One-dimensional Stable Distributions This page intentionally left blank 10.1090/mmono/065 TRANSLATIONS OF MATHEMATICAL MONOGRAPHS VOLUME 65

V. M. Zolotarev One-dimensiona l Stabl e Distribution s

))§ American Mathematical Society BJIAJJHMHP MHXAHJ10BH H 30J10TAPE B OtfHOMEPHBIE yCTOMHHBLI E PACriPEflEJlEHHJ I

«HAYKA», MOCKBA , 198 3

Translated fro m th e Russia n b y H . H. McFade n Translation edite d b y Be n Silve r

2000 Mathematics Subject Classification. Primar y 60E07 .

ABSTRACT. Th e class of stable distributions, which includes normal distributions an d Cauchy distributions , i s one o f the most important classe s in probability theory . I n recent years ther e ha s bee n a n intensiv e expansio n o f th e circl e o f practica l problem s i n whic h s appea r i n a natura l wa y (suc h mathematica l model s ca n b e foun d i n engineering, physics, astronomy, and economics). Th e present book i s the first—not only in this country bu t als o abroad—to b e specificall y devote d t o a systematic expositio n o f the essential facts now known about properties of stable distributions and methods of statistical treatment o f them. Als o included here are some of the practically usefu l model s connected with stable distributions. Thi s book is intended fo r experts in the area of probability theory and its applications, fo r engineers , and fo r students i n university graduat e courses. Illustrations: 7 Bibliography: 25 4 titles

Library o f Congres s Cataloging-in-Publicatio n Dat a Zolotarev, V. M. One-dimensional stabl e distributions. (Translations o f mathematical monographs , ISSN 0065-9282; v. 65) Translation of : Odnomerny e ustolchivy e raspredelenifa . Bibliography: p. 263 Includes index. I. Distributio n (Probabilit y theory ) I . Title . II . Series . QA273.6.Z6413 198 6 519. 2 86-1094 3 ISBN 0-8218-4519- 5

© Copyrigh t 198 6 by the American Mathematical Society . Al l rights reserved . Printed i n the United States o f America. The American Mathematical Societ y retains al l rights except thos e granted to the United State s Government . Copying an d reprinting information ca n be found a t the back o f thi s volume. © Th e paper use d i n this book i s acid-free an d fall s within the guideline s established to ensure permanence and durability . Visit the AMS home page at URL : http://www.ams.org/ 10 9 8 7 6 5 4 0 4 03 02 01 Contents

Foreword Introduction Chapter 1 . Examples o f the occurrence o f stable laws in applications 1.0. Introductio n 1.1. A model o f point source s o f influenc e 1.2. Stabl e laws in problems in radio engineering and electronics 1.3. Stable laws in economics and biology Chapter 2 . Analytic properties o f distributions in the family 6 2.1. Elementary propertie s o f stable laws 2.2. Representation o f stable laws by integral s 2.3. The duality la w in the class o f strictly stable distribution s 2.4. The analytic structure o f stable distributions an d their representation b y convergent serie s 2.5. Asymptotic expansion s o f stable distributions 2.6. Integral transformations o f stable distributions 2.7. Unimodality o f stable distributions. The form o f the densities 2.8. Stable distributions as solutions o f integral, integrodifferential , and differential equation s 2.9. Stable laws as functions o f parameters 2.10. Densities o f stable distributions a s a class o f special function s 2.11. Trans-stable function s an d trans-stable distribution s Chapter 3 . Special properties o f laws in the class 2D 3.0. Introduction 3.1. The concept o f a cutoff o f a random variabl e 3.2. The random variables Y(a,0) an d Z(a, p). Equivalenc e theorem s 3.3. The random variable s Y(a,6) an d Z(a,p). Multiplicatio n an d division theorems

V VI CONTENTS

3.4. Properties o f extremal strictly stabl e distribution s 3.5. M-infinite divisibilit y o f the distributions o f the variables Y(a, 0) and Z(a, p) 3.6. The logarithmic moments o f Y(a) 9) and Z(a,p) Chapter 4 . Estimators o f the parameters o f stable distributions 4.0. Introduction 4.1. Auxiliary fact s 4.2. Estimators o f parameters o f distributions i n the class 2B 4.3. Estimators o f parameters o f distributions i n the famil y 6: th e parameters a, /? , and A 4.4. Estimators o f the parameter 7 4.5. Discussion o f the estimators 4.6. Simulation o f sequences o f stable random variable s Comments Bibliography List o f Notation Subject Inde x Foreword

I begi n m y first boo k wit h word s o f gratitud e an d dee p respec t fo r m y father, Mikhai l Ivanovic h Zolotarev , whos e whol e lif e ha s bee n connecte d with th e Sovie t Arm y fro m th e momen t o f it s formation . Thi s monograp h is dedicated t o him . More tha n 5 0 year s hav e passe d sinc e th e appearanc e o f th e concep t o f a stabl e distributio n i n Pau l Levy' s 192 5 boo k Calcul des probabilites. Ou r knowledge abou t th e propertie s o f these remarkabl e probabilit y law s has b y now becom e s o muc h riche r tha t i t coul d fill severa l monographs . However , no monograph dealin g specificall y wit h stabl e law s has ye t appeared . Ther e are numerous an d divers e result s relatin g t o stabl e law s scattered i n journa l articles or , a t best , appearin g a s auxiliar y section s o r chapter s i n book s o n other branche s o f probability theory . Fo r example , informatio n abou t limi t theorems fo r sum s o f independent rando m variable s whe n the limi t distribu - tions are stable laws can be found i n the well-known monographs o f Gnedenko and Kolmogoro v [26] , Feller [22] , Ibragimov an d Linni k [35] , and Petro v [65] . The mai n par t o f the result s abou t characterizin g stabl e law s i s i n the boo k of Kagin, Linnik , an d Ra o [38] . A number o f facts reflectin g th e analyti c properties o f stable laws are con- tained i n th e Felle r an d Ibragimov-Linni k monographs , th e boo k o f Lukac s [54], and the well-known survey article of Holt and Crow [31] . Som e properties of homogeneous stable processes with independent increment s are included i n Skorokhod's boo k [77] . Nevertheless, this information abou t stable laws is of a nonsystematic, frag - mentary nature and does not permit one to form a sufficiently complet e picture of th e contemporar y leve l o f knowledg e i n an y particula r direction . Thi s i s apparently explaine d an d t o a certain exten t justifie d b y th e fac t that , wit h rare exceptions , stabl e law s di d no t find application s fo r a lon g time . How - ever, th e situatio n change d i n th e 1960 s afte r th e appearanc e o f a serie s o f papers b y Mandelbrot an d hi s successors, who sketched th e use o f stable law s

Vll Vlll FOREWORD

in certai n economi c models . An d ther e i s no w a basi s fo r believin g tha t th e role o f these law s i n the area s o f economics, sociology , an d biolog y wher e th e Zipf-Pareto distributio n appear s wil l gro w i n the future . Fo r that t o happen , of course, a systematization an d more thorough expositio n o f the known fact s are needed . By wa y o f a preliminar y classification , thes e fact s can , i n ou r view , b e divided int o the followin g fou r groups . 1. Limit theorem s fo r sums o f independent (o r dependent i n a special way ) random variables , alon g wit h variou s refinement s o f them suc h a s estimate s of the rat e o f convergence t o limitin g stabl e distribution s i n divers e metrics , asymptotic expansions , larg e deviations , etc. , a s wel l a s propertie s o f stabl e processes with independen t increments . 2. Characterization o f stable distributions . 3. Analytic propertie s o f stable distributions . 4. Statistica l problem s associate d wit h stabl e distribution s (estimator s o f the parameters determining these distributions, problems involving hypothesis testing, an d s o on). By no w a fairly larg e number o f results have accumulated i n the first thre e groups, and the y permit u s to speak o f the need fo r a systematic presentatio n of them . But th e realizatio n o f this progra m woul d requir e a volum e thre e o r fou r times th e siz e o f the presen t book , an d tha t exceed s m y scop e b y far . Thi s circumstance prompte d m e t o undertak e th e mor e modes t tas k o f selectin g only on e o f the group s o f results fo r systemati c exposition . The choice of the third group as primary had to do with two considerations. First, th e material relevan t her e wa s alread y sufficientl y established , an d th e influx o f new fact s i s not grea t a t present , whic h certainl y canno t b e sai d of , for example, the firs t group . Second , I hope that th e systematic expositio n o f the analytic properties o f one-dimensional stable laws will stimulate analogou s investigations fo r multidimensional stabl e laws, of whose properties very littl e is known t o us. In additio n t o a n Introductio n an d th e secon d an d thir d chapters , whic h contain th e main bul k o f information abou t th e analyti c propertie s o f stabl e laws, the book also includes examples o f the occurrence o f stable distribution s in applied problems (Chapte r 1 ) and a chapter connecte d with the problem o f statistical estimation o f the parameters determining stable laws. However , th e inclusion o f this chapter wa s dictated no t s o much b y the desire to reflec t th e material o f the fourt h grou p to som e extent, a s b y the desir e to demonstrat e the possibilit y o f exploitin g th e analyti c propertie s o f stabl e distribution s i n solving statistical problems . FOREWORD IX

The structure o f the book i s such that onl y the Introduction an d the second and thir d chapter s ar e interconnected . Th e first chapte r i s not necessar y fo r understanding th e remainin g material , an d th e fourt h chapte r make s onl y minimal us e o f the informatio n i n Chapters 2 and 3 . Although i n preparin g th e materia l fo r th e mai n chapter s I trie d t o en - compass known results as completely a s possible, it i s not exclude d that som e facts accidentall y escape d m y view . The same can be said o f the first three sections o f the references a t th e end of th e book . Th e fourt h section , whic h deal s wit h limi t theorem s connecte d with stabl e laws , was put togethe r onl y fo r a rough orientatio n o f the reader , and thu s I did no t eve n try t o mak e i t complete . Information o f a historica l natur e o r concernin g priorit y i s reduce d t o a minimum i n the main text an d i s relegated to the sectio n entitled Comments . The materia l i n th e Introductio n an d th e secon d an d thir d chapter s i s fundamental t o the book. A part o f this material contain s ne w results , whil e another part o f the collected material was essentially revised in the preparation process, both i n the formulation s o f the theorem s an d i n their proofs . A characteristic featur e o f the exposition i s that t o describe the propertie s of stable laws we use not on e but severa l formall y differen t way s o f expressing the characteristic function s correspondin g t o these laws. Th e fac t o f the mat - ter i s that ther e simpl y i s no single form o f expression leadin g to the simples t formulations o f the propertie s presente d fo r stabl e laws . Th e us e o f differen t ways o f expressin g th e characteristi c function s enable s u s t o concentrat e al l the formulational complexitie s not o f fundamental importanc e i n the formula s for passin g fro m on e for m t o another . In thi s wor k I use d th e advic e an d all-aroun d hel p o f m y friend s an d col - leagues, o f whom I should mentio n first an d foremos t V . V. Senatov an d I . S . Shiganov. I . A. Ibragimov became familiar wit h the book and made a number of reasonable comments leading to its improvement. I received valuable advice from Yu . B . Sindler and L . A. Khalfin o n certain parts o f Chapter 1 , and fro m I. V. Ostrovski i o n isolated question s i n Chapter 2 . Th e materia l i n Chapte r 4 benefite d greatl y fro m a discussio n o f it s conten t wit h E . V . Khmaladz e and D . M. Chibisov . N . Kalinauskaite helpe d complet e the bibliography . Professor J . H . McCulloc h o f Ohio State Universit y wa s invaluable i n sup- plying me with copies of several articles from America n publications not easil y accessible to me . G. D . Smychniko v an d L . L . Petro v assiste d m e i n th e preparatio n o f th e manuscript. Here I express to al l these people m y sincer e gratitude . Moscow, 198 1 V. M. Zolotarev This page intentionally left blank Comments

In ou r desir e to lighte n the burden o n the mai n text a s much a s possible we have gathered here facts o f a historical nature, along with facts which, in our view, are not o f paramount importance ; in particular, informatio n abou t who is credited with various results and when they were first published. Th e absence in these Comments of an explanation and reference fo r some theorem that th e author doe s not hav e such a reference, an d possibly that th e corresponding statement i s being published fo r the first time.

