Streams of Consciousness Author(S): Ferris Jabr Source: Scientific American , Vol

Total Page:16

File Type:pdf, Size:1020Kb

Streams of Consciousness Author(S): Ferris Jabr Source: Scientific American , Vol Streams of Consciousness Author(s): Ferris Jabr Source: Scientific American , Vol. 309, No. 1 (JULY 2013), p. 24 Published by: Scientific American, a division of Nature America, Inc. Stable URL: https://www.jstor.org/stable/10.2307/26017815 JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms Scientific American, a division of Nature America, Inc. is collaborating with JSTOR to digitize, preserve and extend access to Scientific American This content downloaded from 143.107.3.152 on Mon, 28 Oct 2019 13:49:35 UTC All use subject to https://about.jstor.org/terms ADVANCES Best of the Blogs ENTOMOLOGY Don’t Pince Me, Please Two remarkable insects—one with giant genital forceps— join a list of new finds Researchers working in Brazil have discovered a new species Happily, nana happens to be of forcepfly with enormous genital pincers right( ), bringing the total derived from nanos, the Greek word number of known species in this family to three. And in Costa Rica for “dwarf.” Huber and Noyes described the a new fairyfly has been found: at 250 microns long, it is invisible to species’ light coloring, which includes yellows, browns and white, the naked eye and one of the smallest insects in the world. and spectacular wings, covered in delicate, long bristles called Entomologist Renato Machado of Texas A&M University and macrochaeta, in April in the Journal of Hymenoptera Research. his colleagues described the new forcepfly, a pale, golden-colored The team suggests that this type of wing could help the fairyfly insect, in February in the journal ZooKeys. The team named it reduce drag and turbulence while in the air—fairyflies flap their Austromerope brasiliensis, after its home near the Atlantic Forest tiny wings hundreds of times per second to keep aloft. of south eastern Brazil. Almost nothing is known about the biology Though distinct in enough ways to earn itself a place in a of the nocturnal and secretive forcepfly. Scientists are not really sure new genus, T. nana is closely related to the world’s smallest known how it lives, what it eats, how it mates or what its larvae look like. winged insect, Kikiki huna, which is 158 microns long—about as Most researchers assume that the males use their extraordinarily small as a winged insect can be. Huber remarks, “If we have large terminal forceps to grip the females during copulation or to not already found them, we must surely be close to discovering fight male rivals. the smallest insects and other arthropods.” —Becky Crew John Huber of Natural Resources Canada and John S. Noyes of the Natural History Museum in London named the new species Adapted fromRunningPoniesatblogs.ScientificAmerican.com/ of fairyfly Tinkerbella nana, after the fairy and the dog from Peter Pan. running-ponies ANTHROPOLOGY Streams of recently recorded the inner dialogues of In one video, a young woman named people walking in New York City. He Meredith walks along Prince Street in Consciousness approached strangers, asked them to downtown Manhattan. She briefly won­ A researcher documents wear a microphone headset attached ders if there is a Staples store nearby people’s internal monologues to a digital recorder and speak their before reminiscing about a recent visit to thoughts aloud as he followed closely her friend Joan, whom, we learn, has behind with a camera. cancer. Meredith contemplates her On any given day, millions of conver­ “I was surprised by how many said friend’s situation for the next two min­ sations reverberate through New ‘yes,’” Irving says—about 100 in all. By utes, tearing up at the thought of “New 2013 15, FEBRUARY 269; VOL. York City. All