗ] ڏ [ʈʰ] ٺ [ɳ] ڻ ,describing one or more of its properties such as: gender [ɖ] ڊ [ʈ] ٽ [pʰ] ڦ number, person, case, lexical category, etc. Morphological [ɖʱ] ڍ [tʰ] ٿ [ɽ] ڙ -analysis of a word thus becomes a fundamental and cru cial task in natural-language processing for any language.
    [Show full text]
  • Multi-Script Morphological Transducers and Transcribers for Seven Turkic
    Multi-script morphological transducers and transcribers for seven Turkic languages Jonathan Washington, Francis Tyers, Oğuzhan Kuyrukçu Swarthmore College, Indiana University / Высшая Школа Экономики, Boğaziçi Üniversitesi [email protected], [email protected], [email protected] This paper describes ongoing work to augment morphological transducers for seven Turkic languages with support for multiple scripts each, as well as respective IPA transcription systems. Evaluation demonstrates that our approach yields coverage equivalent to or not much lower than that of the base transducers. Background. A morphological transducer converts between form and analysis, e.g. алмалардан ↔ алма<n><pl> <abl>, where the form-to-analysis task is termed “morphological analysis” and the analysis-to-form task is termed “morphological generation”. Existing Free/Open-Source morphological transducers for Turkic languages (Wash- ington et al. 2020) are implemented in only one orthography, despite a number of the languages being currently written in two or more orthographies, or having a large body of text written in an orthography that was recently switched away from. This paper builds on work in which Cyrillic support was added to a transducer for Crimean Tatar which had been implemented in the Latin script (Tyers et al. 2019). We leverage morphological transducers for Kazakh (imple- mented in the Cyrillic script), Kyrgyz (Cyrillic), Turkmen (Latin), Qaraqalpaq (Latin), Uzbek (Latin), and Uyghur (Perso-Arabic), and add support for analysis and generation in additional scripts that are currently or have recently been used for the languages. Specifically, we add Cyrillic support to Turkmen, Qaraqalpaq, Uzbek, and Uyghur transducers; Perso-Arabic support to the Kazakh and Kyrgyz transducers; Latin script to the Kazakh and Uyghur transducers; and IPA support to all of them.
    [Show full text]
  • Developing Morph-Analyzer for Urdu Using Apertium: Some Issues
    Developing Morph-Analyzer for Urdu Using Apertium: Some issues Shahid Mushataq Bhat [email protected] Linguistic Data Consortium for Indian Languages (LDCIL) CIIL, Mysore Content: Introduction Morphological features of Urdu Apertium (LT-toolbox): Some background Computing Noun-morphology using LT Toolbox Split-Orthography of Urdu Conclusion Introduction: Automatic morphological analysis is the fundamental task in NLP that can be employed in enhancing the accuracy of POS-taggers, Chunkers, Parsers and Information retrieval systems. Computational morphology models the internal structure of words i-e the way; words are built out of minimal units called morphemes. Most of natural languages construct words by concatenating morphemes together in strict orders. Such Concatenative morphotactics is highly productive, particularly, in agglutinative languages like Tamil, Kannada, Manipuri, etc but in some languages like Hebrew and Arabic (Semitic languages) infixation is the main morphological operation (instead of concatenation), constituting Non-Concatenative (Templatic or Root & Pattern) morphology. Continues …… Beyond this Concatenative and Non-Concatenative polarity, Urdu nouns (unlike nouns of other Indian Languages) show the interplay of both types of morphologies. So, morphological structure of Urdu like Tagalog (a language of Philippines) can’t be computed adequately unless dual nature of its morphology is not taken into account. “The morphotactic limitations of the traditional implementations are the direct result of relying solely
    [Show full text]
  • Estudio Comparativo De Tres
    TRABAJO DE FIN DE GRADO FACULTAD DE CIENCIAS HUMANAS Y SOCIALES GRADO EN TRADUCCIÓN E INTERPRETACIÓN ESTUDIO COMPARATIVO DE TRES TRADUCTORES AUTOMÁTICOS EN LÍNEA : DEEP L, YANDEX Y APERTIUM Autora: Mónica Adán Soriano Directora: Profesora Mª Luisa Romana García Madrid, junio 2019 Resumen : Este trabajo tiene la finalidad de comparar traductores automáticos en línea para así determinar cuál es el traductor más avanzado para un texto técnico. Para ello, primero, habrá un análisis de la evolución histórica de la traducción automática y sus usos, así como los programas desarrollados para ello. Se explicarán además los diferentes sistemas de traducción automática que existen y cómo funcionan. En la parte experimental, se escogerá un texto de carácter técnico en español y de oraciones que supongan un reto para un traductor y se procesará en los tres traductores automáticos escogidos según su modalidad para realizar una traducción al inglés. Una vez obtenidas las respuestas, se analizarán los errores cometidos por los traductores automáticos, concluyendo así con los errores más comunes y el mejor traductor automático en línea así como los usos que se le pueden dar. Palabras clave: traducción automática, sistemas basados en estadística, Yandex, sistemas neuronales, DeepL, sistemas basados en reglas, Apertium, errores de traducción. Abstract : The aim of this dissertation is to do a comparative research analysis on three automatic translation programs available on the internet to determine which is the most advanced for a technical text. First, we will do an analysis on the historic evolution of automatic translation and the several uses given to it, as well as the diverse programs developed for it and how they work.