Introduction

LI. Poly a introduced in probability theory a certain class of characteristic functions whic h has come to bear his name. Thi s class is formed b y the real- valued function s f(t ) define d o n th e whol e t-axi s an d havin g th e followin g properties: f(0) = l , f(-t ) = f(t) , f(i)<0 , /"(t)>0 , t>0 . The functions /| , 0 < a < 1, are easily seen to be in the Polya class. Se e [68] for details about the Polya class. 1.2. B y definition, the class of infinitely divisible laws consists of the distri- butions G that can be represented as compositions of n identical distributions Gn fo r an y integer n > 2 . I n 193 4 Levy obtained a description o f the distri- butions G in this class in terms o f the corresponding characteristic function s aw- The so-calle d Lev y canonica l for m o f expressio n fo r th e function s Q(t) is given by (1.3). Thus, Theorem A is a rephrasing o f the Khintchine theorem asserting that the class ( 5 introduced coincides with the class of infinitely divisibl e distribu- tions. Thi s result wa s first published b y Khintchine in the paper Zur Theorie der unbeschrdnkt teilbaren Verteilungsgesetze, Mat. Sb . 2(44) (1937) , 79-117.

251 252 COMMENTS

In hi s investigation s Khintchin e employe d anothe r for m o f expression fo r the functions fl(t), no w called the Levy-Khintchine canonical form. Theore m B, whic h wa s proved b y Gnedenko , corresponds i n the origina l paper t o th e Levy-Khintchine canonica l form , an d no t t o th e Lev y canonica l form , wit h which the formulation w e have given i s associated. 1.3. Th e variants of expressions in the literature for the functions g(£ ) have the for m fl(t) = exp(ifr y - A^(t , a, /?)). In the form s o f expression w e used fo r the function logg(i ) th e paramete r 7 i s replaced b y A7 , and a s a result th e function become s proportional t o A . It turn s out tha t thi s form o f expression ha s analytic advantages, though a t the same time it excludes degenerate distributions from the description o f the family S. I t i s perhaps surprising that unti l no w no one has wanted to write the characteristi c function s o f stabl e law s an d th e characteristi c function s fl(£, A ) of homogeneous stable processes X(X) i n a coordinated way . Th e fac t of the matter i s that (se e [77]) logg(U) = Alogfl(M) , where A > 0 signifies a time parameter. The form (A) o f expression fo r logfl(J), whic h is the best know n form an d until recently has been the one most often used, was proposed by Levy in [51]. In the case a = 1 this formula was given independently o f Levy by Khintchine in [44] . In Levy's monograph [50 ] the form (A) was preceded by the followin g modification o f it, obtained fo r strictly stable laws: logfl(t) = Ar(-a)(cos(7ra/2) - i/3sm(ira/2))t a, where 0 < a < 2, \0\ < 1 , A > 0 , and t > 0. The form s (£?) , (M), (C) , and (E) apparentl y appeare d fo r th e firs t tim e in the author's papers [96] , [97], and [167] . Th e merits o f the for m (B) an d (C) were pointed out long ago. Fo r example, the form (C ) can be encountered in Feller's monograp h [22] , while systematic us e is made o f the for m (B) i n the monographs o f Ibfagimov an d Linnik [35 ] and Lukacs [54]. 1.4. Th e following equalities establish a connection between the constants C\ an d C2 in the expression (1.10 ) for the spectral function H(x) o f a stable law given in the form (A) b y the parameters a, /?, 7, and A: Ci = A( l + /3)7r- 1T(a)sm(7ra/2),

C2 = A( l - jSjTr^aJanfTra^) . 1.5. Criteri a 2 and 3 stem fro m wor k o f Levy. COMMENTS 253

1.6. I f (1.27 ) i s replaced b y the equality

ciXx + c2X2 H 1 - ckXk = Xi + a, where a i s a constant, the n w e obtain a criterion fo r a nondegenerate distri- bution to belong to S . 1.7. Ther e is one particular erro r which i s repeated i n fairly man y papers (connected i n one way or another with stable laws). Namely , to describe the family S the y us e form (A) fo r logfl(t) wit h the sign in front o f ituA(t>a,/?) chosen t o b e "minus " i n th e cas e a ^ 1 . Alon g wit h thi s i t i s commonl y assumed that the value 0 = 1 corresponds to the stable laws appearing in the scheme (1.6 ) a s limi t distribution s o f the normalize d sum s Z n wit h positiv e terms. Bu t thi s assumptio n i s incompatibl e wit h th e choic e o f "minus " i n front o f UUJA i n the form (A). The error evidentl y becam e widespread becaus e i t foun d it s wa y into the well-known monograph [26] . Hall [29 ] devoted a special note to a discussion of this error, calling it (with what seems unnecessary pretentiousness) a "comed y of errors". Though he i s undoubtedly righ t o n the whole, in our vie w he exaggerates unnecessarily, presentin g th e matter a s i f the mistak e h e observe d i s almost universal. I n realit y thi s defec t i n [26 ] was noticed lon g ago . Fo r example , special remark s o n thi s wer e mad e i n th e paper s [95 ] o f Zolotare v an d [79 ] of Skorokhod . An d i n genera l ther e ar e mor e than a fe w papers an d book s whose authors wer e sufficientl y attentiv e an d di d no t laps e int o thi s "sin" . For example, we can mention Linnik's paper [53 ] and Feller's book [22].

Chapter 1

1.1. I n the late 1950s and early 1960s a probability seminar met at Moscow State University. A t one session the leader, E. B. Dynkin, related the following curious problem, which I reproduce here as I remember it . Consider i n the (x , 2/)-plane a Brownian motio n o f a particle beginning at (0,0) and subject to a constant drift i n the direction of the vector a = (ai, a2) with a\ > 0 an d a 2 < 0 . Th e lin e y = — 1 i s a n absorbin g barrier . Fo r such a drift th e particle is absorbed wit h probability 1 . Le t (XQ, — 1) be the absorption point . I t turn s ou t tha t i n the cas e when a\ > 0 and a 2 < 0 the random variable Xo ha s a normal distribution o n the lin e y = -1, while in the case when a\ > 0 and a 2 = 0 it has a stable distribution with parameters a = 1 and 0 = 1 (here the parameters can be associated both with the for m (A) and with the form (B)). Bu t i f a\ = 0 and a2 = 0 , then Xo has a (i.e. , a = 1 and 0 = 7 = 0). 254 COMMENTS

1.2. A model o f point source s o f influence base d o n the us e o f a Poisso n distribution fo r the numbe r o f points i n a finite region i s visible a s far bac k as the short not e o f Lifshits [117] , which dealt wit h th e solution o f a certain problem i n physic s (i t i s discusse d i n mor e detai l i n th e secon d example) . Somewhat late r a particula r cas e o f thi s l becam e th e subjec t o f a n independent investigatio n in Good's paper [112] . It is possible that interest in the model itself was stimulated b y the paper o f Holtsmark [114 ] (see Example 1) or by a result o f that pape r i n Chandrasekhar's boo k [103] . But neithe r Holtsmar k no r Chandrasekhar relie d o n a model in which the number o f particles falling in a bounded volume is random and has a . A s a result their method looks more unwieldy and less universal. A particula r cas e o f th e mode l o f poin t source s o f influenc e la y a t th e basis o f the solutio n o f a certain proble m i n solid-state theory considere d by Zolotarev an d Strunin i n [141] . 1.3. Th e Holtsmark distribution ha s become widely know n in probability theory because of the books of Chandrasekhar [103 ] and Feller [22]. There does not exist an explicit expression fo r the distribution density o f v i n elementary functions. However , a relatively simple expression is known (se e [168]) for the distribution functio n o f the length o f v\

P(|i/A"2/3| < r) = 1 - - f X ( 1 + 3ar3)exp(-ar3)d 0, n Jo where a = (cosip) 2 cos(£>/2)(sin(3

Vu = f, whe reV = ^-£ 2+R(t)*£2, (D) and where t i s the time, x is the coordinate o f a point o f the rod, and R(t) i s the so-called relaxation kernel, which is connected with another characteristi c of the rod—the creep kernel K(t)—by th e relation R{t) = K{t) - K{t) * K{t) + • • •. In the cas e when the cree p kernel has the for m K = 0, 0 < a < 1 , and E{i) i s the unit distribution , th e fundamenta l solutio n £(t,x) o f (D) i s nonzero in the angle t > \x\ and can be written with the help of the function s G(x, a, 1) in the region \x\

l £(t,x) = -G Ut - \x\)/ (^N)1^ ,M J

Stable laws appear in other problems in the theory of hereditary elasticity in connection with the fact that the creep kernel K(t) = 3_ a(—6, t) of Rabotnov, which is popular in this theory, is related to the Mittag-Leffler functio n E a{x) : 1+a 3a(6,t) = (l + a)t°£;i+a(to ). Very recently I became acquainted wit h th e pape r "Stabl e measure s an d processes i n statistica l physics " b y A . Wero n an d K . Weron , an d wit h th e survey paper "Stabl e processes and measures: A survey" b y A. Weron, both published as preprints in the Center for Stochastic Processes at the University of North Carolina. * Thes e papers contain a number o f interesting example s of the appearance of stable processes in problems in contemporary theoretica l physics.

