Gibson Mines 0052N 11565.Pdf (7.904Mb)

Total Page:16

File Type:pdf, Size:1020Kb

Gibson Mines 0052N 11565.Pdf (7.904Mb) EXPLORATION OF COSMIC-RAY PROPAGATION AND THUNDERSTORM MODELS TO EXPLAIN UNUSUAL EVENTS MEASURED WITH THE SURFACE DETECTOR OF THE PIERRE AUGER OBSERVATORY by Joseph Gibson c Copyright by Joseph Gibson, 2018 All Rights Reserved A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science (Applied Physics). Golden, Colorado Date Signed: Joseph Gibson Signed: Dr. Frederic Sarazin Thesis Advisor Golden, Colorado Date Signed: Dr. Uwe Greife Professor and Head Department of Physics ii ABSTRACT The Surface Detector at the Pierre Auger Observatory has recorded events that have an unusually large footprint on the array and lasts 100 times longer than a typical cosmic ray signal. This thesis explores possible models to explain the source of these unusual signals. The proposed models show that the unusual signals are not a result of a cosmic ray shower but are instead likely a result of a lightning-related phenomenon. The attachment process and the return stroke can create E-fields strong enough to create runaway relativistic electron avalanches. This process creates a cascade of high energy electrons that can span over 100 meters and induces high energy photons that can travel a few kilometers. The Surface Detector would be able to measure the high energy particles resulting from this runaway process. The simulated model of the return stroke produced a signal on the ground that was able to match the long-time of the unusual events. This very preliminary model provides some insights for some of the unusual events, but a complete explanation for the events remains elusive. iii TABLE OF CONTENTS ABSTRACT ......................................... iii LISTOFFIGURESANDTABLES............................. vi LISTOFABBREVIATIONS ................................ ix ACKNOWLEDGMENTS ...................................x CHAPTER 1 UNUSUAL EVENTS OBSERVED WITH THE PIERRE AUGER COSMIC-RAYOBSERVATORY . .1 1.1 CosmicRayOverview ............................... 1 1.2 PierreAugerObservatory . ...4 1.3 ThePierreAugerSurfaceDetector . .....5 1.3.1 EventReconstruction. .8 1.4 Observation of unusual events with the SD Detector . ..........10 1.4.1 TimingandGeometryReconstruction . 11 CHAPTER 2 SIMPLE COSMIC RAY PROPAGATION MODELS . 17 2.1 PropagationModels............................... 18 2.1.1 SubluminalPropagationModel . 19 2.1.2 ShockWavePropagationModel . 21 2.2 Conclusions ..................................... 26 CHAPTER 3 PRODUCTION OF RELATIVISTIC RUNAWAY ELECTRON AVALANCHES IN LIGHTNING STRIKES? . 28 3.1 TheLightningDischargeProcess . ..... 28 3.1.1 Initiation of Lightning, and the Quasi-Static BackgroundField . 30 iv 3.1.2 LeaderSteppingProcess . 31 3.1.3 Attachmentprocess. 34 3.1.4 ReturnStroke................................ 34 3.1.5 OthertypesofCGLightning . 36 3.1.6 CharacteristicsofLightning . .... 36 3.2 Runaway Relativistic Electron Avalanche . ........36 CHAPTER4 LIGHTNINGMODELS . 43 4.1 ChargedChannelModel ............................. 45 4.2 AttachmentPointModel . 49 4.3 CurrentChannelModel ............................. 53 4.4 ReturnStrokeModel ............................... 55 4.5 Conclusions ..................................... 60 CHAPTER5 CONCLUSION................................ 61 5.1 FutureWork.....................................62 REFERENCESCITED ................................... 63 APPENDIX ADDITIONAL UNUSUAL EVENT IMAGES . 68 v LIST OF FIGURES AND TABLES Figure 1.1 Schematics for the development of a Extensive Air Shower..........3 Figure1.2 HillasDiagram............................... ...4 Figure 1.3 Map of Pierre Auger Observatory and Main Components of an SD Station . 6 Figure1.4 ExampleofanEASsignalintheSD. .....9 Figure1.5 ExampleofthesignalintensityofanEAS. .........9 Figure 1.6 Timing and Geometrical Characteristics of an UnusualEvent . 12 Figure 1.7 Footprint and Lateral Distribution Function of an UnusualEvent. 13 Figure1.8 IncompleteLongSignalMeasurement . ........15 Figure 2.1 Schematic of the Spherical Inflation Model . ..........18 Figure 2.2 Schematic and Simulated Results of a Propagation Model ......... 