    [Show full text]
  • The Apertium Bilingual Dictionaries on the Web of Data
    Undefined 0 (0) 1 1 IOS Press The Apertium Bilingual Dictionaries on the Web of Data Jorge Gracia a;∗, Marta Villegas b, Asunción Gómez-Pérez a, and Núria Bel b, a Ontology Engineering Group, Universidad Politécnica de Madrid Campus de Montegancedo s/n Boadilla del Monte 28660 Madrid. Spain E-mail: {jgracia,asun}@fi.upm.es b Institut Universitari Linguistica Aplicada, Universitat Pompeu Fabra Roc Boronat, 138 08018 Barcelona. Spain E-mail: {marta.villegas,nuria.bel}@upf.edu Abstract. Bilingual electronic dictionaries contain collections of lexical entries in two languages, with explicitly declared trans- lation relations between such entries. Nevertheless, they are typically developed in isolation, in their own formats and accessible through proprietary APIs. In this paper we propose the use of Semantic Web techniques to make translations available on the Web to be consumed by other semantic enabled resources in a direct manner, based on standard languages and query means. In particular, we describe the conversion of the Apertium family of bilingual dictionaries and lexicons into RDF (Resource Descrip- tion Framework) and how their data have been made accessible on the Web as linked data. As result, all the converted dictionaries (many of them covering under-resourced languages) are connected among them and can be easily traversed from one to another to obtain, for instance, translations between language pairs not originally connected in any of the original dictionaries. Keywords: linguistic linked data, multilingualism, Apertium, bilingual dictionaries, lexicons, lemon, translation 1. Introduction In this article we will focus on the case of electronic bilingual dictionaries as a particular type of languages The publication of bilingual and multilingual lan- resources.
    [Show full text]
  • Apertium: a Free/Open-Source Platform for Machine Translation and Basic Language Technology Mikel L
    Apertium: A free/open-source platform for machine translation and basic language technology www.apertium.org Mikel L. Forcada1 Francis M. Tyers2,3 1Departament de Llenguatges i Sistemes Inform`atics, Universitat d’Alacant, E-03690 Sant Vicent del Raspeig (Spain) 2Department of Linguistics, Indiana University, IN 47405, U.S.A. 3 School of Linguistics, Higher School of Economics, Moscow, Russia [email protected], [email protected] Apertium components Languages and language pairs Since 2005, Apertium provides: 1. A free/open-source, modular, shallow/deep transfer, language-independent Language data is encoded mostly in XML, but some language pairs contain data machine translation engine with: text format management, finite-state lexical encoded in other text-based formats. processing, statistical and constraint-based lexical disambiguation, Stable language pairs (bilingual data) include: discontiguous multi-word assembly and disassembly, anaphora resolution, and shallow structural transfer based on finite-state pattern matching. afr hbs bel crh kaz ind mlt pol urd 2. Free/open-source linguistic data in well-specified XML formats for a variety of languages and language pairs nld bre epo eus cym mkd slv isl rus tur tat zsm ara szl hin 3. Free/open-source tools: compilers to turn linguistic data into an efficient fra oci eng bul swe ukr form used by the engine and software to learn disambiguation or translation spa dan rules from corpora. Interfaces with external technologies: HFST (for some morphologically-rich arg ast por ron sme nno languages), VISL CG-3 (for rule-based lexical disambiguation). cat glg nob Machine translation but not only! ita srd For many of these languages, there are separate monolingual packages.
