POPs Session

Chiral Xenobiotics as Tracers of Biogeochemical Processes Terry Bidleman, Centre for Atmospheric Research Experiments, Environment

Chiral PCB methyl sulfone metabolites - An overview Åke Bergman, Stockholm University

The Behaviour of the Toxaphene Component B6-923 in Sediment and Biota Walter Vetter, University of Hohenheim Applications of Enantioselective Analysis

¾Pharmacokinetics: accumulation, tissue distribution, metabolism, excretion ¾Toxicology ¾Persistence - degradation ¾Transport phenomena (e.g., air-water, air-soil) Applications of Enantioselective Analysis

¾Pharmacokinetics: accumulation, tissue distribution, metabolism, excretion ¾Toxicology ¾Persistence - degradation ¾Transport phenomena (e.g., air-water, air-soil) International conventions for POPs elimination/control call for continued monitoring and research

Stockholm Convention Article 11 states, in part, that:

The Parties shall undertake research and monitoring of POPs in the areas of:

(a) Sources and releases into the environment (b) Presence, levels and trends in humans and environment (c) Environmental transport, fate and transformation (d) Effects on human health and the environment POPs on International “Hit Lists” for Elimination or Control Found in UN-ECE UNEP Air ? Pesticides Aldrin X X Dieldrin X X X Endrin X X Heptachlor X X X Chlordane X X X Chlordecone X Mirex X X DDT X X X Toxaphene X X X HCH X X Industrial chemicals and by-products PCBs X X X Hexachlorobenzene X X X Hexabromobiphenyl X Chlorinated dioxins X X X Chlorinated furans X X X PAHs X X Contain chiral components & metabolites also chiral Pesticide enantiomers as tracers “old” and "new" sources

air transport of new pesticide

emission of residues Soil, Water

Bidleman and Falconer, ES&T 1999 PCBs in ambient air: “recycled” from soil residues, or due to other sources?

PCB 95

PCB 136

PCB 149

Robson and Harrad, ES&T 2004 Chlordane Enantiomers in Soil and Air

trans-chlor. cis-chlor. Air Above Soil MC-5

(-) (+) (+) (-) Ohio Soil

Bidleman & Falconer, ES&T 1999; Leone et al., ES&T., 2001 Chlordane Enantiomers in Soil and Air

trans-chlor. cis-chlor. Air Above Soil MC-5

(-) (+) (+) (-) EF <0.5 EF >0.5 Ohio Soil

EF <0.5

Bidleman & Falconer, ES&T 1999; Leone et al., ES&T., 2001 Volatilisation of chlordanes from soil at Connecticut Agricultural Research Station ƒ Measure chlordanes in air over soil, 0.5 – 2.5 m ƒ Also in background air.

total chlordane, pg/m3 EF of TC EF of CC 1000 0.54

800 0.52

600 0.5

400 0.48

200 0.46 0 . 0.44 m m m d il 5 5 5 . g o . . . d .5 .5 5 k s 0 1 2 g 0 1 2. c k a c b a b Eitzer et al., ES&T 2003 Variability in chlordane degradation, background soils Kurt-Karakus et al., ES&T 2005

TC CC (+) (-) (+) (-) MC5 Woodland (Poland)

Grassland (U.K.)

Woodland (Australia)

Technical chlordane 52 54 56 58 60 62 minutes Variability in chlordane degradation: EFs in 65 background soils collected worldwide, 1998

EF>0.5 EF=0.5 EF<0.5

80

60

40

Percent of Soils 20

0 TC CC Kurt-Karakus et al., ES&T 2005 Factors influencing enantioselective degradation in soils (or not!)

0.200 (r2 = 0.16, p = 0.0022) r2 = 0.16, p = 0.002 not significant for TC, CC, α-HCH, o,p’-DDT: 0.100 ƒ Climate (avg. annual T) ƒ woodland vs. grassland Deviation from Racemic Deviation from 0.000 0 25 50 75 100 SOM % ƒ Local variations in soil microbial communities? ƒ What is the small-scale spatial variability in EFs?

Kurt-Karakus et al., ES&T 2005 Enantiomer Fractions of Trans-Chlordane in Air and Soil

0.500

0.480 Racemic: fresh use or 0.460 termiticide

EF residues Non-racemic: 0.440 soil residues

0.420

0.400 ir n il a S l o U de a s e il t il e il b . m o s o w o lo d o s e s s g w S G k H & d m c i r a M fa b Enantiomer Fractions of Trans-Chlordane in Air and Soil

0.500

0.480

0.460 EF 0.440

0.420

0.400 ir ir h r ir n il t ir i a S l a a u a a U a o e l o c l de s i o A s ti t i e il b . m o ic S e c s o w o lo d o s x S k r e s s g e U a A w S G k H & L m c M . id r t a a G M f b Chiral signatures of chlordanes indicate changing sources to the atmosphere over the past 30 years

0.500

0.480

0.460

0.440

0.420

EF of trans-chlordane 0.400 Atmos. Deposition Air, Sweden Sweden, 1971-73 1998-2001

Bidleman et al., Atmos. Environ., 2004 Lake sediment core collected in 1999 from Devon Island, , Canada (Stern et al., Sci. Total Environ., 2005)

0.51

e

n Fresher chlordane 2 a 0.50 r = 0.72

rd

o

l

h

c 0.49

-

s Aged chlordane

n

ra 0.48

t

f

o

F 0.47

E

0.46 1940 1950 1960 1970 1980 1990 2000 Year

Photo: Jim Milne, DRDC alpha-HCH, C6H6Cl6

Cl Cl Cl Cl Cl Cl

Cl Cl Cl Cl Cl Cl

(-) (+) (+) (-)

EF < 0.5 EF > 0.5

Microbes in water and soil preferentially degrade one enantiomer, sometimes (+), sometimes (–) EFs of α-HCH in aquatic systems 0.60 (–) 0.50

0.40 (+) 0.30 degradation preference

0.20 . . a a O a a s s s es s e e .O . e e ke d ke k nd es S S A A S S la an la la a ak g hi p h ic tl o tl L rin c low ee rt lt tic e on ri e t e uk l o a c w k ta w a B h ha D N B Ar ic u n io re C S ct Y O ar G r nt A O

Data from: Faller et al., Mar. Pollut. Bull. 1991; Harner et al., ES&T 1999; Helm et al., ES&T 2000; Jantunen & Bidleman, JGR 1996; Law et al., Environ. Tox. Chem., 2001; Ridal et al., ES&T 1997; Wiberg et al., ES&T 2001 Why?