20 Figure 2.3 Lengthened Time Signature in the Propagation Model 4 km from the Source .....................................21 Figure 2.4 Schematic of the Subluminal Propagation Model . ...........22 Figure 2.5 Simulation Results of the Subluminal Model . ..........23 Figure2.6 SchematicoftheShockWaveModel . ...... 24 Figure 2.7 Simulation Results of the Shock Wave Model . .........25 Figure 3.1 Upper atmospheric lightning and electrical discharge phenomena associatedwiththunderstorms . 29 Figure 3.2 Processes in a typical negative downward lightning strike with a rough estimateofthetimingforeachprocess. 30 Figure 3.3 A vertical tripole representing the charge structure inside a thundercloud ................................. 32 vi Figure 3.4 Stepping process of the Lightning Leader . ..........33 Figure3.5 LightningCurrentDistribution . .........37 Figure3.6 EffectiveFrictiononaFreeElectron . .........39 Figure3.7 MonteCarloSimulationofRREA . ..... 42 Figure 4.1 Cutoff Fields Imposed on Lightning Simulations . ..........45 Figure4.2 ChargeChannelSchematic . ..... 46 Figure 4.3 2D projection of the electric field near the charged channel. 46 Figure4.4 EffectsofacutoffonE-fieldMagnitude . ....... 47 Figure 4.5 Paths of 1 MeV electrons in the Charged Channel Model .........48 Figure 4.6 Simulation Results of the Charged Channel Model . ...........49 Figure4.7 AttachmentPointModelSchematic . ....... 50 Figure 4.8 2D projection of the electric field near the lightning attachment point. 50 Figure 4.9 Paths of particles in the Attachment Point Model . ...........52 Figure 4.10 Simulation Results of the Attachment Point Model .............53 Figure4.11 CurrentChannelModelSchematic . ........54 Figure 4.12 2D projection of the electric field near the currentchannel. 54 Figure 4.13 Paths of particles in the Current Channel Model . ............56 Figure 4.14 Simulation Results of the Current Channel Model . ............57 Figure4.15 ReturnStrokeModelSchematic . ....... 58 Figure 4.16 Simulation Results of the Return Stroke Model . ............59 Figure A.1 Unusual events without the annular geometry and smallfootprint. 68 Figure A.2 Lightning Correlation with Unusual Events . .........69 Figure A.3 Additional ring shape footprints of unusual events . ............69 vii Figure A.4 Lightning Correlation with Unusual Events . .........70 FigureA.5 SignalTimingFits............................. 71 Table 3.1 Parameters of downward negative lightning . ...........38 Table 3.2 Parameters of downward positive lightning . ...........38 viii LIST OF ABBREVIATIONS ExtensiveAirShower.................................. EAS SurfaceDetector .................................... .SD FluorescenceDetectors. FD PhotomultiplierTube. PMT WorldWideLightningLocationNetwork. WWLLN RunawayRelativisticElectronAvalanche. ........RREA Intra-Cloud ........................................ IC Cloud-to-Ground .................................... .. CG ElectromagneticPulse . .. EMP ix ACKNOWLEDGMENTS Firstly I would like to thank Dr. Fred Sarazin for his guidance and patience. I would also like to thank Dr. Kyle Leach and Dr. Lawrence Wiencke for serving on my committee. To everyone in the Mines Astroparticle group, Kevin Merenda, Johannes Eser, Jeff Johnsen, thank you for the helpful and continual advice. To my friends and family thank you for the support and occasional distractions. Thank you, Emily, for your support and grammatical knowledge. x CHAPTER 1 UNUSUAL EVENTS OBSERVED WITH THE PIERRE AUGER COSMIC-RAY OBSERVATORY 1.1 Cosmic Ray Overview Over 100 years ago, Victor Hess showed that the amount of ionizing radiation increases with altitude and concluded there is a source of radiation coming from outer space, this radiation would become known as cosmic rays. In 1939, Pierre Auger discovered time co- incidences of ionizing radiation over long distances, this observation yielded the discovery of Extensive Air Showers (EASs) [1]. An EAS forms when a high-energy primary cosmic ray enters Earth’s atmosphere and interacts with atmospheric molecules creating a large number of secondary particles, eventually creating an extensive cascade of particles [1]. At the highest energies, the properties of a cosmic ray can only be deduced from the measured properties of the EAS it induces in the atmosphere. The development of an EAS has three components, a muonic, a hadronic and an electro- magnetic