Chapter 2

2.1. Th e referenc e to material i n Chapter 3 is given only fo r the purpos e of a general orientation i n evaluating the possibilities o f using Lemma 2.1.1 , presented below. * Translators note. Th e second of these papers has since been published in Probability Theory o n Vecto r Spaces . Il l (Proceedings , Lublin , 1983) , Lectur e Note s i n Math. , vol . 1080, Springer-Verlag , 1984 , pp. 306-364 . 256 COMMENTS

2.2. Ther e ar e severa l case s in whic h the densitie s o f stable law s can b e expressed b y means of special functions. Correspondin g formulas ar e given in §2.8. 2.3. Th e ide a o f usin g th e representation s (2.2.8)-(2.2.10 ) i n analyzin g the properties o f stable distributions stems fro m Linni k [53] , who considered formally onl y the case a < 1. The equality (2.2.11 ) was given in the author's paper [97] . 2.4. Th e representation (2.2.13 ) wa s obtained b y Skorokhod [79]. 2.5. Theore m 2.2. 3 was proved i n a somewha t modifie d for m i n the au - thor's paper [98]. 2.6. Th e fac t tha t th e stable distributions wit h a < 1,0 = 1 , and 7 = 0 are entirely concentrated o n the semi-axis x > 0 was observed independentl y by severa l authors : Bergstro m [2] , Linnik [53] , and Ovseevic h an d Yaglo m [132]. However , Levy ((113 ) i n [50] ) was the first t o direct attentio n to it. 2.7. Theore m 2.3. 1 (mor e precisely, the equality (2.3.3 ) correspondin g t o the form (A)) i s the main result i n the author's article [95]. 2.8. I n [78 ] and [80 ] Skorokhod prove d a n assertion equivalen t t o the as- sertion o f Theore m 2.4. 1 i n the par t correspondin g t o th e case s a < 1 and a = 1 . The fact that the density g{x, a, 0) is an entire analytic function whe n a > 1 was mentioned i n the book [26 ] of Gnedenko and Kolmogorov , with a reference t o A. I. Lapin. 2.9. Th e representations (2.4.6 ) and (2.4.8 ) wer e found independentl y b y Bergstrom [2] , Feller [21] , and Cha o Chung-Jeh [9] . Thes e series expansions for th e densitie s g(x,a,0) wer e also obtained b y Wintne r [89] . Fo r the cas e 0 = 1 the equality (2.4.8 ) is mentioned in a paper o f Pollard [67] . In the cited paper Bergstro m refer s t o a pape r o f Humber t i n 1945 , wher e th e forma l expansion (2.4.8 ) is given fo r the function g(x , a, 1) with a < 1 . 2.10. Afte r th e powe r serie s expansions o f the entir e function s Q(X , a,/3) with a ^ 1 were found , computatio n o f thei r orde r a an d typ e 6 was no t difficult, s o the value s o f a an d 6 wer e know n to anyon e intereste d i n th e properties o f stable distributions. Theore m 2.4. 3 first appeared i n the boo k [54] of Lukacs in a somewhat modifie d formulation . However , the proof there of the fact that a = o o when a = 1 and 0 ^ 0 is erroneous. Ou r version of the proof wa s suggested b y Ostrovskii, who also pointed out the precise equality lim sup r"1 log log M(r) = 1/0. r—KX> COMMENTS 257

2.11. N . V . Smirno v kne w o f th e possibilit y o f expandin g th e functio n <7(x, a, 1), a < 1 , in Laguerre polynomials. I had occasio n to hear about thi s at a semina r o f Kolmogoro v (wh o wa s working at Mosco w Stat e Universit y during 1954-1955) . 2.12. Kolmogoro v wa s th e firs t t o poin t ou t th e asymptoti c relatio n (2.5.18), withou t a rigorou s proof , a t th e semina r mentione d i n Commen t 2.11. Th e first terms i n the asymptoti c expansio n (2.5.17 ) wer e obtained i n the case a < 1 by Linnik [53 ] and i n the case a > 1 by Skorokhod [79] . Th e asymptotic expansion (2.5.17 ) appeared in full scope, in a somewhat modifie d form, i n the book [35 ] of Ibragimov an d Linnik . I t shoul d be mentioned tha t the formulas presente d ther e contain misprints. 2.13. Th e asymptoti c expansio n (2.5.25 ) wa s foun d b y Skorokho d [79 ] (without explici t expression s fo r the coefficients d n). 2.14. Th e equality (2.6.10 ) was obtained in the case a < 1 by Pollard [67], and i n the case a. > 1 by the author [97]. 2.15. Th e equality (2.6.11 ) wa s proved b y the author i n [97]. 2.16. Th e relation (2.6.15 ) i s equivalent to (3.3.10). 2.17. Theore m 2.6. 3 was proved b y the author [97] . 2.18. Th e equality (2.6.26 ) was proved b y the author i n [97]. 2.19. Th e clas s L i s a subse t o f 6. I t ca n b e define d a s th e se t o f al l possible complet e limits * o f distributions o f increasing sum s o f independen t l random variables (Xi H h Xn)B~ — An wit h the property tha t

1 max(Xi,... ,Xn)B~ ->0 a s n -+ oo, or a s th e se t o f infinitel y divisibl e distribution s wit h absolutel y continuou s spectral function s H suc h tha t th e produc t xH'{x) i s nonincreasing o n th e semi-axes x < 0 and x > 0. 2.20. Theore m 2.7. 2 is due to Khintchine [44]. 2.21. Theore m 2.7.3 is a probabilistic interpretation o f a known unimodal- ity criterion (give n in Corollary 2 ) o f Khintchine. A n equivalent statement i n terms o f the characteristic transforms (2.7.5 ) wa s presented b y the author i n [101]. I t i s mentioned i n Feller's book [22 ] that Shep p als o pointed ou t thi s interpretation. *We have in mind "complete " convergence. 258 COMMENTS

2.22. Lemm a 2.7. 2 wa s used b y Wintne r t o prov e Theorem 2.7. 4 i n [86]. We present a new proof o f this lemma. 2.23. Theore m 2.7. 5 was proved b y Ibragimov an d Chernin [34]. 2.24. Th e system of operators used by us, which can be interpreted as frac- tional integration an d fractiona l differentiation , i s not unique . Fo r example, we can use a system o f operators o f the form ( 0 < r < 1 ) i-*h(x) = -^ [ x (x-ty-'h^dt,

ITh{x) = j^-^ j XJh(x) - h(t)}(z - t)- T~l dt.

There are also other types of operators with analogous properties. Fo r furthe r information w e refer th e reade r t o Feller' s paper [21] . Wolfe' s pape r [92 ] is one o f th e fe w article s whic h use s fractiona l differentiatio n an d integratio n operators in probability theor y problems. 2.25. Relate d i n structure to (2.8.12 ) is an integrodifferential equatio n in the boo k [35 ] o f Ibragimo v an d Linni k (Theore m 2.3.2 ) fo r th e densitie s o f stable laws ; however , th e equatio n contain s a n essentia l error . Th e erro r arises because the complex factor exp(-i7rr) i s absent i n the definition o f the fractional integratio n operator (whic h is analogous to that use d b y us). A s a result, the operator inverse to the one defined b y them cannot be regarded as a generalization o f the concept o f differentiation . In the same place it i s asserted that a n integrodifferentia l equatio n o f the form (2.8.12 ) can be transformed int o the differential equatio n (2.8.25 ) i n the case when a i s rational. Actually , this equation i s obtained a s a consequence of an integrodifferential equatio n o f the for m (2.8.20) . 2.26. I n considering the densities g(x, a, /?, 0, A) of unbiased strictly stable laws, Medgyess y [62 ] derived fo r the m a partia l differentia l equatio n i n th e case when a = m/n, a rational number with relatively prime m and n: A d a*+b* 2^KJdx«>d\t>>g = 0 > i=i where a,j, bj, and Kj ar e constant numbers dependent on m, n, /3, and a certain free parameter whose variation gives a family o f equations. I f we take account of the equality 1 ft 1 ff = A- / j(xA- /°, 0^,0,1), then the connection between this equation an d (2.8.24 ) becomes obvious. 2.27. Th e equation (2.8.26 ) is contained i n Linnik's paper [53] . COMMENTS 259

2.28. I t is not hard to transform the right-hand side of (2.8.29) to the form

-Re{v^exp(-<;2) - 2i{w(s)}, where f = -iz/2 an d w($) = exp(-f 2)/Jexp(£2)d£. Th e functio n w(() i s tabulated fo r comple x f i n [42]. 2.29. Th e equation (2.8.33 ) was established by Pollard [67]. 2.30. Theore m 2.9. 1 was proved by the author [97]. The paper [13 ] of Cressie studies the properties o f the distribution a i?a(x) = P(|y(a,/3,0,A) 0 . Th e structure o f the asymptotic expansio n (2.9.4 ) show s that it s convergence fo r an y admissibl e a < 1 and 0 is a consequenc e o f the resul t mentioned. 2.32. Th e asymptotic expansion (2.9.8 ) was presented in the author's pa- per [97] . However, the expression given there for the function Hi i s erroneous. 2.33. Theore m 2.10. 1 is a result o f the author [96] . 2.34. Th e connection s (2.10.9 ) an d (2.10.12 ) betwee n th e Mittag-Leffle r functions an d stable laws were pointed out b y the author i n [96 ] and [97]. 2.35. I n som e o f hi s paper s Studne v considere d a generalizatio n o f th e concept o f infinitely divisibl e distributions within the limits of the set o f func- tions V(x) o f bounded variatio n that satisf y th e condition s V(-oo) = 0 and F(oo) = 1 . The 1967 paper On some generalizations of limit theorems in prob- ability theory (Teor. Veroyatnost . i Primenen. 1 2 (1967) , 72&-734=Theor . Probab. Appl . 1 2 (1967), 668-672) contains a remark about the class of "gen- eralized stable laws" and give s a form fo r the corresponding Fourier-Stieltje s transforms. Althoug h thi s clas s contain s th e Air y function , th e questio n o f 260 COMMENTS whether i t i s a natural extensio n o f the family o f stable distributions has not been considered s o far. Fo r a criterion fo r "naturalness " w e can take, in par- ticular, th e duality law , which i s satisfied b y the Air y function, a s (2.10.15 ) shows.

Chapter 3

3.1. Wit h th e exceptio n o f Theore m 3.4. 3 an d th e informatio n i n §3.5 , the material i n this chapter i s based o n results o f the author i n [97 ] (mainly the second part o f it). Ther e are several publications o f other author s whose results ar e directl y o r indirectl y connecte d wit h th e fact s presente d below . These cases will be mentioned an d commented o n separately. We note one important detail . In the case when the random variable X takes both positiv e and negativ e values wit h positiv e probability , th e us e o f th e propose d notatio n fo r th e generalized power can give rise to an ambiguous situation, since, for example, X2 ca n b e understoo d a s |X| 2 o r a s |X| 2sgn(X). Therefore , it would b e more correc t t o giv e th e generalize d powe r it s ow n notation , sa y X^ = |X|ssgnX. W e did no t d o this, i n order t o achiev e a certain simplificatio n in the formulas. Thi s will not caus e any confusion i n this chapter i f we agree always to understand a power o f a normally distribute d rando m variabl e N in the usual sense, i.e., N2k = |iV|2fc, when k is an integer. 3.2. Th e statistical interpretatio n o f the concept o f a cutoff i s as follows . If Xi,..., X n i s an independent sampl e subordinate to the same distribution as the rando m variabl e X, the n b y discarding amon g the Xj onl y those are positive, w e obtain a sample X^,..., X{T (o f random siz e T subordinate t o the binomia l distribution) i n which the elements have the sam e distributio n as a cutoff X. 3.3. Th e fact that the random variable 1/X ha s a Cauchy distribution i f X itself does has apparently been known for a long time, but the author has not been able to find any references prior to his paper [97] . Menon [63 ] obtained the followin g interestin g characterizatio n o f distribution s o f Cauch y type . Suppose that the random variables X and 1/X ar e stable, and 1/ X = h(X), where h(x) = Ax + 0(1), A is a constant, an d h!(x) = A + 0(\x\~e), e > 0 , as |x|— • oo. Then X has a distribution GA(Z , 1,0,7, A). 3.4. Th e followin g interestin g equalit y ca n b e derive d fro m (3.3.4 ) i f we choose a = ^ an d use the explicit expressio n fo r the density g(z, ^, 1): r^»^rf.i)*.-^.(i.fi). COMMENTS 26 1

The equality (3.4.26 ) i s a particular cas e o f it (i f we choose a' = \). 3.5. Th e simples t cas e o f the distributio n o f the statisti c L is obtained when a = 2. Thi s follows fro m (3.3.21 ) and (3.3.17) :

i.e, the statistic L, which in this case represents the ratio N/N o f two indepen- dent random variables distributed accordin g to the standard norma l law, has a Cauchy distribution, a fact wel l known in probability theory . Th e followin g relation ( a consequence o f (3.3.17) ) i s analytically relate d to it:

Z(a,l/a)£ 1 0 exp(-5Q) = Eexp(-sY(a)) = P(sY(<*) < E), where E is a random variable independent o f Y(a) an d having an . Sinc e P((E/Y(a)r > sa) = exp(-0- it follow s that {E/Y{a))a = E an d Y^/E^E- 1/*. Consequently, fo r an y r > -a E{Y-r{a)Er) = E{Er/a) = T(l + r/a) and, moreover , sinc e Y(a) an d E are independent, E{Y-r(a)Er) = EYr(a)E(Er) = EY-r(a)T(l + r). A comparison o f the above equalities shows that M{-r, a , 1) = EY~r (a) = T(l + r/a)/T(l + r).

