Conservation AI: Live Stream Analysis for the Detection of Endangered Species Using Convolutional Neural Networks and Drone Technology

Total Page:16

File Type:pdf, Size:1020Kb

Conservation AI: Live Stream Analysis for the Detection of Endangered Species Using Convolutional Neural Networks and Drone Technology Conservation AI: Live Stream Analysis for the Detection of Endangered Species Using Convolutional Neural Networks and Drone Technology C. Chalmers, P.Fergus, Serge Wich and Aday Curbelo Montanez Abstract— Many different species are adversely affected by medicinal treatments and as a status symbol within many poaching. In response to this escalating crisis, efforts to stop cultures. The market is mainly focused in Asia, particularly poaching using hidden cameras, drones and DNA tracking have China and Vietnam, which has a growing consumer base. been implemented with varying degrees of success. Limited Existing solutions for preventing rhino poaching, have resources, costs and logistical limitations are often the cause of unfortunately shown marginal effect and so rhino poaching most unsuccessful poaching interventions. The study presented in this paper outlines a flexible and interoperable framework for the continues. For example, GPS trackers have been attached to automatic detection of animals and poaching activity to facilitate animals to track and locate animals in natural habitats – when a early intervention practices. Using a robust deep learning pipeline, loss of GPS movement is detected suspected occurrences of a convolutional neural network is trained and implemented to poaching is inferred and later confirmed when the injured or detect rhinos and cars (considered an important tool in poaching dead animal is found [4]. This is a reactive approach that does for fast access and artefact transportation in natural habitats) in not prevent the poaching event [5]. Preventive efforts are in the study, that are found within live video streamed from drones place to detect poachers using drones [6], [7], including Transfer learning with the Faster RCNN Resnet 101 is performed AirShepherd2. However, they either required in-field human to train a custom model with 350 images of rhinos and 350 images analysis or off-line processing of video footage. Therefore, the of cars. Inference is performed using a frame sampling technique to address the required trade-off control precision and processing goal is to use computer vision to automate the detection process speed and maintain synchronisation with the live feed. Inference and identify objects of interest (Lambda et al. 2019). models are hosted on a web platform using flask web serving, The use of computer vision has increased dramatically, OpenCV and TensorFlow 1.13. Video streams are transmitted largely due to advancements in deep learning (DL), high from a DJI Mavic Pro 2 drone using the Real-Time Messaging Protocol (RMTP). The best trained Faster RCNN model achieved performance hardware and data availability. Examples of a mAP of 0.83 @IOU 0.50 and 0.69 @IOU 0.75 respectively. In computer vision applications include those in medicine [8], comparison an SSD-mobilenetmodel trained under the same manufacturing [9], and engineering [10]. DL in particular, has experimental conditions achieved a mAP of 0.55 @IOU .50 and facilitated developments in image processing, none more so 0.27 @IOU 0.75.The results demonstrate that using a FRCNN and that through the availability of frameworks like TensorFlow off-the-shelf drones is a promising and scalable option for a range [11], Microsoft Cognitive Tool Kit (CNTK) [12] and Caffe 2 of conservation projects. [13]. Convolutional Neural Networks (CNNs) have become the Index Terms— Conservation, Deep Learning, Convolutional gold standard for image processing tasks, in particular, object Neural Networks, Inferencing, Drone Technology detection and segmentation, which are now considered important techniques for analysing animals in video footage. I.INTRODUCTION The computational requirements to train and host CNNs, such oaching is a global issue that impacts many animal species as the Faster-Region-based Convolutional Neural Network P [1] . For instance, none more so than the Rhinocerotidae (Faster-RCNN), is a significant challenge, particularly when (rhinoceros or rhino for short) where approximately 6000 real-time video processing is required, due to their complex rhinoceroses have been illegally hunted in South Africa since network architectures. Graphical processing units (GPUs) help, 20081. The current level of poaching and their subsequent loss however enterprise-level cards are expensive and trade-offs are as a result of poaching activity has left rhinoceros species at required depending on the application and services required. real risk of becoming extinct in the near future [2]. The driving Nonetheless, object detection has been incorporated into factor behind rhino poaching is the illegal trading of rhino horns numerous conservation projects [14]. Solutions are typically which has increased exponentially from $4700 per kilogram in focused on low-resolution images and lightweight models such 1993 to $65,000 per kilogram in 2012 [3]. Demand for rhino as You Only Look Once (YOLO) [15] and the Single Shot horn is