component. The composition and decay paths of these components are shown in Figure 1.1(a). When a cosmic ray enters the atmosphere the first interaction that occurs high in the atmosphere is a hadronic interaction. The hadronic component contains kaons, pions, protons, and neutrons. These particles form the shower core, as they produce all the other components of a shower and stay close to the shower axis. 98% of the shower energy, however, is eventually contained in the electromagnetic component [2]. The electromagnetic compo- nent originates from neutral meson decays and contains electrons, positrons, and gamma rays. Electrons with energy greater than 85 MeV can produce secondary particle showers via scattering, pair production, and bremsstrahlung radiation [2]. The muonic component of showers comes from the decay of pions and kaons and consists of muon and neutrinos. 1 Muons travel all the way to Earth’s surface with little interaction, thus the muons provide insight
Recommended publications
  • Relativistic Runaway Electrons Above Thunderstorms
    Relativistic Runaway Electrons above Thunderstorms Nikolai G. Lehtinen Physics Department STAR Laboratory Stanford University Advisers: Umran S. Inan, EE Department, Timothy F. Bell, EE Department, Roger W. Romani, Physics Department Plan 1. Introduction 2. Monte Carlo model of runaway electron avalanche 3. Fluid model of runaway electrons above thunderstorms 4. Effects of runaway electrons in the conjugate hemisphere Lightning-mesosphere interaction phenomena ~ 2000 cm-3 Electron density Β 100 km THERMOSPHERE Elves 80 km Sprites MESOSPHERE γ-rays 60 km Runaway ~100 MV 40 km E ~ 103 V/m electrons STRATOSPHERE at 40 km Blue Jet 20 km Cameras + + + + + TROPOSPHERE +CG 0 km - --- - γ-ray flash Red Sprites (BATSE observation) 40 Elves 30 20 Sprites 10 Rate (counts/0.1ms) 0 015205 10 1996.204.07.17.38.792 Time (ms) Red Sprites Red Sprites: - altitude range ~50-90 km - lateral extent ~5-10 km - occur ~1-5 ms after +CG discharge - last up to several 10 ms Aircraft view Ground View 90-95 km horizon Space Shuttle View sprite sprite thunderstorm Examples of Terrestrial Gamma Ray Flashes (BATSE Data) Terrestrial Gamma Rays: - time duration ~1 ms - energies 20 keV—2 MeV - hard spectrum (bremsstrahlung) Rate (counts/0.1ms) Rate (counts/0.1ms) Rate (counts/0.1ms) Time (ms) Time (ms) Time (ms) Time (ms) C. T. R. Wilson, 1925 While the electric force due to the thundercloud falls off rapidly, ... the electric force required to cause sparking ... falls off still more rapidly. Thus, ... there will be a height above which the electric force due to the cloud exceeds the sparking limit ..
    [Show full text]
  • Runaway Electrons During Subnanosecond Breakdowns in High- Pressure Gases
    Page 1 of 25 High Voltage This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page. Runaway electrons during subnanosecond breakdowns in high- pressure gases Victor F. Tarasenko *, Mikhail I. Lomaev, Dmitry V. Beloplotov, Dmitry A. Sorokin Institute of High Current Electronics Siberian Branch, Russian Academy of Science, 2/3 Akademicheskii Ave., Tomsk 634055. Russia *[email protected] Abstract: The parameters of runaway electrons produced in nanosecond high-voltage discharges in different gases (air, nitrogen, sulfur hexafluoride, krypton, argon, methane, neon, hydrogen, helium) at atmospheric and higher pressure were studied. An optical analysis was also performed to investigate the ionization dynamics in diffuse discharges in nitrogen and nitrogen-containing mixtures. At breakdown of a point-to-plane gap by nanosecond (≈2 ns) high-voltage (≈200 kV) pulses of negative voltage polarity and gas pressure above 0.1 MPa, a supershort avalanche electron beam (SAEB) was detected by a collector behind the flat anode. For pressure > 0.1 MPa of nitrogen and other gases it is shown that the maximum pressure for SAEB registration decreases with increasing the voltage pulse rise time. Therefore, to detect a SAEB at atmospheric and higher gas pressure, one should use voltage pulses with an amplitude of hundred kilovolts and rise time of ~1 ns and shorter. The experimental research in the dynamics of optical radiation from the discharge plasma shows that the breakdown in which runaway electrons are produced develops as an ionization wave.