    [Show full text]
  • A Rule-Based Shallow-Transfer Machine Translation System for Scots and English
    A Rule-based Shallow-transfer Machine Translation System for Scots and English Gavin Abercrombie [email protected] Abstract An open-source rule-based machine translation system is developed for Scots, a low-resourced minor language closely related to English and spoken in Scotland and Ireland. By concentrating on translation for assimilation (gist comprehension) from Scots to English, it is proposed that the development of dictionaries designed to be used within the Apertium platform will be sufficient to produce translations that improve non-Scots speakers understanding of the language. Mono- and bilingual Scots dictionaries are constructed using lexical items gathered from a variety of resources across several domains. Although the primary goal of this project is translation for gisting, the system is evaluated for both assimilation and dissemination (publication-ready translations). A variety of evaluation methods are used, including a cloze test undertaken by human volunteers. While evaluation results are comparable to, and in some cases superior to, those of other language pairs within the Apertium platform, room for improvement is identified in several areas of the system. Keywords: Scots, machine translation, assimilation 1. Introduction (‘what did he do that for’). There are also notable differ- The Scots language is spoken by over 1.5 million people ences to English in negation e.g. huvnae (‘have not’), din- in Scotland1 and a further 140,000 in Ireland,2 but is low- nae (‘do not’), and the double modal e.g. he’ll can dae that resourced in terms of technology - as far as I am aware there (‘he’ll be able to do that’) (Beal, 1997).
    [Show full text]
  • Apertium-Icenlp: a Rule-Based Icelandic to English Machine Translation System
    Apertium-IceNLP: A rule-based Icelandic to English machine translation system Martha Dís Brandt, Hrafn Loftsson, Francis M. Tyers Hlynur Sigurþórsson School of Computer Science Dept. Lleng. i. Sist. Inform. Reykjavik University Universitat d’Alacant IS-101 Reykjavik, Iceland E-03071 Alacant, Spain {marthab08,hrafn,hlynurs06}@ru.is [email protected] Abstract translate between the source language (SL) and the target language (TL). We describe the development of a pro- SMT has many advantages, e.g. it is data-driven, totype of an open source rule-based language independent, does not need linguistic ex- Icelandic English MT system, based on perts, and prototypes of new systems can by built → the Apertium MT framework and IceNLP, quickly and at a low cost. On the other hand, the a natural language processing toolkit for need for parallel corpora as training data in SMT Icelandic. Our system, Apertium-IceNLP, is also its main disadvantage, because such corpora is the first system in which the whole are not available for a myriad of languages, espe- morphological and tagging component of cially the so-called less-resourced languages, i.e. Apertium is replaced by modules from languages for which few, if any, natural language an external system. Evaluation shows processing (NLP) resources are available. When that the word error rate and the position- there is a lack of parallel corpora, other machine independent word error rate for our pro- translation (MT) methods, such as rule-based MT, totype is 50.6% and 40.8%, respectively. e.g. Apertium (Forcada et al., 2009), may be used As expected, this is higher than the corre- to create MT systems.
    [Show full text]
  • Proceedings of the 21St Annual Conference of the European Association for Machine Translation
    Proceedings of the 21st Annual Conference of the European Association for Machine Translation 28{30 May 2018 Universitat d'Alacant Alacant, Spain Edited by Juan Antonio P´erez-Ortiz Felipe S´anchez-Mart´ınez Miquel Espl`a-Gomis Maja Popovi´c Celia Rico Andr´eMartins Joachim Van den Bogaert Mikel L. Forcada Organised by research group The papers published in this proceedings are |unless indicated otherwise| covered by the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 International (CC-BY-ND 3.0). You may copy, distribute, and transmit the work, provided that you attribute it (au- thorship, proceedings, publisher) in the manner specified by the author(s) or licensor(s), and that you do not use it for commercial purposes. The full text of the licence may be found at https://creativecommons.org/licenses/by-nc-nd/3.0/deed.en. c 2018 The authors ISBN: 978-84-09-01901-4 Rule-based machine translation from Kazakh to Turkish Sevilay Bayatli Sefer Kurnaz Dept. Elec. and Computer Engineering Dept. Elec. and Computer Engineering Altınbaş Üniversitesi Altınbaş Üniversitesi [email protected] [email protected] Ilnar Salimzianov Jonathan North Washington Francis M. Tyers School of Science and Technology Linguistics Deptartment School of Linguistics Nazarbayev University Swarthmore College Higher School of Economics [email protected] [email protected] [email protected] Abstract all the dictionary entries and transfer rules. Con- versely, in a corpus-based/statistical MT approach This paper presents a shallow-transfer ma- (Koehn, 2010), no such effort is required as the sys- chine translation (MT) system for translat- tem can be automatically built from parallel corpora ing from Kazakh to Turkish.