largely driven by the belief that it can be used in 1https://www.environment.gov.za/mediarelease/molewa_highl 2 https://airshepherd.org/ ightsprogress_againstrhinopoaching Multibox Detector (SSD)-mobilenet [16]. While they have a inference on. For example, [22] use a YOLO model install on a useful place in conservation, they have limited utility when Nvidia Jetson TX1 attached to a drone is trained to detect detailed image analysis is required. RCNNs incorporate region- pedestrians. The results show it was possible to inference 2 fps based proposals which significantly improves the accuracy of with an image input size of 256 * 256 pixels. In practice such object detections overall but particularly in noisy images systems would provide limited utility as higher altitudes in affected by distance, terrain and occlusion [17]. This is often conservation would be required for safety and conservational confounded with the fact analyses is conducted offline by needs. In a similar approach [23] implemented an optimal dense domain experts. YOLO method to detect vehicles at greater altitudes. The drone was flown between 60-70 metres off the ground and using In this study we propose an alternative approach that YOLOv3 the model could reach 86.7% mAP with a frame rate combines off-the-shelf drones with near-real time detection of of 17 fps compared with YOLOv2, which achieved a 49.3% rhinos and cars for different conservation tasks. mAP and a frame rate of 52 fps. The paper does not include the The remainder of the paper is structured as follows. A IOU metrics making it difficult to evaluate how well the model background discussion on current anti-poaching solutions and performed. their associated limitations is introduced in Section 2. Section An ensemble model is presented in [24] comprising a 3 details the proposed methodology before the results are lightweight image region detector to identify objects of interest. presented in Section 4. Section 5 discusses the results before Each identified frame is processed in a cloud infrastructure to the paper is concluded and future work is presented in Section classify objects. The local node decides if the current frame 6. contains an object of interest using the Binarized Normed II. RELATED WORK Gradients (BING) algorithm to measure the objectness on every input frame. An image resolution of 320 x 240 pixels at 60 (fps) Wildlife management systems have become increasingly was used for the initial detection. The paper reports a popular in poaching prevention strategies. Sophisticated, reasonable inference time of 1.29 seconds using a cloud hosted efficient and cost-effective solutions exist yet there is still little Faster-RCNN. However, the results were only possible when evidence to show that poaching is not being effectively the drone was flown a few metres above the object of interest. controlled [18], [19]. The remainder of this section provides a Again, for safety and conservational needs this approach would discussion on some of the current systems in operation today find limited utility in complex conservational projects. and highlights the key limitations in each approach that this paper aims to address. B. Limitations A. Current Solutions The studies previously discussed combine drones, computer vision and machine learning to provide new and interesting Camera systems are used extensively in conservation to tools for use in conservational studies. While, they all provide observe wildlife and detect poaching activity [20]. The some interesting results, several challenges still remain. In identification of objects, such as animals, in video footage has particular, studies that utilise lightweight models show that typically been undertaken by humans. However, there is now while inference time is fast the overall accuracy of objects significant interest in automating this process using computer detected is poor. This is a particular challenge in conservation vision technology. While significant progress has been made in when flying at higher altitudes is necessary to ensure that model accuracy, inferencing speed has become the focal point animals are not disturbed and poachers are not alerted. It has within the conservation domain. For example, in [6] a Faster- been widely reported that YOLO suffers from spatial RCNN was implemented to identify poachers and animals constraints and this consequently limits the number of nearby using videos obtained from drones. The results for video objects that can be detected [25]. In other words YOLO-based processing with CPU, GPU and cloud processing are presented models perform poorly when detecting small objects or objects to benchmark inferencing time. The key findings show that a that appear in groups or which are occluded. YOLO down Faster-RCNN model inferences at approximately 5 frames per samples images to 448 * 448 pixels and lower. So, while it is second (fps) using a single K40 GPU. Live video stream on the possible to inference in excess of 45(fps) using a Titan X GPU other hand runs at 25 (fps). This creates a bottleneck in the [25] and support real-time inferencing, down sampling results detection pipeline and suffers with issues surrounding video in a significant loss of attainable features, which in turn synchronisation.