    [Show full text]
  • Runaway Breakdown and Electrical Discharges in Thunderstorms
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, A00E60, doi:10.1029/2009JA014818, 2010 Runaway breakdown and electrical discharges in thunderstorms Gennady Milikh1 and Robert Roussel‐Dupré2 Received 22 August 2009; revised 2 August 2010; accepted 22 September 2010; published 24 December 2010. [1] This review considers the precise role played by runaway breakdown (RB) in the initiation and development of lightning discharges. RB remains a fundamental research topic under intense investigation. The question of how lightning is initiated and subsequently evolves in the thunderstorm environment rests in part on a fundamental understanding of RB and cosmic rays and the potential coupling to thermal runaway (as a seed to RB) and conventional breakdown (as a source of thermal runaways). In this paper, we describe the basic mechanism of RB and the conditions required to initiate an observable avalanche. Feedback processes that fundamentally enhance RB are discussed, as are both conventional breakdown and thermal runaway. Observations that provide clear evidence for the presence of energetic particles in thunderstorms/ lightning include g‐ray and X‐ray flux intensifications over thunderstorms, g‐ray and X‐ray bursts in conjunction with stepped leaders, terrestrial g‐ray flashes, and neutron production by lightning. Intense radio impulses termed narrow bipolar pulses (or NBPs) provide indirect evidence for RB particularly when measured in association with cosmic ray showers. Our present understanding of these phenomena and their enduring enigmatic character
    [Show full text]
  • Cosmic Ray Breakdown Mechanism in the Atmophere
    IOSR Journal of Applied Physics (IOSR-JAP) e-ISSN: 2278-4861.Volume 6, Issue 3 Ver. II (May-Jun. 2014), PP 62-64 www.iosrjournals.org Cosmic Ray Breakdown Mechanism in the Atmophere Akande, P. I[1], Azi Amaechi O.[2], A. O. Chikwendu[3], Nwoba Isreal A.[4] [1][2]Department of Industrial Physics, Ebonyi State University, Abakaliki [3]Department of Industrial Physics, Renaissance University, Ugbawka [4]Evangel University, Akaeze, PMB 126, Ebonyi State Abstract: Cosmic rays are high energy particles originating from outer space. These cosmic rays produce secondary cosmic rays as they enter the atmosphere and generate runaway electrons. The generation of runaway electrons in the relativistic region of the atmosphere is the focus of this work. To achieve our aim, basic consideration is given to the cold electron having mean velocity which is less than electron thermal speed. The effects of force on these electrons are obtained. From the result, it shows that cosmic ray breakdown occurs in the atmosphere within the relativistic region and the electrons are accelerated by the electric field. Hence there is an exponential increase of the fast electrons. This exponential increase in fast electron in the atmosphere could be the basic reason for the spontanouse characteristic behavour of most atmospheric processes. I. Introduction Most cosmic rays are thought to originate outside the solar system, with many coming from within our Milky Way Galaxy, and a few arriving from other galaxies, (James, 1998). This cosmic ray produce secondary particle which can be sufficiently energetic to contribute themselves to further ionization of the neutral gases.
    [Show full text]
  • JGRA20111A.Pdf (435.8Kb)
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116, A09301, doi:10.1029/2011JA016494, 2011 Low‐energy electron production by relativistic runaway electron avalanches in air Joseph R. Dwyer1 and Leonid P. Babich2 Received 24 January 2011; revised 31 May 2011; accepted 8 June 2011; published 7 September 2011. [1] This paper investigates the production of low‐energy (few eV) electrons by relativistic runaway electron avalanches. This work is motivated by a growing body of literature that claims that runaway electron avalanches produce an anomalous growth of low‐energy electrons and hence an anomalously large electrical conductivity, a factor of 50 larger than expected from standard calculations. Such large enhancements would have a substantial impact on properties of runaway electron avalanches and their observable effects. Indeed, these purportedly large conductivities have been used to argue that runaway electron avalanches result in a novel form of electrical breakdown called “runaway breakdown.” In this paper, we present simple analytical calculations, detailed Monte Carlo simulations, and a review of the experimental literature to show that no such anomalous growth of low‐energy electron populations exists. Consequently, estimates of the conductivity generated by a runaway electron avalanche have been greatly exaggerated in many previous papers, drawing into question several of the claims about runaway breakdown. Citation: Dwyer, J. R., and L. P. Babich (2011), Low‐energy electron production by relativistic runaway electron avalanches in air, J. Geophys. Res., 116, A09301, doi:10.1029/2011JA016494. 1. Introduction field [Dwyer, 2003]. Because electric fields exceeding the RREA threshold field have been observed inside thunder- [2] In 1925, C. T.