Chapter 4

4.1. Th e material i n this chapter i s for the mos t part take n fro m th e au - thor's paper [167] . Theore m 4. 3 exploits a technique o f JanuSkeviCiene [166] , where, in particular, a n analogous problem i s solved. This page intentionally left blank Bibliography

I. Reference s o f a general-theoretic natur e 1. Harol d Bergstrom , On the theory of the stable distribution functions, Proc. Twelft h Scandinavia n Math . Congr . (Lund , 1953 , Hakan Ohlssons , Lund, 1954 , pp. 12-13 . 2. , On some expansions of stable distribution functions, Ark . Mat . 2 (1952/53), 375-378. 3. , Eine Theorie der stabilen Verteilungsfunktionen, Arch . Math . (Basel) 4 (1953) , 380-391. 4. Ludwi g Bieberbach, Lehrbuch der Funktionentheorie. Vol. 2 , 2n d ed. , Teubner, Leipzig , 1931 ; reprint, Johnson Reprint Corp. , New York, 1968. 5. S . Bochner , Stable laws of probability and completely monotone func- tions, Duke Math. J . 3 (1937) , 726-728. 6. L . N . Bol'she v e t al , Tables of stable one-sided distributions, Teor . Veroyatnost. i Primenen . 1 5 (1970) , 309-319 ; Englis h transl . i n Theor . Probab. Appl . 1 5 (1970). 7. P . J . Brockwel l an d B . M . Brown , Expansions for the positive stable laws, Z . Wahrsch. Verw . Gebiet e 45 (1978) , 213-224. 8. Augusti n Cauchy , Sur les resultats moyens dobservations de mime nature, et sur les resultats les plus probables, and Sur la probabilite des erreurs qui affectant des resultats moyens cCobservations de mime nature, C. R. Acad. Sci. Pari s 37 (1853) , 198-206 , 264-272; reprinted i n hi s Oeuvres completes, Ser. 1 , Vol. 12 , Gauthier-Villars, Paris, 1900 , pp. 94-104 , 104-114. 9. Cha o Chung-Jeh, Explicit formula for the stable law of distribution, Acta Mat. Sinic a 3 (1953) , 177-185. (Chinese ; English summary) 10. K . L . Chung , Sur les lois de probabilite unimodales, C . R. Acad . Sci . Paris 236 (1953) , 583-584.

263 264 BIBLIOGRAPHY

11. Harol d Cramer , On the approximation to a stable probability distribu- tion, Studies in Math. Anal , an d Related Topic s (Essays in Honor o f George Polya) Stanfor d Univ . Press , Stanford, Calif. , 1962 , pp. 70-76 . 12. , Mathematical methods of statistics, Princeto n Univ . Press , Princeton, N . J., 1946 . 13. Noe l Cressie , A note on the behaviour of the stable distributions for small index a, Z . Wahrsch. Verw . Gebiet e 33 (1975/76), 61-64. 14. D. A. Darling, The maximum of sums of stable random variables, Trans. Amer. Math . Soc . 83 (1956) , 164-169. 15. V . A . Ditkin an d P . I. Kuznetsov , Handbook of operational calculus, GITTL, Moscow , 1951 . (Russian ) 16. R . L . Dobrushi n an d Yu . M . Sukhov , Time asymptotics for some degenerate models of the evolution of systems with infinitely many particles, Itogi Nauki : Sovremenny e Problem y Mat. , vol . 14 , VINITI, Moscow , 1979 , pp. 147-254 ; English transl. i n J. Sovie t Math . 1 6 (1981) , no. 4. 17. Danie l Dugue, Variables scalaires attachees a deux matrices de Wilks. Comparaison de deux matrices de Wilks en analyse des donnees, C . R. Acad . Sci. Pari s Ser . A- B 284 (1977) , A899-A901. 18. K . 0. Dzhaparidze , On simplified estimators of unknown parameters with good asymptotic properties, Teor . Veroyatnost . i Primenen. 1 9 (1974) , 355-366; English transl. i n Theor. Probab . Appl . 1 9 (1974). 19. A . Erdelyi et al. , Tables of integral transforms. Vol . 1 , McGraw-Hill, 1954. 20. M . A . Evgrafov, Asymptotic estimates and entire functions, GITTL, Moscow, 1957 ; English transl, Gordo n an d Breach, Ne w York, 1961. 21. Willia m Feller , On a generalization of Marcel Riesz 1 potentials and the semi-groups generated by them, Comm. Sem . Math . Univ . Lund=Medd. , Lunds Univ . Mat. , Sem. , Tom e Supplementa l Dedi e a Marce l Riesz , Gauthier-Villars, Paris, 1952 , pp. 74-81 . 22. , An introduction to probability theory and its applications, Vols . 1 (2n d ed.), 2, Wiley, 1957 , 1966. 23. S . G. Ghurye, A remark on stable laws, Skand . Aktuarietidskr . 195 8 68-70 (1959). 24. V . L. Girko, Theory of random determinants, "Vishcha Shkola" (Izdat . Kiev. Univ.) , Kiev, 1980 . (Russian ) 25. B . V. Gnedenko, The theory of limit theorems for sums of independent random variables, Izv . Akad . Nau k SSS R Ser . Mat . 3 (1939) , 181-232 . (Russian; English summary ) BIBLIOGRAPHY 265

26. B . V. Gnedenk o an d A . N. Kolmogorov, Limit distributions for sums of independent random variables, GITTL, Moscow , 1949 ; Englis h transl. , Addison-Wesley, 1954 . 27. I . S . Gradshtei n an d I . M . Ryzhik , Tables of integrals, series, and products, 4t h rev . ed. , Fizmatgiz , Moscow , 1963 ; English transl. , Academi c Press, 1965. 28. Beniamin o Gulotta , Leggi di probability condizionatamente stabili, Giorn. 1st . Ital . Attuar i 1 9 (1956), 22-30. 29. Pete r Hall, A comedy of errors: the canonical form for a stable charac- teristic function, Bull. Londo n Math. Soc . 1 3 (1981), 23-27. 30. G . H . Hardy, J. E . Littlewood an d G . Poly a Inequalities, Cambridg e Univ. Press , 1934. 31. Donal d R . Hol t an d Edwi n L . Crow , Tables and graphs of the stable probability density functions, J. Res. Nat. Bur . Standard s Sect. B 77 (1973), 143-198. 32. Pierr e Humbert , Quelques resultats relatifs a la fonction de Mittag- Leffler, C. R. Acad. Sci . Paris 236 (1953) , 1467-1468. 33. I . A . Ibragimov , On the composition of unimodal distributions, Teor . Veroyatnost. i Primenen . 1 (1956) , 283-288 ; Englis h transl . i n Theor . Probab. Appl . 1 (1956). 34. I . A. Ibragimov an d K . E. Chernin, On the unimodality of stable laws, Teor. Veroyatnost . i Primenen. 4 (1959) , 453-456; English transl. i n Theor. Probab. Appl . 4 (1959). 35. I . A . Ibragimo v an d Yu . V . Linnik , Independent and stationary se- quences of random variables, "Nauka" , Moscow, 1965; English transl., Noord- hooff, 1971. 36. Bernar d Jesiak, An uniqueness theorem for stable laws, Math . Nachr . 92 (1979) , 243-246. 37. H.-J . Rossber g an d B. Jesiak , On the unique determination of stable distribution functions, Math. Nachr . 8 2 (1978) , 297-308. 38. A . M . Kagan, Yu . V . Linni k an d S . Radhakrishna Rao , Characteri- zation problems in mathematical statistics, "Nauka" , Moscow , 1972 ; English transl., Wiley , 1973. 39. E . Kamke , Differentialgleichungen. Losungsmethoden und Losungen. Teil 1 : Gewohnliche Differentialgleichungen, 6t h ed. , Akademisch e Verlag , Geest & Portig, Leipzig, 1959. 40. Mare k Kanter, Stable densities under change of scale and total variation inequalities, Ann . Probab . 3 (1975) , 697-707. 41. , On the unimodality of stable densities, Ann . Probab . 4 (1976) , 1006-1008. 266 BIBLIOGRAPHY

42. K . A . Karpov , Tables of the function w(z) — e~ z f^e x dx in the complex domain, Izdat. Akad . Nau k SSSR , Moscow , 1954 ; Englis h transl. , Pergamon Press , Oxford, an d Macmillan, Ne w York, 1965. 43. Mauric e G. Kendall and Alan Stuart, The advanced theory of statistics. Vol. 2 : Inference and relationship, 2n d ed., Hafner, Ne w York, 1967. 44. A . Ya . Khinchi n [Khintchine] , Limit laws for sums of independent random variables, ONTI , Moscow, 1938 . (Russian ) 45. A . Khintchin e an d Pau l Levy , Sur les lois stables, C. R . Acad . Sci . Paris 202 (1937) , 374-376. 46. A . N. Kolmogorov an d B. A. Sevast'yanov, Computation of final prob- abilities for random branching processes, Dokl . Akad . Nau k SSS R 56 (1947), 783-786. (Russian ) 47. V . M . Kruglov , A remark on the theory of infinitely divisible laws, Teor. Veroyatnost . i Primenen . 1 5 (1970) , 330-336 ; Englis h transl . i n Theor. Probabl . Appl . 1 5 (1970). 48. R . G . Laha , On a characterization of the stable law with finite expec- tation, Ann. Math . Statist . 2 7 (1956) , 187-195. 49. , On the laws of Cauchy and Gauss, Ann. Math . Statist . 3 0 (1959), 1165-1174. 50. Pau l Levy , Calcul des probability, Gauthier-Villars, Paris, 1925. 51. , Theorie de Vaddition des variables aleatoires, 2n d ed., Gauthier- Villars, 1954. 52. , Remarques sur un probleme relatif aux lois stables, Studie s i n Math. Anal , an d Related Topics (Essays in Honor of George Polya), Stanfor d Univ. Press , Stanford, Calif. , 1962 , pp. 211-218 . 53. Yu . V . Linnik , On stable probability laws with exponent less than one, Dokl. Akad . Nau k SSS R 94 (1954) , 619-621. (Russian ) 54. Eugen e Lukacs , Characteristic functions, 2n d ed. , Hafner , Ne w York, 1970. 55. , On some properties of symmetric stable distributions Analyti c Function Method s i n Probability Theor y (Proc . Colloq. , Debrecen , 1977 ; B. Gyires, editor), Colloq . Math . Soc . Jano s Bolyai , vol . 21 , North-Holland, 1979, pp. 227-241 . 56. , Stable distributions and their characteristic functions, Janresber . Deutsch. Math . Verei n 71 (1969), no. 2 , 84-114. 57. , Some properties of stable frequency functions, Bull . Inst . Inter - nal Statist.=Bull . Internat . Statist . Inst . 4 2 (1969) , 1213-1224. 58. , Sur quelques proprietes des lois stables et symetriques, C. R . Acad. Sci . Pari s Ser. A- B 286 (1978) , A1213-A1214. BIBLIOGRAPHY 267