Recommended publications
  • Music Instrument Localization in Virtual Reality Environments Using Audio-Visual Cues
    Music Instrument Localization in Virtual Reality Environments using audio-visual cues Siddhartha Bhattacharyya B.Tech A Dissertation Presented to the University of Dublin, Trinity College in partial fulfilment of the requirements for the degree of Master of Science in Computer Science (Data Science) Supervisor: Aljosa Smolic and Cagri Ozcinar September 2020 Declaration I, the undersigned, declare that this work has not previously been submitted as an exercise for a degree at this, or any other University, and that unless otherwise stated, is my own work. Siddhartha Bhattacharyya September 6, 2020 Permission to Lend and/or Copy I, the undersigned, agree that Trinity College Library may lend or copy this thesis upon request. Siddhartha Bhattacharyya September 6, 2020 Acknowledgments I would like to thank my supervisors Professors Aljosa Smolic and Cagri Ozcinar for their dedicated support, understanding and leadership. My heartfelt gratitude goes out to my peers and the batch of 2019-2020 for their support and friendship. I would also like to thank the Trinity VR community for their help. I would like to extend my sincerest gratitude to the admins at SCSS labs who gave endless support in ensuring the availability of remote servers. During this time of crisis and remote work, this dissertation would not have been possible without their support. Last but not the least, I would like to thank my family for their trust and belief in me. Siddhartha Bhattacharyya University of Dublin, Trinity College September 2020 iii Music Instrument Localization in Virtual Reality Environments using audio-visual cues Siddhartha Bhattacharyya, Master of Science in Computer Science University of Dublin, Trinity College, 2020 Supervisor: Aljosa Smolic and Cagri Ozcinar This research work aims to develop and assess the capabilities of convolution neu- ral networks to identify and localize musical instruments in 360 videos.
    [Show full text]
  • Abschlussarbeit Im Fachbereich Elektrotechnik & Informatik an Der
    Bachelorthesis Adriana Bostandzhieva Design and Implementation of System for Managing Training Data for Artificial Intelligence Algorithms Fakultät Technik und Informatik Faculty of Engineering and Computer Science Department Informations- und Department of Information and Elektrotechnik Electrical Engineering Adriana Bostandzhieva Design and Implementation of System for Managing Training Data for Artificial Intelligence Algorithms Bachelorthesisbased on the study regulations for the Bachelor of Engineering degree programme Information Engineering at the Department of Information and Electrical Engineering of the Faculty of Engineering and Computer Science of the Hamburg University of Aplied Sciences Supervising examiner : Prof. Dr. -Ing. Lutz Leutelt Second Examiner : Prof. Dr. Klaus Jünemann Day of delivery 3. Juli 2019 Adriana Bostandzhieva Title of the Bachelorthesis Design and Implementation of System for Managing Training Data for Artificial Intelli- gence Algorithms Keywords AI, training data, database, labels, video Abstract This paper is part of a pilot project of the Hamburg University of Applied Sciences. The project aims to utilise object detection algorithms and visual data to analyse complex road scenes. The aim of this thesis is to determine the best tool to use to label data for training artificial intelligence algorithms, to specify what data should be saved and to determine what database is to be used to save the data. The validity of the findings is proved by building a small prototype to showcase integration between the labelling tool and the database. Adriana Bostandzhieva Titel der Arbeit Entwicklung und Aufbau eines System zur Verwaltung von Trainingsdaten für Algo- rithmen der künstlichen Intelligenz Stichworte Trainingsdaten, Datenbanke, Video, KI Kurzzusammenfassung Diese Arbeit ist Teil eines Pilotprojekts der Hochschule für Angewandte Wissenschaf- ten Hamburg.
    [Show full text]
  • A 3D Interactive Multi-Object Segmentation Tool Using Local Robust Statistics Driven Active Contours
    A 3D interactive multi-object segmentation tool using local robust statistics driven active contours The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Gao, Yi, Ron Kikinis, Sylvain Bouix, Martha Shenton, and Allen Tannenbaum. 2012. A 3D Interactive Multi-Object Segmentation Tool Using Local Robust Statistics Driven Active Contours. Medical Image Analysis 16, no. 6: 1216–1227. doi:10.1016/j.media.2012.06.002. Published Version doi:10.1016/j.media.2012.06.002 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:28548930 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA NIH Public Access Author Manuscript Med Image Anal. Author manuscript; available in PMC 2013 August 01. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Med Image Anal. 2012 August ; 16(6): 1216–1227. doi:10.1016/j.media.2012.06.002. A 3D Interactive Multi-object Segmentation Tool using Local Robust Statistics Driven Active Contours Yi Gaoa,*, Ron Kikinisb, Sylvain Bouixa, Martha Shentona, and Allen Tannenbaumc aPsychiatry Neuroimaging Laboratory, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115 bSurgical Planning Laboratory, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115 cDepartments of Electrical and Computer Engineering and Biomedical Engineering, Boston University, Boston, MA 02115 Abstract Extracting anatomical and functional significant structures renders one of the important tasks for both the theoretical study of the medical image analysis, and the clinical and practical community.