    [Show full text]
  • Symposium Thunderstorms and Elementary Particle Acceleration (TEPA-2016)
    Symposium Thunderstorms and Elementary Particle Acceleration (TEPA-2016) GENERAL INFORMATION: TIME FRAME: October 3-7 2016 LOCATION: Nor Amberd International Conference Centre of the Yerevan Physics Institute, Byurakan, Aragatsotn District, Armenia. SYMPOSIUM WEBSITE: http://crd.yerphi.am/Conferences/tepa2016/home ORGANIZERS: Cosmic Ray Division of Yerevan Physics Institute, Armenia Skobeltsyn Institute of Nuclear Physics of Moscow State University, Russia INTERNATIONAL ADVISORY COMMITTEE: Ashot Chilingarian, Yerevan Physics Institute, Armenia, co-chair Lev Dorman, Israel Cosmic Ray Center and Emilio Segre' Observatory, Israel Joseph Dwyer, Space Science Center (EOS) and Department of Physics University of New Hampshire , USA Gerald Fishman, NASA-Marshall Space Flight Center, Huntsville, USA) Hartmut Gemmeke, Karlsruhe Institute of Technology, Germany David Smith, University of California, Berkeley Johannes Knapp, DESY Zeuthen, Germany Karel Kudela, Institute of Experimental Physics, Slovakia Alexandr Lidvanski, Nuclear Physics Institute, Russian Academy of Science, Russian Federation Jean Lilensten, Institut de Planétologie et d'Astrophysique de Grenoble, France Evgeny Mareev, Institute of Applied Physics, Nizhny Novgorod, Russian Federation Razmik Mirzoyan, MPI, Munich, Germany Yasushi Muraki, STE laboratory, Nagoya University, Japan Michail Panasyuk, Moscow State University, Russian Federation, co-chair Marco Tavani, INAF and University of Rome "Tor Vergata", Italy Tatsuo Torii, Japan Atomic Energy Agency, Tsuruga, Japan Harufumi Tsuchiya, Cosmic Radiation Laboratory, Riken, Japan. Lev Zeleny, Space Research Institute, Russian Academy of Sciences, Russian Federation BACKGROUND: The problem of thundercloud electrification and the mechanism of initiation of lightnings inside thunderclouds is one of the biggest unsolved problems in the atmospheric sciences. It is not yet understood how thundercloud electrification, lightning activity, wideband radio emission and particle fluxes relate to each other.
    [Show full text]
  • The Postdoc Summer 2013
    http://www7.national-academies.org/rap NRC Research Associateship Programs Newsletter Autumn 2011 RESEARCH ASSOCIATESHIP PROGRAMS The Postdoc Summer 2013 Table of Contents Meet Rebecca Rivera! NRC Representation at Autumn mtgs.. 2 Meet Rebecca Rivera! (cont) ………… 3 Vibrio Parahaemolyticus ………… 4-5 Meet Linda Sligh! ……………………. 5 Laser Cooling of Solids …………… 6-7 Optical Refrigeration to 119K … ... 8-10 Why Outreach Matters …………… 11 Dark Lightning Radiation ………..12-13 Space Traffic & Arctic Clouds …… 14 Nano-world Secrets ……………… 15 NRC RAP LinkedIn and Facebook… 16 Right: Rebecca Rivera, former DTRA/CBD NRC Associate, currently Laboratory Manager/ Research Scientist II, Marine Veterinary Virology Rebecca started working on her bachelor's degree at age 16 where she had the opportunity to work on a molecular genetics related project entitled “Reconstructing the Population History of Puerto Rico by Means of mtDNA Phy- logeographic Analysis.” In 2000 she was awarded a Travel Award to present her data at the 50th Annual Congress of the American Society of Human Genetics Project later published in the American Journal of Physical Anthropology. By age 20 she was accepted at U.C. DAVIS to do her Ph.D. in Com- parative Pathology with a pre-doctoral NIH grant. There her work was mainly immunology and virology re- lated. She focused on vaccine develop- ments for HIV-1, HCV and HPV. Rebecca graduated in 2006 and her Dissertation was “Immunogenic Properties of a Syn- Rebecca using biological hood Also see Scientific American “How Kitty is Kiling the Dolphins”: thetic Peptide Mixture Derived from the Hypervariable Regions of http://www.scientificamerican.com/article.cfm?id=pathogens-from Rebecca continued on page 3 -humans-cats-kill-seals-dolphins HIV-1 Envelope lycoprotein gp120”.