59. A . Marchand , Sur les derivees et sur les differences des fonctions de variables reelles, J. Math. Pure s Appl. (9 ) 6 (1927) , 337-425. 60. P'a l Medgyessy, Partial integro-differential equations for stable density functions and their applications, Publ. Math . Debrece n 5 (1958) , 288-293. 61. , Partial differential equations for stable density functions, and their applications, Magya r Tud . Akad . Mat . Kutat o Int . Kozl . 1 (1956), 489-514. (Hungarian ) 62. , Partial differential equations for stable density functions, and their applications, Magya r Tud . Akad . Mat . Kutat o Int . Kozl . 1 (1956) , 516-518. (Englis h summary o f [61] ) 63. M . V . Menon , A characterization of the Cauchy distribution, Ann . Math. Statist . 3 3 (1962) , 1267-1271. 64. K . R. Parthasarathy, R . Ranga Rao and S. R. S. Varadhan, Probability distributions on locally compact abelian groups, Illinoi s J . Math . 7 (1963) , 337-369. 65. V . V. Petrov, Sums of independent random variables, "Nauka" , Moscow, 1972; English transl., Springer-Verlag, 1975. 66. Harr y Pollard , The completely monotonic character of the Mittag- Leffler function E a{-x), Bull . Amer . Math . Soc . 54 (1948) , 1115-1116. 67. , The representation of e~x as a Laplace integral, Bull . Amer . Math. Soc . 5 2 (1946) , 908-910. 68. Geor g Polya, Herleitung des Guassschen Fehlergesetzes aus einer Funk- tionalgleichung, Math. Z . 18 (1923) , 9&-108. 69. B . Ramachandran, On characteristic functions and moments, Sankhy a Ser. A 31 (1969) , 1-12 . 70. Joh n Riordan , An introduction to combinatorial analysis, Wiley , New York, and Chapma n & Hall, London, 1958. 71. Ken-it i Sato and Makoto Yamazato, On distribution functions of class, L, Z . Wahrsch. Verw . Gebiet e 43 (1978) , 273-308. 72. L . J. Savage, A geometrical approach to the special stable distributions, Zastos. Mat . 1 0 (1969) , 43-46. 73. Yoich i R . Shimizu , On the decomposition of stable characteristic func- tions, Ann. Inst . Statist . Math . 2 4 (1972) , 347-353. 74. B . A . Sevast'yanov , Final probabilities for branching stochastic pro- cesses, Teor . Veroyatnost . i Primenen. 2 (1957) , 140-141; English transl. i n Theor. Probab . Appl . 2 (1957). 75. D . N. Shanbhag, D. Pestana an d M . Sreehari, Some further results in infinite divisibility, Math. Proc . Cambridg e Philos. Soc . 82 (1977) , 289-295. 268 BIBLIOGRAPHY

76. I . S . Shiganov , A metric approach to the investigation of stability of Polya!s theorem on characterizing the , Problem s o f Sta- bility o f Stochasti c Model s (Proc . Fift h AU-Unio n Sem. , Panevezhis , 1980 ; V. M. Zolotarev an d V. V. Kalashnikov, editors), Vsesoyuz. Nauchno-Issled . Inst. Sistem . Issled. , Moscow , 1981 , pp. 145-154 . (Russian ) 77. A . V . Skorokhod , Random processes with independent increments, "Nauka", Moscow , 1964 ; English transls., Clearin g Hous e Federal Sci . Tech . Information, Springfield , Va. , 1966 , an d Theory of random processes, Nat . Lending Library Sci . Tech. , Boston Spa , Yorkshire, England, 1971. 78. , On a theorem concerning stable distributions, Uspekhi Mat . Nauk 9 (1954), no. 2 (60), 189-190; English transl. i n Selected Transl. Math . Statist, an d Probab., vol. 1 , Amer. Math . Soc , Providence, R. I., 1961. 79. , Asymptotic formulas for stable distribution laws, Dokl. Akad . Nauk SSS R 98 (1954) , 731-734 ; Englis h transl . i n Selecte d Transl . Math . Statist, an d Probab., vol. 1 , Amer. Math . Soc , Providence, R. I., 1961. 80. , Analytic properties of stable probability distributions, in : Student Scientific Paper s o f Kiev University, vyp. 16 , Izdat. Kiev . Univ. , Kiev, 1955, pp. 159-164 . (Russian ) R . Zh . Mat . 195 7 #1623. 81. A . N. Tikhonov an d A . A . Samarskii, The equations of mathematical physics, GITTL, Moscow, 1951 ; Englis h transls. o f 2nd ed., Pergamon Press, Oxford, an d Macmillan , Ne w York , 1963 , and Vols . I , II , Holden-Day , Sa n Francisco, Calif., 1964 , 1967. 82. E . C . Titchmarsh , Introduction to the theory of Fourier integrals, Clarendon Press, Oxford, 1937 . 83. , The theory of functions, 2nd ed., Oxfor d Univ . Press , 1939. 84. B. L. van der Waerden, Mathematische Statistik, Springer-Verlag, 1957; English ed., 1969 . 85. E . J . Williams , Some representations of stable random variables as products, Biometrik a 64 (1977) , 167-169. 86. Aure l Wintner , On the stable distribution laws, Amer. J . Math . 5 5 (1933), 335-339. 87. , On a class of Fourier transforms, Amer . J . Math . 5 8 (1936) , 45-90 . 88. , The singularities of Cauchtfs distributions, Duk e Math . J . 8 (1941), 678-681. 89. , Cauchy's stable distributions and an "explicit formula" of Mellin, Amer. J . Math. 7 8 (1956) , 819-861. 90. , Stable distributions and Laplace transforms, Ann . Scuol a Norm. Sup. Pis a Sci. Fis . Mat . (3 ) 1 0 (1956) , 127-134. BIBLIOGRAPHY 269

91. , Stable distributions and the transforms of Stieltjes and he Roy, Boll. Un . Mat . Ital . (3 ) 13 (1958), 24-33. 92. Stephe n J . Wolfe , On moments of functions, Functional Calculus and Its Applications (Proc. Internat . Conf. , West Haven, Conn., 1974) , Lecture Note s i n Math., Vol . 457 , Springer-Verlag, 1975 , pp. 306-316. 93. Graha m J . Worsdale , Tables of cumulative distribution functions for symmetric stable distributions, J. Ro y Statist. Soc . Ser . C : Appl. Statist . 2 4 (1975), 123-131 . 94. Makot o Yamazato, Unimodality of infinitely divisible distribution func- tions of class L, Ann. Probab . 6 (1978) , 523-531. 95. V . M . Zolotarev, Expression of the density of a stable distribution with exponent a greater than one in terms of a density with exponent 1/a , Dokl . Akad. Nau k SSS R 98 (1954) , 735-738 ; Englis h transl . i n Selecte d Transl . Math. Statist , an d Probab. , vol . 1 , Amer . Math . Soc , Providence , R . I. , 1961. 96. , On analytic properties of stable distribution laws, Vestni k Lenin- grad. Univ . 1956 , no . 1 (Ser. Mat . Mekh . Astr . vyp . 1) , 49-52; Englis h transl. i n Selected Transl . Math . Statist , an d Probab., vol. 1 , Amer. Math . Soc, Providence, R. I., 1961. 97. , The Mellin-Stieltjes transformation in probability theory, Teor . Veroyatnost. i Primenen . 2 (1957) , 444-469 ; Englis h transl . i n Theor . Probab. Appl . 2 (1957). 98. , On representation of stable laws by integrals, Trudy . Mat . Inst . Steklov. 7 1 (1964) , 46-50; English transl. i n Selected Transl. Math . Statist , and Probab, vol. 6 , Amer. Math . Soc , Providence, R . I., 1966. 99. , On the M-divisibility of stable laws, Teor. Veroyatnost . i Prime- nen. 1 2 (1967) , 55&-562 ; English transl. i n Teor. Probab . Appl . 1 2 (1967). 100. , The analytic structure of infinitely divisible laws of class L, Litovsk. Mat . Sb . 3 (1963) , 123-140 ; Englis h transl . i n Selecte d Transl . Math. Statist , an d Probab., vol. 15 , Amer. Math . Soc , Providence , R . I., 1981. 101. , On a general theory of multiplication of independent random variables, Dokl . Akad . Nau k SSS R 14 2 (1962) , 788-791 ; Englis h transl . i n Soviet Math. Dokl . 3 (1962).

II. Reference s o f an applied natur e 102. B . Berndtsson an d Pete r Jagers , Exponential growth of a branching process usually implies stable age distribution, J . Appl . Probab . 1 6 (1979) , 651-656. 270 BIBLIOGRAPHY

103. S . Chandrasekhar, Stochastic problems in physics and astronomy, Rev. Modern Phys. 1 5 (1943), 1-89 . 104. A . S . Davydov , Quantum mechanics, Fizmatgiz, Moscow , 1963 ; English transl. o f 2nd ed., Pergamon Press, 1976. 105. R . L. Dobrushin, A statistical problem, leading to stable laws, in the theory of signal detection on a background of noise in a multichannel system, Teor. Veroyatnost . i Primenen. 3 (1958) , 173-185; English transl. i n Theory Probab. Appl . 3 (1958). 106. Willia m H. DuMouchel and Richard A. Olshen, On the distributions of claim costs, Credibility: Theor y an d Application s (Proc . Berkele y Actuaria l Res. Conf. , 1974 , dedicated to E. A. Lew), Academic Press, 1975 , pp. 23-50 , 409-414. 107. Katherin e Dusak, Futures trading and investo returns: an investigation of commodity market risk premiums, J. Politica l Econom y 81 (1973) , 1387 - 1406. 108. J . D . Eshelby , The continuum theory of dislocations, IL , Moscow , 1963. (Russian) * 109. Eugen e F . Fama , Mandelbrot and the stable Paretian hypothesis, J . Business 36 (1963) , 420-429. 110. , The behavior of stock-market prices, J. Busines s 3 8 (1965) , 34-105. 111. B . D . Fielit z an d E . W . Smith , Asymmetric stable distributions of stock price changes, J. Amer . Statist . Assoc . 67 (1972) , 813-814. 112. I . J. Good , The real stable characteristic functions and chaotic accel- eration, J. Roy , Statist. Soc . Ser . B 23 (1961) , 180-183. 113. Cliv e W. J. Grange r and Daniel Orr, "Infinite ''' and research strategy in time series analysis, J. Amer. Statist . Assoc . 67 (1972) , 275-285. 114. J . Holtsmark, Uber die Verbreiterung von Spektrallinien, Ann . Physi k (4) 58 (363 ) (1919) , 577-630. 115. L . A. Khalfin , Contribution to the decay theory of a quasistationary state, Zh . Eksper . Teoret . Fiz . 3 3 (1957) , 1371-1382 ; Englis h transl . i n Soviet Phys. JETP 6 (1958). 116. N . S . Krylo v an d V. A . Fok , On the two main interpretations of the uncertainty relation for energy and time, Zh. Eksper . Teoret . Fiz . 1 7 (1947), 93-107. (Russian ) 117. I . M. Lifshits, On temperature flashes in a medium under the action of nuclear radiation, Dokl. Akad . Nau k SSSR 109 (1956), 1109-1111. (Russian )

* Editor*3 note. Thi s boo k i s a collection o f Russia n translation s o f article s originall y Wished in English. BIBLIOGRAPHY 271