these conversations are overlaying the recorded audio onto the York without Joan.” Abruptly, she notic­ ZOOKEYS, matched in number and complexity by videos, he has created portraits of indi­ es a café where she used to sit and peo­ much more elusive discourses. Even vidual consciousnesses on a particular ple watch, laments how it has changed (MECOPTERA, MEROPEIDAE) FROM BRAZIL,” BRAZIL,” FROM MEROPEIDAE) (MECOPTERA, when speaking with others—and espe­ day in New York. and resumes her search for a Staples. cially when alone—we continually talk Of course, people sometimes speak Meredith’s meandering thoughts to ourselves in our heads. into the microphone as though trying to recall Clarissa Dalloway’s roaming mind AUSTROMEROPE Psychologists have attempted to cap­ entertain someone else. And getting in Virginia Woolf’s novel Mrs Dalloway. ture what they call self­talk or inner people’s inner speech on tape captures Woolf would likely have adored Irving’s speech in the moment, asking people to only linguistic forms of thought, neglect­ videos. She wanted to write about “an stop what they are doing and write ing the kind of thinking that happens ordinary mind on an ordinary day.” down their thoughts at random times. in images and scenes. Still, Irving’s vid­ —Ferris Jabr Others have relied on surveys or diaries. eos are permanent records of fleeting Andrew Irving, an anthropologist at the thoughts, of dynamic mental processes Adapted from Brainwaves at blogs. University of Manchester in England, unfurling in real time. ScientificAmerican.com/brainwaves BY RENATO JOSE PIRES MACHADO, RICARDO KAWADA AND JOSÉ ALBERTINO RAFAEL, IN RAFAEL, ALBERTINO JOSÉ AND RICARDO KAWADA MACHADO, PIRES JOSE RENATO BY FROM “NEW CONTINENTAL RECORD AND NEW SPECIES OF OF SPECIES AND NEW RECORD CONTINENTAL “NEW FROM 24 Scientific American, ulyJ 2013 COMMENT AT ScientificAmerican.com/jul2013 © 2013 Scientific American This content downloaded from 143.107.3.152 on Mon, 28 Oct 2019 13:49:35 UTC All use subject to https://about.jstor.org/terms.
Recommended publications
  • Opera Lilloana 2005
    130Acta zoológica lilloana 57 (1): 130–131,S. V. Triapitsyn: 2013 On the occurrence of Kikiki huna Huber in Argentina130 NOTA On the occurrence of Kikiki huna Huber (Hymenoptera: Mymaridae) in Argentina Triapitsyn, Serguei V. Entomology Research Museum, Department of Entomology, University of California, Riverside, California 92521, E.E.U.U., email: [email protected] Resumen — Kikiki huna Huber, el único mimárido descrito (Hymenoptera: Mymaridae) con 3 segmentos tarsales, es reportado de la provincia de Catamarca en Argentina como un registro nuevo para el país. Se provee ilustraciones de la hembra para facilitar el recono- cimiento de esta rara y diminuta especie. Palabras clave: Mymaridae, mimárido, Kikiki huna, taxonomía, Argentina. Abstract — Kikiki huna Huber, the only described fairyfly (Hymenoptera: Mymaridae) with 3-segmented tarsi, is reported from Catamarca Province in Argentina as a new country record. Illustrations of the female are provided to facilitate recognition of this rare and minute species. Keywords: Mymaridae, fairyfly, Kikiki huna, taxonomy, Argentina. Kikiki Huber and Beardsley is the only Material examined.— ARGENTINA: Catama- known fairyfly genus (Hymenoptera: My- rca, ca. 2.5 km SW of El Portezuelo, maridae) with 3-segmented tarsi (Huber and 28°28’54’’S 65°39’10’’W, 613 m, 19/I/2003, Beardsley 2000). Its type species, K. huna S. V. Triapitsyn, G. A. Logarzo, sweeping at Huber, originally described from the Hawai- a roadside in the jungle in low mountains [1 ian Islands, was recently thoroughly re- female, Entomology Research Museum, Uni- described by Huber and Noyes (2013), who versity of California, Riverside, California, also recorded it from Costa Rica and Trin- USA, UCRC ENT 118005].