    [Show full text]
  • Apertium: a Rule-Based Machine Translation Platform
    Apertium: A rule-based machine translation platform Francis M. Tyers HSL-fakultehta UiT Norgga árktalaš universitehta 9018 Romsa (Norway) 28th September 2014 1 / 41 Outline Introduction Design Development Status Teaching Courses Google Summer of Code Google Code-in Research New language pairs Applying unsupervised methods Hybrid systems Future work and challenges Challenges Plans Collaboration 1 / 41 History I 2004 — Spain gets a new government which launches a call for proposals to build machine translation systems for the languages of Spain I The Universitat d’Alacant (UA), in consortium with EHU, UPC, UVigo, Eleka, Elhuyar (Basque Country) and Imaxin (Galicia) get funded to develop two MT systems: I Apertium: Spanish–Catalan, Spanish–Galician I Matxin: Spanish!Basque I Apertium was not built from scratch, but was rather a rewrite of two existing closed-source systems which had been built by UA 2 / 41 Focus I Marginalised: Languages which are on the periphery either societally or technologically (from Breton to Bengali). I Lesser-resourced: Languages for which few free/open-source language resources exist. I Closely-related: Languages which are suited to shallow-transfer machine translation. 3 / 41 Translation philosophy I Build on word-for-word translation I Avoid complex linguistic formalisms I We like saying “only secondary-school linguistics required”1 I Intermediate representation based on morphological information I Transformer-style systems I Analyse the source language (SL), then I Apply rules to ‘transform’ the SL to the TL 1Otte, P. and Tyers, F. (2011) “Rapid rule-based machine translation between Dutch and Afrikaans”. Proceedings of the 16th Annual Conference of the European Association of Machine Translation 4 / 41 Pipeline SL deformatter text morph.
    [Show full text]
  • The Apertium Bilingual Dictionaries on the Web of Data
    Semantic Web 0 (0) 1 1 IOS Press The Apertium Bilingual Dictionaries on the Web of Data Editor(s): Philipp Cimiano, Universität Bielefeld, Germany Solicited review(s): Roberto Navigli, Sapienza University of Rome, Italy; Bettina Klimek, University of Leipzig, Germany; Sebastian Hellmann, University of Leipzig, Gemany; one anonymous reviewer Jorge Gracia a;∗, Marta Villegas b, Asunción Gómez-Pérez a, and Núria Bel b, a Ontology Engineering Group, Universidad Politécnica de Madrid Campus de Montegancedo s/n Boadilla del Monte 28660 Madrid. Spain E-mail: {jgracia,asun}@fi.upm.es b Institut Universitari Linguistica Aplicada, Universitat Pompeu Fabra Roc Boronat, 138 08018 Barcelona. Spain E-mail: {marta.villegas,nuria.bel}@upf.edu Abstract. Bilingual electronic dictionaries contain collections of lexical entries in two languages, with explicitly declared trans- lation relations between such entries. Nevertheless, they are typically developed in isolation, in their own formats and accessible through proprietary APIs. In this paper we propose the use of Semantic Web techniques to make translations available on the Web to be consumed by other semantic enabled resources in a direct manner, based on standard languages and query means. In particular, we describe the conversion of the Apertium family of bilingual dictionaries and lexicons into RDF (Resource De- scription Framework) and how their data have been made accessible on the Web as linked data. As a result, all the converted dictionaries (many of them covering under-resourced languages) are connected among them and can be easily traversed from one to another to obtain, for instance, translations between language pairs not originally connected in any of the original dictionaries.
    [Show full text]