    [Show full text]
  • A Study of X-Ray Emission from Laboratory Sparks in Air at Atmospheric Pressure J
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113, D23207, doi:10.1029/2008JD010315, 2008 Click Here for Full Article A study of X-ray emission from laboratory sparks in air at atmospheric pressure J. R. Dwyer,1 Z. Saleh,1 H. K. Rassoul,1 D. Concha,1 M. Rahman,2 V. Cooray,2 J. Jerauld,3,4 M. A. Uman,3 and V. A. Rakov3 Received 23 April 2008; revised 17 July 2008; accepted 25 September 2008; published 9 December 2008. [1] We present a detailed investigation of X-ray emission from long laboratory sparks in air at atmospheric pressure. We studied 231 sparks of both polarities using a 1-MV Marx generator with gap lengths ranging from 10 to 140 cm. The X rays generated by the discharges were measured using five NaI/PMT detectors plus one plastic scintillator/PMT detector, all enclosed in 0.32-cm-thick aluminum boxes. X-ray emission was observed to accompany about 70% of negative polarity sparks and about 10% of positive polarity sparks. For the negative sparks, X-ray emission was observed to occur at two distinct times during the discharge: (1) near the peak voltage, specifically, about 1 ms before the voltage across the gap collapsed, and (2) near the time of the peak current through the gap, during the gap voltage collapse. Using collimators we determined that the former emission emanated from the gap, while the latter appeared to originate from above the gap in the space over the high-voltage components. During individual sparks, the total energy of the X rays that was deposited in a single detector sometimes exceeded 50 MeV, and the maximum energy of individual photons in some cases exceeded 300 keV.
    [Show full text]
  • Terrestrial Gamma-Ray Flash Production by Lightning A
    TERRESTRIAL GAMMA-RAY FLASH PRODUCTION BY LIGHTNING A DISSERTATION SUBMITTED TO THE DEPARTMENT OF PHYSICS AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Brant E. Carlson October 2009 c Copyright by Brant E. Carlson 2010 All Rights Reserved ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. (Umran S. Inan) Principal Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. (Peter F. Michelson) Co-Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. (Elliott D. Bloom) I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. (Nikolai G. Lehtinen) Approved for the University Committee on Graduate Studies. iii iv Abstract Terrestrial gamma-ray flashes (TGFs) are brief flashes of gamma-rays originating in the Earth's atmosphere and observed by satellites. First observed in 1994 by the Burst And Transient Source Experiment on board the Compton Gamma-Ray Ob- servatory, TGFs consist of one or more 1 ms pulses of gamma-rays with a total ∼ fluence of 1 =cm2, typically observed when the satellite is near active thunder- ∼ storms.