    [Show full text]
  • A Phylogenetic Analysis of the Megadiverse Chalcidoidea (Hymenoptera)
    UC Riverside UC Riverside Previously Published Works Title A phylogenetic analysis of the megadiverse Chalcidoidea (Hymenoptera) Permalink https://escholarship.org/uc/item/3h73n0f9 Journal Cladistics, 29(5) ISSN 07483007 Authors Heraty, John M Burks, Roger A Cruaud, Astrid et al. Publication Date 2013-10-01 DOI 10.1111/cla.12006 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Cladistics Cladistics 29 (2013) 466–542 10.1111/cla.12006 A phylogenetic analysis of the megadiverse Chalcidoidea (Hymenoptera) John M. Heratya,*, Roger A. Burksa,b, Astrid Cruauda,c, Gary A. P. Gibsond, Johan Liljeblada,e, James Munroa,f, Jean-Yves Rasplusc, Gerard Delvareg, Peter Jansˇtah, Alex Gumovskyi, John Huberj, James B. Woolleyk, Lars Krogmannl, Steve Heydonm, Andrew Polaszekn, Stefan Schmidto, D. Chris Darlingp,q, Michael W. Gatesr, Jason Motterna, Elizabeth Murraya, Ana Dal Molink, Serguei Triapitsyna, Hannes Baurs, John D. Pintoa,t, Simon van Noortu,v, Jeremiah Georgea and Matthew Yoderw aDepartment of Entomology, University of California, Riverside, CA, 92521, USA; bDepartment of Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, OH, 43210, USA; cINRA, UMR 1062 CBGP CS30016, F-34988, Montferrier-sur-Lez, France; dAgriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada; eSwedish Species Information Centre, Swedish University of Agricultural Sciences, PO Box 7007, SE-750 07, Uppsala, Sweden; fInstitute for Genome Sciences, School of Medicine, University
    [Show full text]
  • Zootaxa,The Australian Genera of Mymaridae
    TERM OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website site is prohibited. ZOOTAXA 1596 The Australian Genera of Mymaridae (Hymenoptera: Chalcidoidea) NAI-QUAN LIN, JOHN T. HUBER & JOHN La SALLE Magnolia Press Auckland, New Zealand TERM OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website site is prohibited. NAI-QUAN LIN, JOHN T. HUBER & JOHN La SALLE The Australian Genera of Mymaridae (Hymenoptera: Chalcidoidea) (Zootaxa 1596) 111 pp.; 30 cm. 28 Sept. 2007 ISBN 978-1-86977-141-6 (paperback) ISBN 978-1-86977-142-3 (Online edition) FIRST PUBLISHED IN 2007 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2007 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 1596 © 2007 Magnolia Press LIN ET AL. TERM OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website site is prohibited.
    [Show full text]
  • First Report of Dicopus Longipes (Subba Rao) (Hymenoptera: Chalcidoidea) from India with New Distribution Data on Some Species
    Biodiversity Data Journal 3: e4692 doi: 10.3897/BDJ.3.e4692 Taxonomic Paper First report of Dicopus longipes (Subba Rao) (Hymenoptera: Chalcidoidea) from India with new distribution data on some species A. Rameshkumar‡‡, J. Poorani , M. Anjana§ ‡ ICAR-National Bureau of Agricultural Insect Resources, Bangalore 560024, India § Western Ghats Regional Centre, Zoological Survey of India, Calicut 673006, India Corresponding author: A. Rameshkumar ([email protected]), J. Poorani ([email protected]) Academic editor: Jose Fernandez-Triana Received: 07 Feb 2015 | Accepted: 06 Mar 2015 | Published: 10 Mar 2015 Citation: Rameshkumar A, Poorani J, Anjana M (2015) First report of Dicopus longipes (Subba Rao) (Hymenoptera: Chalcidoidea) from India with new distribution data on some species . Biodiversity Data Journal 3: e4692. doi: 10.3897/BDJ.3.e4692 Abstract Dicopus longipes (Subba Rao) (Hymenoptera: Chalcidoidea: Mymaridae) is recorded from India for the first time. New additional distribution records of Mymaridae from the southern Indian states of Tamil Nadu and Kerala are documented. Keywords Mymaridae, distribution, India. © Rameshkumar A et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. & Rameshkumar A et al. Introduction Fairyflies (Hymenoptera: Chalcidoidea: Mymaridae) are internal egg parasitoids of insects except two species that parasitize the larvae of eulophids (Huber et al. 2006). From India, 31 genera and 134 species of Mymaridae have been reported so far (Manickavasagam and Rameshkumar 2013, Ramesh Kumar et al. 2013). The mymarid fauna of India is not well documented as several states and biodiversity rich areas of India have not been surveyed so far for mymarids.