    [Show full text]
  • Evaluating Usage of Images for App Classification
    Evaluating Usage of Images for App Classification Kushal Singla, Niloy Mukherjee, Hari Manassery Koduvely, Joy Bose Samsung R&D Institute Bangalore, India [email protected] Abstract— App classification is useful in a number of In this paper, we seek to evaluate different methods in applications such as adding apps to an app store or building a which app images can be used to improve the accuracy of the user model based on the installed apps. Presently there are a app classification. One such method involves extracting text number of existing methods to classify apps based on a given from the app images using optical character recognition taxonomy on the basis of their text metadata. However, text (OCR) and using the extracted text to classify the app. based methods for app classification may not work in all cases, Another method involves generating text descriptions of the such as when the text descriptions are in a different language, app images by summarizing the images using a tool, and or missing, or inadequate to classify the app. One solution in using the resulting text descriptions for the app classification. such cases is to utilize the app images to supplement the text Yet another method involves identifying the objects in the description. In this paper, we evaluate a number of approaches in which app images can be used to classify the apps. In one app images and using the identified objects to classify the approach, we use Optical character recognition (OCR) to app. An ensemble of such different models can also be used, extract text from images, which is then used to supplement the perhaps along with text based classification of apps.
    [Show full text]
  • Open Source Computer Vision-Based Layer-Wise 3D Printing Analysis
    Open Source Computer Vision-based Layer-wise 3D Printing Analysis Aliaksei L. Petsiuk1 and Joshua M. Pearce1,2,3 1Department of Electrical & Computer Engineering, Michigan Technological University, Houghton, MI 49931, USA 2Department of Material Science & Engineering, Michigan Technological University, Houghton, MI 49931, USA 3Department of Electronics and Nanoengineering, School of Electrical Engineering, Aalto University, Espoo, FI-00076, Finland [email protected], [email protected] Graphical Abstract Highlights • Developed a visual servoing platform using a monocular multistage image segmentation • Presented algorithm prevents critical failures during additive manufacturing • The developed system allows tracking printing errors on the interior and exterior Abstract The paper describes an open source computer vision-based hardware structure and software algorithm, which analyzes layer-wise the 3-D printing processes, tracks printing errors, and generates appropriate printer actions to improve reliability. This approach is built upon multiple- stage monocular image examination, which allows monitoring both the external shape of the printed object and internal structure of its layers. Starting with the side-view height validation, the developed program analyzes the virtual top view for outer shell contour correspondence using the multi-template matching and iterative closest point algorithms, as well as inner layer texture quality clustering the spatial-frequency filter responses with Gaussian mixture models and segmenting structural anomalies with the agglomerative hierarchical clustering algorithm. This allows evaluation of both global and local parameters of the printing modes. The experimentally- verified analysis time per layer is less than one minute, which can be considered a quasi-real-time process for large prints. The systems can work as an intelligent printing suspension tool designed to save time and material.
    [Show full text]
  • Rahway Leagues
    Rahway Public Library 1175 13* - George Avev. PAGE 20 THURSDAY, JUNE 8, 1972 RAHWAY NEWS-RECORD/CLARK PATRIOT Rahway, N, J. 07065 r— • I asa Bpl BBfl £EB9 BB ItfST^ffl 6ffXl> Academy Honors I •Z-M Michael James Angelo of 4 p.m. at the Roselle school. tics and science. Robert Clark Ward and Rahway will be the valedic- Mr. Simon will be grad- The rwo honor students James Dennis Zupkus. Senator Case £ are among the 12 Railway THIS WEEK torian and John Philip Simon uated with highest honors in Clark students are Ray- residents and five Clark re- -Oj£-Clark the salutatorian at history and French and sec- mond Edward Hirsche, Tho- Since Commissioner T. a letter giving a . United Statee Senator * sidents who are candidates tte commencement ex- ond highest honors In English. mas Edward Juzefyk, Rob- Ritter was the only member tentative encroachmentllne," Clifford P. Case of Rahway *fi for graduation. Mr. Baker said. "We're in 2 excises of RoseUe Catholic Mr. Angelo will receive the ert Michael Olearczyk, John present out of the 10-member has been given the Citizen's 0 NEW JERSEY'S OLDEST WEEKLY NEWSPAPER EST. 1822 High School on Saturday at highest honors In mathema- Rah way aru dents are Ri- Philip Simon and Joseph panel of the New Jersey the process of getting signa- tures from homeowners Award of the Academy of fl chard Joseph Adinolfi, Mi- Benedict Sutter. State Water Policy Council, Medicine of New Jersey for |i chael James Angelo, Ray- participants agreed to a post- along this stream to give the 388-3388 city rights to dig-up land up his support of health legisla- 2 mong Edward Duffy, Gary- ponement of the special hear- tion in Congress.