118. Benoi t Mandelbrot , La distribution de Willis-Yule, relative aux nom- bres cCespeces dans les genres biologique, C . R. Acad . Sci . Pari s 242 (1956) , 2223-2226. 119. , Variables et processus stochastiques de Pareto-Levy, et la repar- tition des revenus, C . R. Acad. Sci . Paris 249 (1959) , 613-615, 2153-2155. 120. , The Pareto-Levy law and the distribution of income, Internat . Econ. Rev . 1 (1960), 79-106. 121. , Stable Paretian random functions and the multiplicative varia- tion of income, Econometric a 29 (1961) , 517-543. 122. , The stable Paretian income distribution when the apparent ex- ponent is near two, Internat. Econ . Rev . 4 (1963) , 111-115. 123. , New methods in statistical economics, J . Polit . Econom y 7 1 (1963), 421-440. 124. , The variation of certain speculative prices, J . Busines s 3 6 (1963), 394-419. 125. , Some noises with 1/f spectrum, a bridge between direct current and white noise, IEEE Trans. Informatio n Theor y IT-13 (1967) , 289-298. 126. , The variation of some other speculative prices, J. Business Univ. Chicago 40 (1967) , 393-413. 127. Georg e L. Gerstein and Benoit Mandelbrot, Random walk models for the spike activity of a single neuron, Biophysica l J. 4 (1964) , 41-68. 128. Benoi t Mandelbro t an d Howar d M . Taylor , On the distribution of stock price differences, Operation s Res. 1 5 (1967) , 1057-1062. 129. J . Husto n McCulloch , Continuous time processes with stable incre- ments, J. Business 51 (1978) , 601--619. 130. P . Medgyessy , On the characterization of the form of the graphs of distribution and density functions. I , II, Magyar Tud. Akad . Mat . Fiz . Oszt . Kozl. 1 4 (1964), 279-292; 17 (1967), 101-108. (Hungarian ) 131. R . R . Officer , The distribution of stock returns, J. Amer . Statist . Assoc. 67 (1972), 807-812. 132. I . A. Ovseevic h an d A . M . Yaglom , Monotone transfer processes in homogeneous long lines, Izv. Akad . Nau k SSS R Otdel. Tekhn . Nau k 1954 , no. 7 , 13-20. (Russian ) 133. Richar d Roll , The behavior of interest rates. An application of the efficient market model to U. S. Treasury bills, Basi c Books, New York, 1970. 134. Hilar y L. Seal, Stochastic theory of a risk business, Wiley , 1969. 135. V . I . Siforov , On noise buildup and fadeouts in main radio relay communications lines, Elektrosvyaz' 1956 , no. 5 , 6-17. (Russian ) 272 BIBLIOGRAPHY

136. Yu . B. Sindler, The accumulation of noise in FM radio relay commu- nications lines due to fading of the signal, Radiotekhn . i Elektron. 1 (1956), 627-637. (Russian ) 137. B. W. Stuck and B. Kleiner, A statistical analysis of telephone noise, Bell. Syste m Tech . J . 53 (1974) , 1263-1320. 138. I. G. Vitenzon, On the relative motion of a material point with variable mass, Khar'kov. Gos . Univ . Uchen . Zap . 2 4 = Zap . Nauchno-Issled . Inst . Mat. Mekh . i Khar'kov. Mat . Obshch . (4 ) 21 (1949) , 87-99. 139. L . J . Walpole , The elastic field of an inclusion in an anisotropic medium, Proc. Roy . Soc . Londo n Ser . A 300 (1967) , 270-289. 140. Janic e Moulton Westerfield , An examination of foreign exchange risk under fixed and floating rate regimes, J . Internat . Economic s 7 (1977) , 181 — 200. 141. V . M . Zolotare v an d B . M . Strunin, On the distribution of internal stresses under a random arrangement of point defects, Fiz. Tverd . Tel a 1 3 (1971), 594-596; English transl. i n Soviet Phys. Soli d State 1 3 (1971/72).

III. Estimators o f the parameters o f stable law s 142. Rut h W . Arad, Parameter estimation for symmetric stable distribu- tions, Internat. Econ . Rev . 2 1 (1980) , 209-220. 143. Rudol f Beran , Asymptotically efficient adaptive rank estimates in location models, Ann . Statist . 2 (1974) , 63-74. 144. Rober t C . Blattberg an d Nichola s J. Gonedes , A comparison of the stable and Student distributions as statistical models for stock prices, J. Busi- ness 47 (1974) , 244-280. 145. Robert Blattberg and Thomas Sargent, Regression with non-Gaussian stable disturbances: some sampling results, Econometrica 39 (1971) , 501-510. 146. P . J. Brockwel l and B. M. Brown, High-efficiency estimation for the positive stable laws, J . Amer . Statist . Assoc . 7 6 (1981) , 626-631. 147. J . L . Bryan t an d A . S . Paulson , Some comments on characteristic function-based estimators, Sankhya Ser. A 41 (1979) , 109-116. 148. Willia m H. DuMouchel, On the asymptotic normality of the maximum likelihood estimate when sampling from a stable distribution, Ann . Statist . 1 (1973), 948-957. 149. , Stable distributions in statistical inference. I: Symmetric stable distributions compared to other symmetric long-tailed distributions, J . Amer . Statist. Assoc . 6 8 (1973) , 469-477. 150. , Stable distributions in statistical inference. II : Information from stably distributed samples, J. Amer . Statist . Assoc . 7 0 (1975) , 386-393. BIBLIOGRAPHY 273

151. Eugen e F. Fama and Richard Roll, Parameter estimates for symmetric stable distributions, J. Amer . Statist . Assoc . 66 (1971) , 331-338. 152. Ala n Paul Fenech, Asymptotically efficient of location for a symmetric stable law, Ann . Statist . 4 (1976) , 1088-1100. 153. Andre y Feuerverger and Philip McDunnough, On some Fourier meth- ods for inference, J. Amer . Statist . Assoc . 7 6 (1981) , 379-387. 154. , On the efficiency of empirical characteristic function procedures, J. Roy . Statist . Soc . Ser . B 43 (1981) , 20-27. 155. J. L . Hodges, Jr., an d E. L. Lehmann, Estimates of location based on rank tests, Ann. Math . Statist . 3 4 (1963) , 598-611. 156. I . A. Ibragimov an d R . Z . Khas'minskii, Estimation of a distribution density, Zap. Nauchn . Sem . Leningrad . Otdel . Mat . Inst . Steklo v (LOMI ) 98 (1980) , 61-85; English transl. i n J. Sovie t Math. 2 1 (1983) , no. 1 . 157. I . Sh . Ibramkhalilov , Estimation of parameters of distributions, Izv . Akad. Nau k Azerbaidzhan. SS R Ser. Fiz.-Tekhn . i Mat. Nau k 1964 , no. 2 , 31-41. 158. , On estimates of functionally related parameters, Theor. Probab . Math. Statist . No . 6 (1975), 59-72.* 159. R . A. Leitch and A. S. Paulson, Estimation of stable law parameters: stock price behavior application, J. Amer. Statist . Assoc . 7 0 (1975), 690-697. 160. B . F. Loga n et al. , Limit distributions of self-normalized sums, Ann . Probab. 1 (1973), 788-809. 161. A . S . Paulson, E . W . Holcom b and R . A . Leitch, The estimation of the parameters of the stable laws, Biometrik a 62 (1975) , 163-170. 162. S . Jame s Press, Estimation in invariate and multivariate stable dis- tributions, J. Amer . Statist . Assoc . 67 (1972) , 842-846. 163. C . P. Quesenberry and H. A. David, Some tests for outliers, Biometrika 48 (1961) , 379-390. 164. J . C . Thornto n an d A. S . Paulson , Asymptotic distribution of char- acteristic function-based estimators for the stable laws, Sankhya Ser . A 39 (1977), 341-354. 165. G . J . Worsdale , The estimation of the symmetric stable distribution parameters, COMPSTAT 197 6 (Proc . Secon d Sympos . Comput . Statist. , West Berlin), Physica-Verlag, Vienna, 1976 , pp. 55-63 . 166. O . L. Yanushkyavichene [Janu§kevi£iene] , Investigation of certain pa- rameter estimates for stable distributions, Litovsk . Mat . Sb . 2 1 (1981) , no. 4, 195-209 ; English transl. i n Lithuanian Math. J . 21 (1981).

* Editor1 s note. Th e Russian text cites specifically th e English translation of this paper, not the Russian original. 274 BIBLIOGRAPHY

167. V . M. Zolotarev, Statistical estimates of the parameters of stable laws, Mathematical Statistics (R. Bartoszyriski et al., editors), Banach Center Publ. No. 6 , PWN, Warsaw , 1980 , pp. 359-376 . 168. , Integral transformations of distributions and estimates of pa- rameters of multidimensional spherically symmetric stable laws, Contributions to Probabilit y (Collectio n Dedicate d t o Eugen e Lukacs) , Academi c Press , 1981, pp. 283-305 .

IV. Limi t theorem s 169. A . Aleshkyavichene [Ale§kevi£iene] , A local limit theorem for sums of random variables connected in a homogeneous Markov chain in the case of a stable limit distribution, Litovsk . Mat . Sb . 1 (1961) , no. 1-2 , 5-13 ; English transl. i n Selecte d Transl. Math . Statist , an d Probab., vol. 7 , Amer. Math . Soc, Providence, R. I., 1968. 170. I . I . Banis [J . Banys], Convergence for densities in the L\ metric for a stable limit law in the two-dimensional case, Litovsk . Mat . Sb . 1 7 (1977), no. 1 , 13-18; English transl. i n Lithuanian Math . J . 1 7 (1977). 171. , An estimate of the rate of convergence in a local theorem in the multidimensional case, Litovsk . Math . Sb . 1 9 (1979) , no. 2 , 13-21 ; Englis h transl. i n Lithuanian Math . J . 1 9 (1979). 172. , A refinement of the rate of convergence to a stable law, Litovsk . Mat. Sb . 1 6 (1976) , no. 1 , 5-22; English transl. i n Lithuanian Math . J . 1 6 (1976). 173. , A refinement of the rate of convergence to a stable law in a local theorem in the multidimensional case, Litovsk . Mat . Sb . 1 6 (1976) , no. 3, 13-20 ; English transl. i n Lithuanian Math . J . 1 6 (1976). 174. , A refinement of the rate of convergence of densities to a stable law with characteristic exponent 0 < a < 1 in the Lp-metric, Litovsk . Mat . Sb. 1 8 (1978) , no. 2 , 21-27 ; Englis h transl . i n Lithuania n Math . Sb . 1 8 (1978). 175. , On the rate of convergence in a multidimensional local theorem in the case of a stable limit law, Litovsk . Mat . Sb . 1 3 (1973) , no. 1 , 17-22; English transl. i n Math. Trans . Acad . Sci . Lithuanian SS R 13 (1973). 176. , On a nonuniform estimate of the remainder term in the integral limit theorem, Litovsk . Mat . Sb . 1 4 (1974) , no. 3 , 57-65; English transl. i n Lituanian Math. Trans . 1 4 (1974). 177. , On an integral limit theorem for convergence to a stable law in the multidimensional case, Litovsk . Mat . Sb . 1 0 (1970) , 665-672. (Russian ) 178. R . Bartels, Generating non-normal stable variates using limit theorem properties, J. Statistica l Computatio n an d Simulatio n 7 (1978), 199-212. BIBLIOGRAPHY 275