ƒ Enantioselective degradation of α-HCH is favoured in oligotrophic waters.

ƒ Likely, both enantiomers are degraded but at different rates.

ƒ Greater diversity of microorganisms in mesotropic and eutrophic systems leads to more equal degradation of both enantiomers?

Law et al., ET&C 2001; Padma et al., ET&C 2003 (-) Enantiomers of α-HCH trace volatilisation (+) from surface water

(-)

Air (+)

Photo: Jim Milne, DRDC

Water Exchange of α-HCH with Water

LRT Air: Racemic α-HCH

h

Lake/ocean: Non-racemic α-HCH Seasonal change in ERs of α-HCH in rain, North Sea coast

Cold racemic α-HCH from background air Warm volatilisation of non-racemic α-HCH from the sea

Bethan et al., Chemosphere 2001 α-HCH in Lake Superior and Lake Huron air: EF vs. concentration 0.50

0.49

0.48

0.47 EF 0.46

0.45 Water 0.44 EF

0.43 20 40 60 80 100 120 140 160 L. Jantunen, unpublished pg/m3 EFs of α-HCH in air across North America 12-month integrated passive air samples, 2000-01

Shen, L., Wania, F., Lei, Y.D., Teixeira, C., Muir, D.C.G., Bidleman, T.F. 2004. HCHs in the North American atmosphere. Environ. Sci. Technol. 38, 965-975. EFs of α-HCH in air across North America 12-month integrated passive air samples, 2000-01

Bering Sea 1993: Arctic Ocean 1994-99: EF = 0.51-0.52 EF = 0.44-0.45

Cold arctic water flows south, warms, releases α-HCH What about the west?

Shen, L., Wania, F., Lei, Y.D., Teixeira, C., Muir, D.C.G., Bidleman, T.F. 2004. HCHs in the North American atmosphere. Environ. Sci. Technol. 38, 965-975. Canadian Archipelago: TNW-99 expedition

inflow circulation & outflow

Resolute Bay α-HCH in Surface Water, ng/L 5 4 3 Beaufort Gyre 2 5

5

5 1 4 5

4 5

4 5

5 0 3

4

3 4 5

3

4

4

2

5

3 5

2 3 4

2

3

3

1

4 5

5

2 4

1 2

3 5

1

2

2

0

3 4

4 1 3 Baffin

0 1

2

4

0

1 5 1

5

2 3

5

3 0 5 2 Bay

0

1

3

0 0 4

4

1 2

4

2

1 4

0

2

3

3

0 1

3

1

0 3

1

2

2

0

2

0

2

0

1

1

1

1

0

0

0

0

L. Jantunen, T. Bidleman, H. Kylin, DIOXIN-05 Alpha-HCH concentration and EF in surface water

6.0 0.470 5.0 0.460 4.0

3.0 0.450 ng/Liter 2.0 0.440 1.0 Enantiomer Fraction

0.0 0.430 60 80 100 120 140 Beaufort Sea Longitude W EFs in water and air on TNW-99

0.50 ice cover

0.48 open water 0.46 EF air

0.44 r2 = 0.712

0.42 0.43 0.44 0.45 0.46 west EF water east Sea Ice Concentration July, 1999 Sea Ice Concentration August, 1999

= Resolute Bay Alpha-HCH in air at Resolute Bay increases by ~30% after ice breakup 70 70 Ice Breakup 53 ± 5 60 } 60 50 50

3 37 ± 9 40 40

pg/m 30 30 20 20 10 10 0 0 16 23 -24 -31 -14 l. 1-3 n. 7-9 l. 8-10 g. 5-7 . 12 u u u l. 15-17 l. 22 l. 29 J n. 14- n. 21- J J u u u Au u u J J J J J Aug EFs of alpha-HCH in air decrease after ice breakup (surface water EF at Resolute Bay = 0.441)

Ice Breakup 0.51 O.495 ± 0.004 Ice Breakup 0.50 } O.482 ± 0.010 0.49

0.48

0.47

0.46

0.45

0.44 -9 14 23 -10 17 -24 31 - . 7 . 1-3 n l . 8 . 14-16 l l. 15- l. 22 l. 29- Ju n . 21- Ju Aug. 5-7 n Ju Ju Ju Ju Ju Ju Aug. 12

Jantunen et al., DIOXIN 2005 Global Warming

¾ Changes in enantioselectivity in soils (Lewis et al., Nature 1999)

¾ Increased “grasshoppering” of chemicals

¾ Loss of ice cover in the Arctic, increased air-water gas exchange Many Thanks!

Liisa Jantunen, Fiona Wong, Canada Tom Harner, Paul Helm, Li Shen

Renee Falconer U.S.A. Karin Wiberg, Henrik Kylin, Eva Brorström-Lundén, Anders Sweden Södergren, Cecilia Backe

Perihan Kurt-Karakus, Kevin Jones U.K.