    [Show full text]
  • City of Lake Stevens Vision Statement by 2030, We Are a Sustainable
    City Council Meeting November 24, 2020 Page 1 of 126 City of Lake Stevens Vision Statement By 2030, we are a sustainable community around the lake with a vibrant economy, unsurpassed infrastructure and exceptional quality of life. CITY COUNCIL REGULAR MEETING AGENDA REMOTE ACCESS ONLY – VIA ZOOM Tuesday, November 24, 2020 – 7:00 p.m. Join Zoom Meeting: https://us02web.zoom.us/j/87181345762 or call in at 253-215-8782, Meeting ID: 871 8134 5762 CALL TO ORDER Mayor PLEDGE OF ALLEGIANCE Mayor ROLL CALL City Clerk APPROVAL OF AGENDA Council President CITIZEN COMMENTS Mayor GUEST BUSINESS Introduction of new Stormwater Coordinator Eric Shannon Farrant COUNCIL BUSINESS Council President MAYOR’S BUSINESS Mayor CITY DEPARTMENT REPORT Update Gene CONSENT AGENDA A Vouchers Barb B City Council Regular Meeting Minutes of Kelly November 10, 2020 C City Council Workshop Meeting Minutes of Kelly November 17, 2020 D Ordinance 1104 Amending Lake Stevens Kelly Municipal Code Concerning the Start Time for Regularly Scheduled City Council Meetings E Revised Resolution 2020-19 Machias Russ Industrial Annexation City Council Meeting November 24, 2020 Page 2 of 126 Lake Stevens City Council Regular Meeting Agenda November 24, 2020 PUBLIC HEARING F Ordinance 1103 Multifamily Housing Tax Sabrina Exemption Program Regulations G Ordinance 1101 – 2021 Budget Barb/Josh ACTION ITEMS: H Professional Services Agreement with Shannon/ Davido Consulting Group, Inc Aaron ADJOURN THE PUBLIC IS INVITED TO ATTEND Special Needs The City of Lake Stevens strives to provide accessible opportunities for individuals with disabilities. Please contact Human Resources, City of Lake Stevens ADA Coordinator, (425) 622-9400, at least five business days prior to any City meeting or event if any accommodations are needed.