    [Show full text]
  • Download (15MB)
    Dedicated to My Grandparents & Dr. Mohammad Hayat CONTENTS Acknowledgments ...................................................................................................... i 1. Introduction ............................................................................................................ 1 2. Review of Literature .............................................................................................. 4 3. Material and Methods ............................................................................................ 8 4. Abbreviations and Acronyms .............................................................................. 11 5. Terms and Measurements .................................................................................... 13 6. Explanation of terms ............................................................................................ 14 7. Classification of the family Mymaridae .............................................................. 17 8. Key to the Genera ................................................................................................ 19 Chapter 1 Revision of Indian species Alaptus-group of genera ....................................................................................... 21 I. Genus Alaptus Westwood ..................................................................................... 22 1. A. magnanimous Annandale....................................................... 25 2. A. jowainus Rehmat & Anis ...................................................... 25
    [Show full text]
  • Checklist of British and Irish Hymenoptera - Chalcidoidea and Mymarommatoidea
    Biodiversity Data Journal 4: e8013 doi: 10.3897/BDJ.4.e8013 Taxonomic Paper Checklist of British and Irish Hymenoptera - Chalcidoidea and Mymarommatoidea Natalie Dale-Skey‡, Richard R. Askew§‡, John S. Noyes , Laurence Livermore‡, Gavin R. Broad | ‡ The Natural History Museum, London, United Kingdom § private address, France, France | The Natural History Museum, London, London, United Kingdom Corresponding author: Gavin R. Broad ([email protected]) Academic editor: Pavel Stoev Received: 02 Feb 2016 | Accepted: 05 May 2016 | Published: 06 Jun 2016 Citation: Dale-Skey N, Askew R, Noyes J, Livermore L, Broad G (2016) Checklist of British and Irish Hymenoptera - Chalcidoidea and Mymarommatoidea. Biodiversity Data Journal 4: e8013. doi: 10.3897/ BDJ.4.e8013 Abstract Background A revised checklist of the British and Irish Chalcidoidea and Mymarommatoidea substantially updates the previous comprehensive checklist, dating from 1978. Country level data (i.e. occurrence in England, Scotland, Wales, Ireland and the Isle of Man) is reported where known. New information A total of 1754 British and Irish Chalcidoidea species represents a 22% increase on the number of British species known in 1978. Keywords Chalcidoidea, Mymarommatoidea, fauna. © Dale-Skey N et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 2 Dale-Skey N et al. Introduction This paper continues the series of checklists of the Hymenoptera of Britain and Ireland, starting with Broad and Livermore (2014a), Broad and Livermore (2014b) and Liston et al.
    [Show full text]
  • Download at Including Basic Examples on How to Use It
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.11.422154; this version posted January 28, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Title: Measuring Compound Eye Optics with Microscope and MicroCT Images Article Type: Methods Author Names and Affiliations: John Paul Currea1, Yash Sondhi2, Akito Y. Kawahara3, and Jamie Theobald2 1Department of Psychology, Florida International University, Miami, FL 33199, U.S.A. 2Department of Biological Sciences, Florida International University, Miami, FL 33199, U.S.A. 3Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, U.S.A. Abstract (<200 words): The arthropod compound eye is the most prevalent eye type in the animal kingdom, with an impressive range of shapes and sizes. Studying its natural range of morphologies provides insight into visual ecology, development, and evolution. In contrast to the camera-type eyes we possess, external structures of compound eyes often reveal resolution, sensitivity, and field of view if the eye is spherical. Non-spherical eyes, however, require measuring internal structures using imaging technology like MicroCT (µCT). µCT is a burgeoning 3D X-Ray imaging technique that has been used to image arthropod muscles, brains, ocelli, and eyes. Thus far, there is no efficient tool to automate characterizing compound eye optics in either 2D or 3D data. We present two open-source programs: (1) the ommatidia detecting algorithm (ODA), which automatically measures ommatidia count and diameter in 2D images, and (2) a µCT pipeline (ODA-3D), which calculates anatomical acuity, sensitivity, and field of view across the eye by applying the ODA to 3D data.
    [Show full text]
  • Measuring Compound Eye Optics with Microscope and Microct Images
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.11.422154; this version posted December 12, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Title (<120 characters): Measuring Compound Eye Optics with Microscope and MicroCT Images 2 Article Type: Tools and Resources 3 Author Names and Affiliations: John Paul Currea1, Yash Sondhi2, Akito Y. Kawahara3, and Jamie 4 Theobald2 5 1Department of Psychology, Florida International University, Miami, FL 33199, U.S.A. 6 2Department of Biological Sciences, Florida International University, Miami, FL 33199, U.S.A. 7 3Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, U.S.A. 8 Abstract (<150 words): 9 The arthropod compound eye is the most prevalent eye type in the animal kingdom, with an impressive 10 range of shapes and sizes. Studying its natural range of morphologies provides insight into visual 11 ecology, development, and evolution. In contrast to the camera-type eyes we possess, external 12 structures of compound eyes often reveal resolution, sensitivity, and field of view if the eye is 13 spherical. Non-spherical eyes, however, require measuring internal structures using imaging 14 technology like MicroCT (µCT). Thus far, there is no efficient tool to automate characterizing 15 compound eye optics. We present two open-source programs: (1) the ommatidia detecting algorithm 16 (ODA), which automatically measures ommatidia count and diameter, and (2) a µCT pipeline, which 17 calculates anatomical acuity, sensitivity, and field of view across the eye by applying the ODA.
