Mmono065-Endmatter.Pdf

Mmono065-Endmatter.Pdf

One-dimensional Stable Distributions This page intentionally left blank 10.1090/mmono/065 TRANSLATIONS OF MATHEMATICAL MONOGRAPHS VOLUME 65 V. M. Zolotarev One-dimensiona l Stabl e Distribution s ))§ American Mathematical Society BJIAJJHMHP MHXAHJ10BH H 30J10TAPE B OtfHOMEPHBIE yCTOMHHBLI E PACriPEflEJlEHHJ I «HAYKA», MOCKBA , 198 3 Translated fro m th e Russia n b y H . H. McFade n Translation edite d b y Be n Silve r 2000 Mathematics Subject Classification. Primar y 60E07 . ABSTRACT. Th e class of stable distributions, which includes normal distributions an d Cauchy distributions , i s one o f the most important classe s in probability theory . I n recent years ther e ha s bee n a n intensiv e expansio n o f th e circl e o f practica l problem s i n whic h stable distribution s appea r i n a natura l wa y (suc h mathematica l model s ca n b e foun d i n engineering, physics, astronomy, and economics). Th e present book i s the first—not only in this country bu t als o abroad—to b e specificall y devote d t o a systematic expositio n o f the essential facts now known about properties of stable distributions and methods of statistical treatment o f them. Als o included here are some of the practically usefu l model s connected with stable distributions. Thi s book is intended fo r experts in the area of probability theory and its applications, fo r engineers , and fo r students i n university graduat e courses. Illustrations: 7 Bibliography: 25 4 titles Library o f Congres s Cataloging-in-Publicatio n Dat a Zolotarev, V. M. One-dimensional stabl e distributions. (Translations o f mathematical monographs , ISSN 0065-9282; v. 65) Translation of : Odnomerny e ustolchivy e raspredelenifa . Bibliography: p. 263 Includes index. I. Distributio n (Probabilit y theory ) I . Title . II . Series . QA273.6.Z6413 198 6 519. 2 86-1094 3 ISBN 0-8218-4519- 5 © Copyrigh t 198 6 by the American Mathematical Society . Al l rights reserved . Printed i n the United States o f America. The American Mathematical Societ y retains al l rights except thos e granted to the United State s Government . Copying an d reprinting information ca n be found a t the back o f thi s volume. © Th e paper use d i n this book i s acid-free an d fall s within the guideline s established to ensure permanence and durability . Visit the AMS home page at URL : http://www.ams.org/ 10 9 8 7 6 5 4 0 4 03 02 01 Contents Foreword Introduction Chapter 1 . Examples o f the occurrence o f stable laws in applications 1.0. Introductio n 1.1. A model o f point source s o f influenc e 1.2. Stabl e laws in problems in radio engineering and electronics 1.3. Stable laws in economics and biology Chapter 2 . Analytic properties o f distributions in the family 6 2.1. Elementary propertie s o f stable laws 2.2. Representation o f stable laws by integral s 2.3. The duality la w in the class o f strictly stable distribution s 2.4. The analytic structure o f stable distributions an d their representation b y convergent serie s 2.5. Asymptotic expansion s o f stable distributions 2.6. Integral transformations o f stable distributions 2.7. Unimodality o f stable distributions. The form o f the densities 2.8. Stable distributions as solutions o f integral, integrodifferential , and differential equation s 2.9. Stable laws as functions o f parameters 2.10. Densities o f stable distributions a s a class o f special function s 2.11. Trans-stable function s an d trans-stable distribution s Chapter 3 . Special properties o f laws in the class 2D 3.0. Introduction 3.1. The concept o f a cutoff o f a random variabl e 3.2. The random variables Y(a,0) an d Z(a, p). Equivalenc e theorem s 3.3. The random variable s Y(a,6) an d Z(a,p). Multiplicatio n an d division theorems V VI CONTENTS 3.4. Properties o f extremal strictly stabl e distribution s 3.5. M-infinite divisibilit y o f the distributions o f the variables Y(a, 0) and Z(a, p) 3.6. The logarithmic moments o f Y(a) 9) and