    [Show full text]
  • GPU 学習時間 精度(Map) 1 GPU (NC6) 7分22秒 0.9479 2 GPU (NC12) 3分43秒 0.9479 本番稼働に向けて Confusion Matrix for Karugamo
    CNTK deep dive - DeepLearning関連 PJ の進め方から本番展開まで AI07 Agenda Profile 岩崎 喬一(Kyoichi Iwasaki) Today’s data データサイエンティスト、やっぱり要る? データサイエンティストのスキルセット 課題背景を理解 →ビジネス課題を整理 ビジネス力 解決 情報処理、人工知能、 統計学などの知恵を理 解し、適用 データサイエ データエンジ データサイエンスを意味 ある形に使えるようにし、 ンス力 ニアリング力 実装、運用 Ref. データサイエンティスト協会:http://www.datascientist.or.jp/news/2014/pdf/1210.pdf データ分析プロジェクトの進め方 ビジネス 要件定義 ビジネス力 データ収 展開 集・確認 データサイエ データエンジ ンス力 ニアリング力 データ分 評価 析 機械学習と深層学習 深層学習? 深層学習による主な画像解析(as of May2018) What are specified? Algorithms MSでの実装 単純 画像分類 What? CNN Custom Vision, CNTK Fast(er) Where? Custom Vision, CNTK 物体検知 What? R-CNN Mask Where? Shape? ..(In near future?) セグメンテーション What? 複雑 R-CNN 深層学習による主な画像解析 深層学習による主な画像解析(as of May2018) 2015 2015-16 2015-16 2015-16 2017 • Fast R-CNN • Faster R-CNN • YOLO • SSD • Mask R-CNN 物体検知 セグメンテーション 深層学習の「学習」? 深層学習(機械学習の観点から) CNTKとは? CNTKとは? ▪ GPU / マルチGPU(1-bit SGD) https://www.microsoft.com/en-us/cognitive-toolkit/ CNTKの実行速度 小さいほど高速 DL F/W FCN-S AlexNet ResNet-50 LSTM-64 CNTK 0.017 0.031 0.168 0.017 Caffe 0.017 0.027 0.254 -- TensorFlow 0.020 0.317 0.227 0.065 Torch 0.016 0.043 0.144 0.324 https://arxiv.org/pdf/1608.07249.pdf Codes in CNTK https://github.com/Microsoft/CNTK CNTKで2値分類をやってみる 赤 青 CNTKで2値分類をやってみる パラメータw、b w、b bias 푏 1 疾患 年齢 푤 11 z1 あり 푤21 푏2 푤12 疾患 腫瘍 푤 z2 22 なし CNTKの処理フロー 入力・出力変数の定義 ネットワークの定義 損失関数、最適化方法の定義 モデル学習 モデル評価 CNTKの処理フロー – 1/5 入力・出力変数の定義 import cntk as C ## 入力変数(年齢, 腫瘍の大きさ)の2種類あり input_dim = 2 ## 分類数(疾患の有無なので2値) num_output_classes = 2 ## 入力変数 feature = C.input_variable(input_dim, np.float32) ## 出力変数 label = C.input_variable(num_output_classes, np.float32) CNTKの処理フロー – 2/5 ネットワークの定義 def linear_layer(input_var, output_dim): input_dim = input_var.shape[0] ## Define weight W weight_param = C.parameter(shape=(input_dim, output_dim)) ## Define bias b bias_param = C.parameter(shape=(output_dim)) ## Wx + b.
    [Show full text]
  • Cross-Model Image Annotation Platform with Active Learning
    Cross-Model Image Annotation Platform with Active Learning Ng Hui Xian Lynnette1, Henry Ng Siong Hock1,2, and Nguwi Yok Yen2 1 Defence Science Technology Agency, Singapore, {nhuixia1, hngsiong}@dsta.gov.sg 2 National Technological University, Singapore, [email protected] Abstract. We have seen significant leapfrog advancement in machine learning in recent decades. The central idea of machine learnability lies on constructing learning algorithms that learn from good data. The avail‐ ability of more data being made publicly available also accelerates the growth of AI in recent years. In the domain of computer vision, the quality of image data arises from the accuracy of image annotation. Labelling large volume of image data is a daunting and tedious task. This work presents an End‐to‐End pipeline tool for object annotation and recognition aims at enabling quick image labelling. We have developed a modular image annotation platform which seamlessly incorporates assisted image annotation (annotation assistance), active learning and model training and evaluation. Our approach provides a number of advantages over current image annotation tools. Firstly, the annotation assistance utilizes reference hierarchy and reference images to locate the objects in the images, thus reducing the need for annotating the whole object. Secondly, images can be annotated using polygon points allowing for objects of any shape to be annotated. Thirdly, it is also interoperable across several image models, and the tool provides an interface for object model training and evaluation across a series of pre‐ trained models. We have tested the model and embeds several benchmarking deep learning models. The highest accuracy achieved is 74%.