    [Show full text]
  • (Hymenoptera: Chalcidoidea) of India Received: 11-05-2018 Accepted: 12-06-2018
    Journal of Entomology and Zoology Studies 2018; 6(4): 1654-1663 E-ISSN: 2320-7078 P-ISSN: 2349-6800 An updated checklist of Mymaridae JEZS 2018; 6(4): 1654-1663 © 2018 JEZS (Hymenoptera: Chalcidoidea) of India Received: 11-05-2018 Accepted: 12-06-2018 S Manickavasagam S Manickavasagam and A Athithya Parasitoid Taxonomy and Biocontrol Laboratory, Abstract Department of Entomology, Faculty of Agriculture, Mymarids (fairyflies) are economically important, internal, primary egg parasitoids of Annamalai University, auchenorrhynchous hemipteran insects. They play a crucial role in managing cicadellids and delphacids Chidambaram, Tamil Nadu, in agricultural and horticulatural ecosystems. An updated checklist of Indian Mymaridae is provided with India 38 genera and 194 species that constitute 32.8 and 11.9 per cent of world genera and species respectively. Five genera viz., Allanagrus, Dorya, Platystethynium, Schizophragma and Stephanocampta were newly A Athithya recorded, four genera viz., Cosmocomoidea, Lymaenon, Tanyxiphium and Zeyanus were added during Parasitoid Taxonomy and reclassification of Gonatocerus, 56 new species were described and 12 first reports of species were made Biocontrol Laboratory, from India. Seven species viz., Acmopolynema shrawastianum, Erythmelus lygivorus, Gonatocerus Department of Entomology, sulphuripes, G. tarae, G. pahlgamensis, G. similis and Polynema huberi were synonymized and one Faculty of Agriculture, species misidentified. Annamalai University, Chidambaram, Tamil Nadu, Keywords: Fairyflies, oophagous, endoparasitoids, distribution, synonymies India 1. Introduction Fairyflies (Hymenoptera: Mymaridae) are exclusively internal, primary oophagous parasitoids [except Stethynium ophelimi and S. breviovipositor that are larval parasitoids [49]] of auchenorrhynchous Hemiptera. But eggs of Hemiptera (Coccoidea, Tingidae, Miridae, etc.), Coleoptera, Odonata, Psocoptera and Thysanoptera are also attacked. They generally parasitize [44] concealed eggs .
    [Show full text]
  • Hymenoptera - Apocrita (Excl
    UvA-DARE (Digital Academic Repository) Fauna Europaea: Hymenoptera - Apocrita (excl. Ichneumonoidea) Mitroiu, M.-D.; Noyes, J.; Cetkovic, A.; Nonveiller, G.; Radchenko, A.; Polaszek, A.; Ronquist, F.; Forshage, M.; Pagliano, G.; Gusenleitner, J.; Boni Bartalucci, M.; Olmi, M.; Fusu, L.; Madl, M.; Johnson, N.F.; Jansta, P.; Wahis, R.; Soon, V.; Rosa, P.; Osten, T.; Barbier, Y.; de Jong, Y. DOI 10.3897/BDJ.3.e4186 Publication date 2015 Document Version Final published version Published in Biodiversity Data Journal License CC BY Link to publication Citation for published version (APA): Mitroiu, M-D., Noyes, J., Cetkovic, A., Nonveiller, G., Radchenko, A., Polaszek, A., Ronquist, F., Forshage, M., Pagliano, G., Gusenleitner, J., Boni Bartalucci, M., Olmi, M., Fusu, L., Madl, M., Johnson, N. F., Jansta, P., Wahis, R., Soon, V., Rosa, P., ... de Jong, Y. (2015). Fauna Europaea: Hymenoptera - Apocrita (excl. Ichneumonoidea). Biodiversity Data Journal, 3, [e4186]. https://doi.org/10.3897/BDJ.3.e4186 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands.