Z(a,p) Chapter 4 . Estimators o f the parameters o f stable distributions 4.0. Introduction 4.1. Auxiliary fact s 4.2. Estimators o f parameters o f distributions i n the class 2B 4.3. Estimators o f parameters o f distributions i n the famil y 6: th e parameters a, /? , and A 4.4. Estimators o f the parameter 7 4.5. Discussion o f the estimators 4.6. Simulation o f sequences o f stable random variable s Comments Bibliography List o f Notation Subject Inde x Foreword I begi n m y first boo k wit h word s o f gratitud e an d dee p respec t fo r m y father, Mikhai l Ivanovic h Zolotarev , whos e whol e lif e ha s bee n connecte d with th e Sovie t Arm y fro m th e momen t o f it s formation . Thi s monograp h is dedicated t o him . More tha n 5 0 year s hav e passe d sinc e th e appearanc e o f th e concep t o f a stabl e distributio n i n Pau l Levy' s 192 5 boo k Calcul des probabilites. Ou r knowledge abou t th e propertie s o f these remarkabl e probabilit y law s has b y now becom e s o muc h riche r tha t i t coul d fill severa l monographs . However , no monograph dealin g specificall y wit h stabl e law s has ye t appeared . Ther e are numerous an d divers e result s relatin g t o stabl e law s scattered i n journa l articles or , a t best , appearin g a s auxiliar y section s o r chapter s i n book s o n other branche s o f probability theory . Fo r example , informatio n abou t limi t theorems fo r sum s o f independent rando m variable s whe n the limi t distribu - tions are stable laws can be found i n the well-known monographs o f Gnedenko and Kolmogoro v [26] , Feller [22] , Ibragimov an d Linni k [35] , and Petro v [65] . The mai n par t o f the result s abou t characterizin g stabl e law s i s i n the boo k of Kagin, Linnik , an d Ra o [38] . A number o f facts reflectin g th e analyti c properties o f stable laws are con- tained i n th e Felle r an d Ibragimov-Linni k monographs , th e boo k o f Lukac s [54], and the well-known survey article of Holt and Crow [31] . Som e properties of homogeneous stable processes with independent increment s are included i n Skorokhod's boo k [77] . Nevertheless, this information abou t stable laws is of a nonsystematic, frag - mentary nature and does not permit one to form a sufficiently complet e picture of th e contemporar y leve l o f knowledg e i n an y particula r direction . Thi s i s apparently explaine d an d t o a certain exten t justifie d b y th e fac t that , wit h rare exceptions , stabl e law s di d no t find application s fo r a lon g time . How - ever, th e situatio n change d i n th e 1960 s afte r th e appearanc e o f a serie s o f papers b y Mandelbrot an d hi s successors, who sketched th e use o f stable law s Vll Vlll FOREWORD in certai n economi c models . An d ther e i s no w a basi s fo r believin g tha t th e role o f these law s i n the area s o f economics, sociology , an d biolog y wher e th e Zipf-Pareto distributio n appear s wil l gro w i n the future . Fo r that t o happen , of course, a systematization an d more thorough expositio n o f the known fact s are needed . By wa y o f a preliminar y classification , thes e fact s can , i n ou r view , b e divided int o the followin g fou r groups . 1. Limit theorem s fo r sums o f independent (o r dependent i n a special way ) random variables , alon g wit h variou s refinement s o f them suc h a s estimate s of the rat e o f convergence t o limitin g stabl e distribution s i n divers e metrics , asymptotic expansions , larg e deviations , etc. , a s wel l a s propertie s o f stabl e processes with independen t increments . 2. Characterization o f stable distributions . 3. Analytic propertie s o f stable distributions . 4. Statistica l problem s associate d wit h stabl e distribution s (estimator s o f the parameters determining these distributions, problems involving hypothesis testing, an d s o on).

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    47 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us