179. Suji t K . Basu , On a local limit theorem concerning variables in the domain of normal attraction of a stable law of index a, 1 < a < 2 , Ann . Probab. 4 (1976) , 486-489. 180. Suji t K . Basu, Makoto Maejima and Nishith K. Patra, A nonuniform rate of convergence in a local limit theorem concerning variables in the domain of normal attraction of a stable law, Yokoham a Math. J . 27 (1979) , 63-72. 181. Suji t K. Basu and Makoto Maejima, A local limit theorem for attrac- tions under a stable law, Math. Proc . Cambridg e Philos . Soc . 8 7 (1980) , 179-187. 182. P . L . Butzer an d L. Hahn, General theorems on rates of convergence in distribution of random variables. II: Applications to the stable limit laws and weak law of large numbers, J. Multivariate Anal. 8 (1978) , 202-221. 183. Haral d Bergstrom , On distribution functions with a limiting stable distribution function, Ark. Mat . 2 (1952/53), 463-474. 184. , Limit theorems for convolutions, Almqvis t & Wiksell, Stock - holm, and Wiley , New York, 1963. 185. N . H. Bingham, Maxima of sums of random variables and suprema of stable processes, Z . Wahrsch. Verw . Gebiet e 26 (1973) , 273-296. 186. Virool Boonyasombut and Jesse M. Shapiro, The accuracy of infinitely divisible approximations to sums of independent variables with application to stable laws, Ann . Math . Statist . 4 1 (1970) , 237-250. 187. Ger d Christoph , Konvergenzaussagen und asymptotische Entwick- lungen fiir die Verteilungsfunktionen einer Summe unabhdngigery identisch verteilter Zufallsgrossen im Falle einer stabilen Grenzverteilungsfunktion, Zen - tralinst. Math . Mech . Akad . Wiss . DDR , Berlin, 1979. 188. , Uber notwendige und hinreichende Bedingungen fiir Konver- genzgeschwindigkeitsaussagen im Falle einer stabilen Grenzverteilung, Z . Wahrsch. Verw . Gebiet e 54 (1980) , 29-40. 189. , Uber die Konvergenzgeschwindigkeit im Falle einer stabilen Grenzverteilung, Math . Nachr . 9 0 (1979) , 21-30. 190. Harol d Cramer , On asymptotic expansions for sums of independent random variables with a limiting stable distribution, Sankhya Ser. A 25 (1963), 13-24, 216. 191. , On the approximation to a stable probability distribution, Stud - ies i n Math. Anal , an d Relate d Topic s (Essay s i n Hono r o f Georg e Polya), Stanford Univ . Press , Stanford, Calif. , 1962 , pp. 70-76 . 192. , Random variables and probability distributions, 2n d ed., Cam- bridge Univ. Press , 1962. 193. D . A. Darling, The influence of the maximum term in the addition of independent random variables, Trans . Amer . Math . Soc . 7 3 (1952) , 95-107. 276 BIBLIOGRAPHY

194. D . A . Darlin g an d P . Erdos , A limit theorem for the maximum of normalized sums of independent random variables, Duk e Math. J . 23 (1956), 143-155. 195. I . Dubinskaite [J . Dubinskaite], On the accuracy of approximation of distributions of sums of independent random variables by a stable distribution, Litovsk. Mat . Sb . 2 3 (1983) , no. 1 , 74-91 ; Englis h transl . i n Lithuania n Math. J . 23 (1983). 196. V . A. Egorov, On the rate of convergence to a stable law, Teor . Vero- yatnost. i Primenen. 2 5 (1980) , 183-190; English transl. i n Theory Probab. Appl. 2 5 (1980). 197. Willia m Feller, Fluctuation theory of recurrent events, Trans. Amer . Math. Soc . 67 (1947) , 98-119. 198. M . I . Fortus , A uniform limit theorem for distributions which are attracted to a stable law with index less than one, Teor . Veroyatnost . i Prime- nen. 2 (1957) , 486-487; English transl. i n Theor. Probab . Appl . 2 (1957). 199. B . V. Gnedenko, On the theory of domains of attraction of stable laws, Uchen. Zap . Moskov . Gos . Univ . Mat . 3 0 (1939) , 61-81. (Russian ; Englis h summary). 200. , On a local theorem for stable limit distributions, Ukrain . Mat . Zh. 1 (1949), no. 4 , 3-15. (Russian ) 201. B . V. Gnedenko and V . S. Korolyuk, Some remarks on the theory of domains of attraction of stable distributions, Dopovld l Akad . Nau k Ukrain. SSR 1950, 275-278. (Ukrainian ) 202. Pete r Hall , Two-sided bounds on the rate of convergence to a stable law, Z . Wahrsch. Verw . Gebiet e 57 (1981) , 349-364. 203. Yu . I . Igna t an d P. V . Slyusarchuk, On convergence to stable laws, Dokl. Akad . Nau k Ukrain SS R Ser. A 1977, 912-913. (Russian ) 204. N . Kalinauskaite , a ) On the upper and lower functions for stable random processes. I , Litovsk. Mat . Sb . 5 (1965) , 541-553. (Russian ) b) Upper and lower functions for sums of independent random variables with stable limit distributions, Litovsk . Mat . Sb . 6 (1966) , 249-256; English transl. i n Selected Transl. Math . Statist , an d Probab., vol. 10 , Amer. Math . Soc, Providence, R. I., 1972. 205. , Some properties of stable random processes, Litovsk . Mat . Sb . 4 (1964) , 493-495. (Russian ) 206. , On attraction to stable laws of Levy-Feldheim type, Litovsk. Mat. Sb . 1 4 (1974) , no . 3 , 93-105 ; Englis h transl . i n Lithuania n Math . Trans. 1 4 (1974). 207. Stephe n R . Kimbleton, A simple proof of a random stable limit theo- rem, J. Appl . Probab . 7 (1970), 502-504. BIBLIOGRAPHY 277

208. Miria m Lipschutz, On the magnitude of the error in the approach to stable distributions. I , II, Nederl. Akad . Wetensch . Proc . Ser . A 59 = Indag . Math. 1 8 (1956) , 281-287, 288-294. 209. Makot o Maejima , A nonuniform estimate in the local limit theorem for densities. II, Yokohama Math. J . 26 (1978) , 119-135. 210. Masatom o Udagawa , On some limit theorems for sums of identically distributed independent random variables, Koda i Math. Sem . Rep . 8 (1956), 85-92. 211. J . David Mason , Convolutions of stable laws as limit distributions of partial sums, Ann. Math . Statist . 4 1 (1970), 101-114. 212. A . A . Mitalauskas , On a local limit theorem in the case of a stable limit distribution, Litovsk . Mat . Sb . 1 (1961), 131-139. (Russian ) 213. , On a local limit theorem for stable distributions, Teor . Vero - yatnost. i Primenen. 7 (1962) , 185-190 ; Englis h transl . i n Theor. Probab . Appl. 8 (1962). 214. , An asymptotic expansion for independent random variables in the case of a stable limit distribution, Litovsk . Mat . Sb . 3 (1963) , 189-193. (Russian) 215. , On an integral limit theorem for covergence to a stable limit law, Litovsk . Mat . Sb . 4 (1964) , 235-240. (Russian ) 216. , On an estimate of the rate of convergence in an integral limit theorem in the case of a stable limit distribution, Litovsk . Mat . Sb . 6 (1966), 85-90. (Russian ) 217. A . A. Mitalauskas and V . A. Statulyavichus [StatuleviCius] , On local limit theorems. I , Litovsk . Mat . Sb . 1 4 (1974) , no . 4 , 129-144 ; Englis h transl. i n Lithuanian Math. Trans . 1 4 (1974). 218. , An asymptotic expansion in the case of a stable approximat- ing law, Litovsk. Mat . Sb . 1 6 (1976) , no . 4 , 149-166 ; Englis h transl . i n Lithuanian Math. J . 1 6 (1976). 219. Thoma s A. O'Connor, Some classes of limit laws containing the stable distributions, Z . Wahrsch. Verw . Gebiet e 55 (1981) , 25-33. 220. Ouyan g Guang-Yirong , On limit theorems and stable limit distribu- tions for sums of a random number of independent random variables, Act a Sci. Nat . Univ . Fuda n 10 (1956), no. 1 , 1-8. (Chinese ) 221. V . I. Paulauskas, Estimation of the remainder term in a limit theorem in the case of a stable limit law, Litovsk. Mat . Sb . 1 4 (1974), no. 1 , 165-187; English transl. i n Lithuanian Math. Trans . 1 4 (1974). 222. , Some nonuniform estimates in limit theorems of probability theory, Dokl. Akad . Nau k SSS R 21 1 (1973) , 791-792 ; Englis h transl . i n Soviet Math. Dokl . 1 4 (1973). 278 BIBLIOGRAPHY

223. , On estimates of the rate of convergence in limit theorems by means of pseudomoments, Dokl . Akad . Nau k SSS R 19 9 (1971) , 26-29; En- glish transl. i n Soviet Math. Dokl . 1 2 (1971). 224. , Uniform and nonuniform estimates of the remainder term in a limit theorem with a stable limit law, Litovsk . Mat . Sb . 1 4 (1974) , no. 4 , 171-185; English transl. i n Lithuanian Math . Trans . 1 4 (1974). 225. , On the rate of convergence in a multidimensional limit theorem in the case of a stable limit law, Litovsk. Mat . Sb . 1 5 (1975), no. 1 , 207-228; English transl. i n Lithuanian Math. J . 1 5 (1975). 226. R . N . Pillai , Semistable laws as limit distributions, Ann. Math . Statist. 4 2 (1971) , 780-783. 227. Yu . V . Prokhorov, A local theorem for densities, Dokl. Akad . Nau k SSSR 83 (1952) , 797-800. (Russian ) 228. G . N. Sakovich, A single form of attraction to stable laws, Teor. Veroy - atnost. i Primenen. 1 (1956) , 357-361 ; Englis h transl . i n Theor . Probab . Appl. 1 (1956). 229. K . I . Satybaldina , On the question of estimating the rate of con- vergence in a limit theorem with a stable limit law, Teor. Veroyatnost . i Primenen. 1 8 211-212; English transl. i n Theor. Probab . Appl . 1 8 (1973). 230. , Absolute estimates of the rate of convergence to stable laws, Teor. Veroyatnost . i Primenen . 1 7 (1972) , 773-775 ; Englis h transl . i n Theory Probab. Appl . 1 7 (1972). 231. , The influence of the smoothness of the distribution function of a random variable on an estimate of the rate of convergence to a stable limit law, Theoretica l and Applied Problems in Mathematics and Mechanics (T. I. Amanov, editor), "Nauka" , Alma-Ata, 1979 , pp. 198-202 . (Russian ) 232. Jess e M. Shapiro, On the rate of convergence of distribution functions of sums of reciprocals of random variables to the Cauchy distribution, Houston J. Math . 4 (1978) , 439-445. 233. V . A. Statulyavichus [Statulevifcius] , On limit theorems in the case of a stable limit law, Litovsk. Mat . Sb . 7 (1967) , 321-328 ; English transl . i n Selected Transl . Math . Statist , an d Probab. , vol . 11 , Amer. Math . Soc , Providence, R . I., 1973. 234. Charle s Stone, Local limit theorems for asymptotically stable distribu- tion functions, Notices Amer. Math . Soc . 1 2 (1964) , 465. 235. S . G . Tkachuk , A theorem on large deviations in Rs in the case of a stable limit law, Rando m Processe s an d Statistica l Inference , vyp . 4 , "Fan" , Tashkent, 1974 , pp. 178-184 . (Russian ) BIBLIOGRAPHY 279