    [Show full text]
  • 1 Runaway Breakdown and Electrical Discharges in Thunderstorms
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, XXXXXX, doi:10.1029/2009JA014818, 2010 1 Runaway breakdown and electrical discharges in thunderstorms 2 Gennady Milikh1 and Robert Roussel‐Dupré2 3 Received 22 August 2010; revised 2 August 2010; accepted 22 September 2010; published XX Month 2010. 4 [1] This review considers the precise role played by runaway breakdown (RB) in 5 the initiation and development of lightning discharges. RB remains a fundamental research 6 topic under intense investigation. The question of how lightning is initiated and 7 subsequently evolves in the thunderstorm environment rests in part on a fundamental 8 understanding of RB and cosmic rays and the potential coupling to thermal runaway 9 (as a seed to RB) and conventional breakdown (as a source of thermal runaways). In 10 this paper, we describe the basic mechanism of RB and the conditions required to initiate 11 an observable avalanche. Feedback processes that fundamentally enhance RB are 12 discussed, as are both conventional breakdown and thermal runaway. Observations 13 that provide clear evidence for the presence of energetic particles in thunderstorms/ 14 lightning include g‐ray and X‐ray flux intensifications over thunderstorms, g‐ray and 15 X‐ray bursts in conjunction with stepped leaders, terrestrial g‐ray flashes, and neutron 16 production by lightning. Intense radio impulses termed narrow bipolar pulses 17 (or NBPs) provide indirect evidence for RB particularly when measured in association 18 with cosmic ray showers. Our present understanding of these phenomena and their 19 enduring enigmatic character are touched upon briefly. 20 Citation: Milikh, G., and R. Roussel‐Dupré (2010), Runaway breakdown and electrical discharges in thunderstorms, 21 J.
    [Show full text]
  • University of California Santa Cruz Long Duration Gamma
    UNIVERSITY OF CALIFORNIA SANTA CRUZ LONG DURATION GAMMA-RAY EMISSION FROM THUNDERCLOUDS A dissertation submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in PHYSICS by Nicole A. Kelley December 2014 The Dissertation of Nicole A. Kelley is approved: Professor David M. Smith, Chair Professor Joseph R. Dwyer Professor Patrick Y. Chuang Dean Tyrus Miller Vice Provost and Dean of Graduate Studies Copyright c by Nicole A. Kelley 2014 Table of Contents List of Figures v List of Tables vii Abstract viii Dedication x Acknowledgments xi 1 Introduction 1 1.1 Electric fields inside thunderstorms . 2 1.2 Relativistic Runaway Electron Avalanches . 8 1.3 Gamma-ray Glow Observations . 13 1.4 High Energy Atmospheric Physics . 17 I Instrumentation 21 2 ADELE Instrument - Version 1.0 22 2.1 Instrumentation . 23 2.2 ADELE 2009 Campaign . 29 2.3 ADELE Calibrations . 36 2.3.1 Method 1 . 36 2.3.2 Method 2 . 39 2.3.3 Method Comparison . 42 3 ADELE Instrument - Version 2.0 44 3.1 New Instrument . 45 3.2 HS3 Mission . 47 iii 3.2.1 Testing . 48 3.2.2 Integration . 51 3.2.3 Mission . 52 3.3 Hurricane Hunters . 53 II Gamma Ray Glow Measurements 56 4 The ADELE Glows 57 4.1 Introduction . 57 4.2 Interpreting the ADELE Results . 59 4.3 Overview of the ADELE Glows . 61 4.4 Glows and their relationship to lightning . 68 4.4.1 The Glow Lightning Model . 76 5 Relativistic electron avalanches as a thunderstorm discharge com- peting with lightning 88 5.1 Introduction .
    [Show full text]
  • Investigations of Runaway Electron Generation, Transport, and Stability in the DIII-D Tokamak
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Investigations of runaway electron generation, transport, and stability in the DIII-D tokamak Permalink https://escholarship.org/uc/item/8v07812x Author Tronchin-James, Alexander Nevil Publication Date 2011 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Investigations of runaway electron generation, transport, and stability in the DIII-D tokamak A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Engineering Science (Engineering Physics) by Alexander Nevil Tronchin-James Committee in charge: George Tynan, Chair C. Fred Driscoll Eric Hollmann Stefan Llewellyn Smith Richard Moyer Thomas O'Neil 2011 Copyright Alexander Nevil Tronchin-James, 2011 All rights reserved. The dissertation of Alexander Nevil Tronchin-James is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2011 iii DEDICATION Dedicated to all the people who have treated me like family and made me feel at home, wherever I am. Also dedicated to the pursuit of flying motorcycles. iv EPIGRAPH Twenty years from now you will be more disappointed by the things that you didn't do than by the ones you did do. So throw off the bowlines. Sail away from the safe harbor. Catch the trade winds in your sails. Explore. Dream. Discover. {Mark Twain v TABLE OF CONTENTS Signature Page.................................. iii Dedication..................................... iv Epigraph.....................................v Table of Contents................................. vi List of Figures..................................x List of Tables................................... xvi Acknowledgements................................ xvii Vita.......................................
    [Show full text]