    [Show full text]
  • About This Document Opencv and Matlab Mex Files Recommended Knowledge General Concepts Mex Files
    1 About this document ABOUT THIS DOCUMENT This document was created as part of a final project for a BSc degree at the Academic College of Tel- Aviv Yaffo, by Rachely Esman and Yoad Snapir, under the supervision of Tal Hassner. As part of the project, we used Intel's OpenCV library, calling its functions from MATLAB. We found the subject tricky and thus decided to share the experience of our work with others describing the common pitfalls. You can use this document freely according to the copyrights noted below but under your sole responsibility. Rachely and Yoad. OPENCV AND MATLAB MEX FILES This guide will provide a quick walk through on compiling C++ OpenCV modules as MEX runtime files of MATLAB under: MS Visual Studio 2005 MATLAB 7.5.0 Windows 32bit And will probably be clear enough for other platforms / versions. RECOMMENDED KNOWLEDGE Good understanding of C++ Compilation and linkage concepts. DLL general usage Visual Studio 2005 environment Basic MATLAB and MEX files knowledge GENERAL CONCEPTS MEX FILES MEX files are actually simple .DLL files compiled with extension .MEXW32 using ordinary compilation tools provided with VS2005. Those .DLL files have a fixed entry point "mexFunction" with a fixed signature. (List of IN/OUT parameters) Follow this link to get an overview of MEX files and information on using them: http://www.mathworks.com/support/tech-notes/1600/1605.html#intro MEX files are compiled (and linked) from within the MATLAB environment using the following syntax: mex 'srcfile1.cpp' 'srcfile2.cpp' 'objfile1.obj' … Before compiling, you need to setup the compilation options using the command: Copyright © 2008 R.
    [Show full text]
  • Anastasia Tyurina [email protected]
    1 Anastasia Tyurina [email protected] Summary A specialist in applying or creating mathematical methods to solving problems of developing technologies. A rare expert in solving problems starting from the stage of a stated “word problem” to proof of concept and production software development. Such successful uses of an educational background in mathematics, intellectual courage, and tenacious character include: • developed a unique method of statistical analysis of spectral composition in 1D and 2D stochastic processes for quality control in ultra-precision mirror polishing • developed novel methods of detection, tracking and classification of small moving targets for aerial IR and EO sensors. Used SIFT, and SIRF features, and developed innovative feature-signatures of motion of interest. • developed image processing software for bioinformatics, point source (diffraction objects) detection semiconductor metrology, electron microscopy, failure analysis, diagnostics, system hardware support and pattern recognition • developed statistical software for surface metrology assessment, characterization and generation of statistically similar surfaces to assist development of new optical systems • documented, published and patented original results helping employers technical communications • supported sales with prototypes and presentations • worked well with people – colleagues, customers, researchers, scientists, engineers Tools MATLAB, Octave, OpenCV, ImageJ, Scion Image, Aphelion Image, Gimp, PhotoShop, C/C++, (Visual C environment), GNU development tools, UNIX (Solaris, SGI IRIX), Linux, Windows, MS DOS. Positions and Experience Second Star Algonumerixs – 2008-present, founder and CEO http://www.secondstaralgonumerix.com/ 1) Developed a method of statistical assessment, characterisation and generation of random surface metrology for sper precision X-ray mirror manufacturing in collaboration with Lawrence Berkeley National Laboratory of University of California Berkeley.
    [Show full text]
  • On the Hunt for Excited States
    INTERNATIONAL JOURNAL OF HIGH-ENERGY PHYSICS CERN COURIER VOLUME 45 NUMBER 10 DECEMBER 2005 On the hunt for excited states HOMESTAKE DARK MATTER SNOWMASS Future assured for Galactic gamma rays US workshop gets underground lab p5 may hold the key p 17 ready for the ILC p24 www.vectorfields.comi Music to your ears 2D & 3D electromagnetic modellinj If you're aiming for design excellence, demanding models. As a result millions you'll be pleased to hear that OPERA, of elements can be solved in minutes, the industry standard for electromagnetic leaving you to focus on creating modelling, gives you the most powerful outstanding designs. Electron trajectories through a TEM tools for engineering and scientific focussing stack analysis. Fast, accurate model analysis • Actuators and sensors - including Designed for parameterisation and position and NDT customisation, OPERA is incredibly easy • Magnets - ppm accuracy using TOSCA to use and has an extensive toolset, making • Electron devices - space charge analysis it ideal for a wide range of applications. including emission models What's more, its high performance analysis • RF Cavities - eigen modes and single modules work at exceptional levels of speed, frequency response accuracy and stability, even with the most • Motors - dynamic analysis including motion Don't take our word for it - order your free trial and check out OPERA yourself. B-field in a PMDC motor Vector Fields Ltd Culham Science Centre, Abingdon, Oxon, 0X14 3ED, U.K. Tel: +44 (0)1865 370151 Fax: +44 (0)1865 370277 Email: [email protected] Vector Fields Inc 1700 North Famsworth Avenue, Aurora, IL, 60505.
    [Show full text]