236. , Local limit theorems taking into account large deviations in the case of stable limit laws, Izv . Akad . Nau k UzSS R Ser . Fiz.-Mat . Nau k 1 7 (1973), no. 2 , 30-33. (Russian ) 237. Howar d G . Tucker , Convolutions of distributions attracted to stable laws, Ann . Math . Statist . 3 9 (1968) , 1381-1390. 238. P . Vaitkus, On large deviations of sums of random variables in the case of a stable limit law, Litovsk . Mat . Sb . 1 2 (1972) , no. 1 , 85-97. (Russian ) 239. N . A. Volodin , Estimates in a weak form of a local limit theorem for the case of a stable distribution, Limit Theorems and Mathematical Statistic s (S. A. Sirazhdinov, editor), "Fan" , Tashkent, 1976 , pp. 32-36 . (Russian ) 240. Stephe n Jame s Wolfe , A note on the complete convergence of stable distribution functions, Ann. Math . Statist . 4 3 (1972) , 363-364. 241. V . M. Zolotarev, On the choice of normalizing constants in increasing sums of independent random variables, TVud y Moskov. Fiz.-Tekhn . Inst . 7 (1961), 158-161. (Russian ) 242. , On a new viewpoint of limit theorems taking in account large deviations, Proc . Sixt h All-Unio n Conf . Theor . Probab . an d Math. Statist . (Vilnius, 1960) , Gos . Izdat . Politichesk . i Nauchn . Lit . Litovsk . SSR , Vilnius, 1962 , pp. 43-47 ; English transl. i n Selecte d Transl . Math . Statist , and Probab., vol. 9 , Amer. Math . Soc , Providence, R. I., 1971. 243. , An analogue of the Edgeworth-Cramer asymptotic expansion for the case of convergence to stable distribution laws, Proc. Sixt h AU-Union Conf. Theor. Probab . an d Math. Statist . (Vilnius , 1960) , Gos. Izdat . Politichesk . i Nauchn. Lit . Litovsk . SSR , Vilnius, 1982, pp. 49-50. (Russian ) 244. , An analogue of the law of the iterated logarithm for semicon- tinuous stable processes, Teor . Veroyatnost . i Primenen. 9 (1964) , 566-567; English transl. i n Theor. Probab . Appl . 9 (1964).

V. Supplementar y reference s 245. Georg e W . Brown and John W . Tukey, Some distributions of sample means, Ann. Math . Statist . 1 7 (1946) , 1-12 . 246. J . M . Chambers , C . L . Mallow s an d B . W . Stuck , A method for simulating stable random variables, J. Amer . Statist . Assoc . 7 1 (1976) , 340-344. 247. Wolfgan g Gawronski , On the bell-shape of stable densities, Ann. Probab. 1 2 (1984) , 230-242. 248. A . V . Nagae v an d S . M . Shkol'nik , An invariant estimation of the characteristic parameter of a stable law, Manuscript No . 23 3 Uz-8 4 Dep , deposited at the UzNIINTI, Tashkent, 1 4 November 1984 . (Russian ) 280 BIBLIOGRAPHY

249. , On a family of probability distributions, Mat. Zametk i 3 7 (1985), 594-598; English transl. i n Math. Note s 37 (1985). 250. V . I . Paulauskas , Convergence to stable laws and their simulation, Litovsk. Mat . Sb . 2 2 (1982) , no. 3 , 146-156 ; English transl. i n Lithuania n Math. J . 2 2 (1982) . 251. A . P. Prudnikov, Yu . A . Bychkov an d O . I. Marichev , Integrals and series, "Nauka", Moscow , 1981 . (Russian ) 252. Hirotaka Sakasegawa, On a generation of normal pseudo-random num- bers, Ann . Inst . Statist . Math . 3 0 (1978) , 271-279. 253. G . Udny Yule, A mathematical theory of evolution, based on the con- clusions of Dr. J. C. Willis, F. R. S., Philos. Trans . Roy . Soc . Londo n Ser . B 213 (1925) , 21-87. 254. J. C . Willis, Age and area, Cambridg e Univ. Press , 1922. List of Notation (* )

9DT, class o f M-infinitel y divisibl e G(x, a, /3) = G(i , a, 0,0,1), D F o f a distributions standard SD , i n the for m (B) 6, famil y o f SD' s beginning wit h §2. 2 2JJ, class o f strictly SD' s 6, a parameter—the degre e o f ass y met ry QUi, class o f distributions i n 2 B with of an S D i n the form s (C) an d (E) Ac = l p— ( 1 + 9)/2, a parameter replacin g th e <5, class o f IDL' s parameter 9 i n th e for m (C ) A = A# , A ,4, a parameter—the tim e i n v — lie?, a parameter replacin g th e stable processes , an d the scal e parameter a i n the for m (E) parameter fo r strictl y SD' s (i n th e r, a parameter responsibl e fo r scal e form (£), (A)) changes o f a n SD i n th e for m (E) P = 0B,PA, a parameter—the degre e o f K(a, /? , 7, A), a random variabl e with S D in the for m (B) (sometime s als o i n asymmetry o f a n S D (i n the for m the for m (A), i f explicitl y (B), (A) ) mentioned) 7 = IB J 1A > th e bia s characteristi c o f Y(a,0) = y(a,/3,0,1) , a random variabl e an SD (i n th e for m (£), (A)) fo r with a standard SD , i n the for m (B ) fixed A beginning with §2. 2 K(a) = a - 1 + e(a ) = sgn( l - a) , Y(a,9) ~ Yc{oL)9), a random variabl e functions i n certain form s o f with strictl y S D i n the for m (C ) an d expression fo r the C F o f a n S D with D F Gc(z,a,0 ) 0A(*,a,/3,7,A) = g(t) , th e C F o f an S D Z(a, p) , a cutof f o f a rando m variabl e with paramete r syste m i n the for m Y(«,9) (A) Y^a), abbreviate d notatio n fo r a rando m a, th e mai n parameter o f an SL , the sam e variable Y(a, 1 ) fo r 0 < a < 1 in all the form s excep t fo r the for m M(s, a,p), th e Melli n transfor m o f th e (E) density o f the S D o f a variabl e g(x, a, /3,7, A), the densit y o f a n S D Z(a,p) corresponding t o th e for m (A) o r iufc(3, a, 0), k = 0,1 , a n element o f th e (B) characteristic transfor m o f the S D g(x, a, (3) = g(x, a , /5,0,1), th e densit y o f with densit y gc(z>Q!,0 , A) a standar d SD , i n the for m (B) E, a rando m variabl e wit h D F beginning wit h §2. 2 1 — exp(—x), x > 0 G{x, a , /3,7, A), DF o f a n S D

(*)Abbreviations: ID L = infinitel y divisibl e law ; S D (SL ) = stabl e distributio n (stabl e law); C F = characteristi c function ; D F = distributio n function .

281 This page intentionally left blank Subject Inde x (* )

Airy function, 156 , 171 Distribution functio n o f an SD, represen- Analytic extension o f the CF of a n SL, 67 tation b y integrals, 71, 78, 97 Asymptotic expansions of the density of of an SD, representation an SL, 94, 99, 101 , 104, 106 , 107, by series, 89 165 of an SD, value at zero, of the DF o f an SL, 94, 79 95, 99, 106 , 107 , 16 2 , strongly unimodal , 13 4 Holtsmark, 1 , 41, 254 Bell polynomials, 98, 162 , 213 Levy, 66 Lorentz, 29 Canonical representatio n o f the C F of a normal, 5 , 66, 80, 204 multidimensional SL , 19 , 21 spherically symmetric , 1 , 23 of the C F of an IDL, 4 stable, 6 of the CF of a one- , extremal, 18 , 202 dimensional SL , 7, 9, 12 , 17 , properties of, 59-6 3 Characterization o f SD's, 6, 1 4 , standard of , 5 9 of strictly SD's , 1 6 strictly stable, 6, 1 5 Class L, 257 Cutoff o f a random variable, 18 4 Domain of admissible parameter values, 59 Duality law , 82, 84, 86 Density o f an SD, derivatives, 13 , 80, 81 of an SD, representation by convergent series, 89 Equations fo r SD's, differential, 15 3 of an SD, representation by for SD's, integral, 14 8 integrals, 66, 70, 72, 74, 83, 97, 11 0 for SD's, integro-differential, 149 , of an SD, representation b y series 151, 15 2 in Laguerre polynomials, 92 Estimators fo r parameters o f SD's, of an SD, value at zero, 71 asymptotically efficient , 245 , 247 Distribution, Breit-Wigner, 2 9 for parameters of SD's, , Cauchy, 29, 66 asymptotically unbiased , 226 , 229, , , multidimensional, 28, 233, 234, 239 42,46 . for parameters o f SD's, , exponential, 160 , 203 1/v/n-consistent, 225, 229, 234, 239, 242 (*)Abbreviations: ID L = infinitel y divisibl e law; SD (SL ) = stabl e distribution (stabl e law); CF = characteristi c function ; DF = distribution function .

283 284 SUBJECT

Fractional differentiation , 150 , 25 8 Transform, characteristic , 10 9 integration, 149 , 25 8 , , of a strictly SD , 120 , 219 M-infinite divisibilit y o f a n SD, 21 1 , , representation b y a of a cutoff o f an SD, 20 9 power series, 21 9 M-infinitely divisibl e distribution , 20 8 , Mellin, o f a cutoff, 186 Mittag-Leffler function , 16 9 , , o f a strictly SD , 11 7 Mode o f a n SD, 14 0 , , of a trans-stabl e Moments o f a n SD, absolute , 6 3 distribution, 17 8 of a n SD , logarithmic , 21 3 , one-sided Laplace , o f a n SD , 113, 16 7 Order o f a n entir e function , 9 0 , two-sided Laplace , o f a n SD , of the entir e function Q(z, a , /?), 108, 111 , 11 2 90 , , of a trans-stable distribution , 17 8 Trans-stable distribution , 17 9 Parameters o f SD's, connections fo r th e function, 17 4 various forms , 12 , 17 , 1 8 Type o f a n entire function , 9 0 of SD' s i n the form s (A), (£) , of the entir e functio n Q(z, a , 0), (C), etc, 9 , 11 , 12 , 1 7 90

Spectral functio n o f a n IDL , 4 Unimodality o f a DF, a criterion for , 123 , Spectral functio n o f an SD , 7 124, 126 , 146 of a n SD, 13 4 Theorem, Gnedenko , 4 of extremal SD's , 12 9 , Khintchine, 4 of symmetric SD's , 12 8 Theorems, multiplicatio n an d division , 194 , equivalence, 18 7 Copying an d reprinting . Individua l reader s o f thi s publication , an d non - profit librarie s actin g fo r them , ar e permitte d t o mak e fai r us e o f th e material , such a s t o cop y a chapte r fo r us e i n teachin g o r research . Permissio n i s grante d to quot e brie f passage s fro m thi s publicatio n i n reviews , provide d th e customar y acknowledgment o f the source i s given. Republication, systemati c copying , o r multipl e reproductio n o f an y materia l in thi s publicatio n (includin g abstracts ) i s permitte d onl y unde r licens e fro m th e American Mathematical Society . Request s fo r such permission should be addressed to the Assistant t o the Publisher, America n Mathematical Society , P . O. Box 6248, Providence, Rhod e Islan d 02940-6248 . Request s ca n als o b e mad e b y e-mai l t o reprint -permissionQams. org.