    [Show full text]
  • ISH and That Revising (Half) the Nematinae (Tenthredinidae) of The
    Hamuli The Newsletter of the International Society of Hymenopterists volume 4, issue 2 20 August 2013 In this issue... Revising Nematinae (STING) 1 ISH and that (Heraty) 1 Webmaster update (Seltmann) 6 News from the Albany Museum (Gess) 7 Challenges of large-scale taxonomy (Whitfield) 8 Hymenoptera Emporium (Sharkey) 9 Rearing Eois in Panama (Parks) 10 Relying on catalogues (Broad) 11 Wasps on the phone (Broad) 12 Hidden terrors (Heraty et al.) 14 Orasema: facts and request (Heraty) 15 Tiny hymys (Sharkey) 16 Fig. 1 Tenthredo arctica (Thomson, 1870) Abisko: Mt. Njullá above Neotropical hym course (Sharkey) 17 treeline (Sweden: Norrbottens Län); 900 m. 05.07.2012 I Encontro Internacional Sobre Vespas (Carpenter) 17 Small trick for lighting (Mikó) 18 Revising (half) the Nematinae What is fluorescing? (Mikó & Deans) 19 Hymenoptera at the Frost (Deans) 22 (Tenthredinidae) of the West Postgraduate corner (Kittel) 24 Palaearctic Paper wasps get official respect (Starr) 24 By: STI Nematinae Group (STING): Andrew D. Liston, Marko Membership information 25 Prous, Stephan M. Blank, Andreas Taeger, Senckenberg Deutsches Entomologisches Institut, Müncheberg, Germany; Erik Heibo, Lierskogen, Norway; Hege Vårdal, Swedish Mu- seum of Natural History, Stockholm, Sweden. ISH and That The Swedish Taxonomy Initiative (STI) has set the goal By: John Heraty, University of California, Riverside, USA of documenting all the estimated 60,000 multicellular species in Sweden (Miller, 2005). One of the STI projects Since I began in this field, there were three things that which recently received funding from the Swedish govern- vastly changed how all of us (behaviorists and systematics) ment is “The Swedish Nematinae (Hymenoptera, Tenth- operate.
    [Show full text]
  • Mechanics of the Thorax in Flies Tanvi Deora1, Namrata Gundiah2 and Sanjay P
    © 2017. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2017) 220, 1382-1395 doi:10.1242/jeb.128363 REVIEW Mechanics of the thorax in flies Tanvi Deora1, Namrata Gundiah2 and Sanjay P. Sane1,* ABSTRACT body size, which greatly facilitated adaptability by increasing their Insects represent more than 60% of all multicellular life forms, and are ecological range; and two, the evolution of flight, which enabled easily among the most diverse and abundant organisms on earth. dispersal, migration, predation or rapid escape from predator They evolved functional wings and the ability to fly, which enabled attacks. them to occupy diverse niches. Insects of the hyper-diverse orders Although miniature body forms are a common evolutionary trend show extreme miniaturization of their body size. The reduced body among other animals, including birds and mammals (e.g. Hanken size, however, imposes steep constraints on flight ability, as their and Wake, 1993), miniaturization takes on a rather extreme form in wings must flap faster to generate sufficient forces to stay aloft. Here, insects. For example, the size of adult parasitic chalcid wasps such ∼ we discuss the various physiological and biomechanical adaptations as Kikiki huna ( 150 µm) or the trichogrammatid wasp ∼ of the thorax in flies which enabled them to overcome the myriad Megaphragma mymaripenne ( 170 µm) is comparable to that of constraints of small body size, while ensuring very precise control of some unicellular protozoan organisms (Polilov, 2012, 2015); these their wing motion. One such adaptation is the evolution of specialized wasps are among the smallest metazoans ever described. Such myogenic or asynchronous muscles that power the high-frequency extreme miniaturization is especially common among parasitoid – wing motion, in combination with neurogenic or synchronous steering insects belonging to three of the five insect groups Diptera (flies), – muscles that control higher-order wing kinematic patterns.
    [Show full text]