GC-MS Analysis of Citrus Limetta Risso (Sweet Lime) Peel Extract

Total Page:16

File Type:pdf, Size:1020Kb

GC-MS Analysis of Citrus Limetta Risso (Sweet Lime) Peel Extract The Pharma Innovation Journal 2018; 7(6): 01-04 ISSN (E): 2277- 7695 ISSN (P): 2349-8242 NAAS Rating: 5.03 GC-MS analysis of Citrus limetta Risso (Sweet lime) TPI 2018; 7(6): 01-04 © 2018 TPI peel extract www.thepharmajournal.com Received: 01-04-2018 Accepted: 02-05-2018 Shree Dhar Gautam Shree Dhar Gautam Department of Chemistry, Abstract Amrit Campus, Tribhuvan Hydro distillation process was used to extract the essential oils of dried peels of Citrus limetta Risso University, Lainchour, (sweet lime) in Clevenger apparatus. The composition of essential oil so collected were determined by Kathmandu, Nepal GC-MS system and showed the presence of ten different compounds. The most abundant were D- Limonene (92.35%), β-Myrcene (2.43%), and β-Linalool (1.27%). Keywords: Sweet lime, Citrus limetta Risso, essential oil, GC-MS Introduction Citrus limetta Risso (sweet lime) is commonly known as 'Mousam' in Nepal. It belongs to the Rutaceae family, citrus genera, limetta species and Risso variety. Rutaceae family consists of approximately 140 genera and 1,300 species. Citrus are produced in many countries all around [1] the world with tropical or subtropical climate. Plant is about five members high. Leaves are short stalked, long, elliptic. Flowers are white and fragrant. The Citrus limetta is an edible fruit with oval and spherical shape with a greenish yellow peel [2, 3]. Citrus fruit finds its place as the major constituent product of the juice and the food industry around the world. The fruit peel is the major source of flavonoids, pectin, and essential oils [4]. [1] Citrus oils are a good source of unsaturated fatty acids . The oils are generally composed of 90% terpenes, 5% oxygenated compounds and less than 1% non-volatile compounds such as waxes and pigments. The α-thujene, α-pinene, camphene, sabinene, β-pinene, myrcene, - terpinene, p-cymene, linalool, and D-limonene are the most abundant terpenes [5]. The fruit of citrus are used for human consumption, and it has also been used for cholesterol control and inflammation regulation as well as digestive disorders and as a modulator of blood [2] pressure . The fruit juice is used in biliousness affections and bilious diarrhoea. The fruit purifies blood, allys thirst in fevers and improves appetite [3]. Traditionally it has been widely used in the treatment of the scurvy, indigestion, constipation, diabetes, ulcers, urinary disorder and for the improvement of the immune system. The essential oils show antimicrobial, [4] antioxidant and anti-inflammatory activities . The essential oils of citrus fruit contain components with pleasant sensory characteristics that are appreciated in pharmaceutical and cosmetics industries [5]. Experimental Collection of Plant Materials The plant material (fruit’s peel) was collected from Sindhuli District of Nepal. The plants were identified by Department of Botany, Amrit Campus, Lainchour, Kathmandu, Nepal. Extraction of Essential Oil The mature fruit’s peels of Citrus limetta Risso were crushed for hydro distillation and subjected to a Clevenger apparatus for three hours. By this process about 2 mL of pale yellow coloured essential oils were collected and stored in a sealed glass vials at low temperature (0-4 oC) prior to analysis. Correspondence GC-MS Analysis Shree Dhar Gautam The essential oils sample of Citrus limetta Risso was subjected to GC-MS analysis. GC-MS Department of Chemistry, analysis was performed on a gas chromatography mass spectrometer GCMS-QP2010 under Amrit Campus, Tribhuvan the following condition: injection volume 1μL with split ratio 1:50; Helium as a carrier gas University, Lainchour, with a Rtx-5MS column of dimension 30m0.25mm0.25μm, temperature programmed at 40, Kathmandu, Nepal ~ 1 ~ The Pharma Innovation Journal 200 and 280 oC with a hold time of 2.0, 3.0 and 4.0 min Result and Discussion identification was accompanied by comparison of MS with GC-MS analysis of essential oils of the Citrus limetta Risso those reported in NIST 05 and FFNSCI. 3 libraries. It was showed the presence of ten different compounds. The performed in Department of Food Technology and Quality chemical compounds identified in essential oils of the fruit’s Control, Nepal Government, Babarmahal, Kathmandu, Nepal. peel of Citrus limetta Risso are presented below: Fig 1: Chromatogram of essential oils of fruits of Citrus limetta Risso The major constituents present in the essential oils of the β-Linalool (1.27%). The constituents of essential oils of sample were D-Limonene (92.35%), β-Myrcene (2.43%), and Citrus limetta Risso are tabulated as follows. Table 1: List of compounds in essential oils of Citrus limetta Risso S.N. Name of the compounds Molecular Formula Molecular Weight Retention Time Area % Height % 1. Benzocyclobutene C8H8 104 6.279 0.26 0.37 2. α-Pinene C10H16 136 7.048 0.66 1.14 3. Sabinene C10H16 136 7.755 0.86 1.45 4. β-Pinene C10H16 136 7.825 0.42 0.74 5. β-Myrcene C10H16 136 8.027 2.43 4.25 6. Octanal C8H16O 128 8.244 0.73 0.90 7. δ-Carene C10H16 136 8.394 0.55 0.95 8. D-Limonene C10H16 136 8.748 92.35 87.41 9. β-Linalool C8H18O 154 9.849 1.27 1.97 10. Caryophyllene C15H24 204 14.616 0.48 0.82 100.00 100.00 The following are the mass spectral data of constituents identified by GC-MS. Fig 2: Mass spectral data of Benzocyclobutene Fig 3: Mass spectral data of -Pinene ~ 2 ~ The Pharma Innovation Journal Fig 4: Mass spectral data of Sabinene Fig 5: Mass spectral data of -Pinene Fig 6: Mass spectral data of -Myrcene Fig 7: Mass spectral data of Octanal Fig 8: Mass spectral data of -Carene ~ 3 ~ The Pharma Innovation Journal Fig 9: Mass spectral data of D-Limonene Fig 10: Mass spectral data of -Linalool Fig 11: Mass spectral data of Caryophyllene Conclusion in Nepal. Mass Printing Press, Chhauni, Kathmandu, GC-MS analysis of essential oils of Citrus limetta Risso 2006, 394. showed the presence of 10 different compounds. The major 4. Khan AA, Mahmood T, Siddiqui HH, Akhtar J. constituents present in the essential oils sample were D- Phytochemical and Pharmacological Properties on Citrus Limonene (92.35%), β-Myrcene (2.43%), and β-Linalool limetta (Mosambi). J Chem Pharma Res. 2016; 8(3):555- (1.27%). 563. 5. Colecio-Juarez MC, Rubio-Nunez RE, Botello-Alvarez Acknowledgement JE, Martinez-Gonzalez GM, Navarrete-Bolanos JL, I am very much grateful to Dr. R.L. Shrestha for providing Jimenez Islas H. Characterization of Volatile Compounds laboratory facilities at Kathmandu Valley College, Chhauni, in the Essential Oil of Sweet Lime (Citrus limetta Risso). Kathmandu. My thanks goes to the Department of Food Chilean J Agric Res. 2012; 72(2):275-280. Technology and Quality Control, Babarmahal, Kathmandu for GC-MS analysis of the sample. References 1. Anwar F, Rehana N, Bhanger MI, Ashraf S, Talpur FN, Aladedunye FA. Physico-Chemical Characteristics of Citrus Seeds and Seed Oils from Pakistan. J Am Oil Chem Soc. 2008; 85(4):321-330. 2. Padilla-Camberos E, Lazcano-Díaz E, Flores-Fernandez JM, Owolabi MS, Allen K, Villanueva-Rodríguez S. Evaluation of the Inhibition of Carbohydrate Hydrolyzing Enzymes, the Antioxidant activity, and the Polyphenolic Content of Citrus limetta Peel Extract. The Scientific World Journal, 2014; 2014:1-4. 3. Baral SR, Kurmi PP. A Compendium of Medicinal Plants ~ 4 ~ .
Recommended publications
  • Fruits; Fresh Vegetables and Fresh Limes” (Opp
    Trademark Trial and Appeal Board Electronic Filing System. http://estta.uspto.gov ESTTA Tracking number: ESTTA881622 Filing date: 03/07/2018 IN THE UNITED STATES PATENT AND TRADEMARK OFFICE BEFORE THE TRADEMARK TRIAL AND APPEAL BOARD Proceeding 91238258 Party Plaintiff Wonderful Citrus LLC Correspondence DARYA P LAUFER ESQ Address ROLL LAW GROUP PC 11444 WEST OLYMPIC BLVD LOS ANGELES, CA 90064 UNITED STATES Email: [email protected], [email protected] Submission Other Motions/Papers Filer's Name Michael M. Vasseghi Filer's email [email protected], [email protected] Signature / Michael M. Vasseghi / Date 03/07/2018 Attachments Opposition with Exhibits-reduced size.pdf(1950576 bytes ) IN THE UNITED STATES PATENT AND TRADEMARK OFFICE TRADEMARK TRIAL AND APPEAL BOARD Wonderful Citrus LLC, Opposition No. 91238258 Opposer, Application Serial No. 87/472272 v. APB, Inc. dba Vision Produce Company, Applicant. OPPOSER WONDERFUL CITRUS LLC’S OPPOSITION TO APPLICANT’S MOTION FOR JUDGMENT ON THE PLEADINGS I. INTRODUCTION Applicant moves for judgment on the pleadings (“Motion”), arguing that “there is no genuine issue as to Opposer’s lack of prior rights in a trademark that could be confusingly similar to Applicant’s Mark.” (Motion pg. 3.)1 Applicant’s Motion is not well taken. It acknowledges that Opposer has alleged exactly what it takes issue with – that Opposer has prior rights in a trademark that could be confusingly similar to Applicant’s Mark. Despite this, Applicant seeks to take issue with those allegations, implicitly contending that Opposer will be unable to prove what it has alleged. (Motion pg. 2.) This is not a proper basis for judgment on the pleadings, which must accept as true all allegations asserted in the Opposition.
    [Show full text]
  • Citrus Limetta (Sweet Lemon, Mediterranean Sweet Lemon) Citrus Limetta Is a Small Tree with Lemon-Like Shape That Can Reach up to 8 M in Height
    Citrus limetta (Sweet lemon, Mediterranean sweet lemon) Citrus limetta is a small tree with lemon-like shape that can reach up to 8 m in height. It has irregular branches, and relatively smooth, brownish-grey bark. It possesses numerous thorns. The leaves are more rounded and oval than an orange tree. Blossoms and new leaves are bright purple Landscape Information French Name: Limettier ﻟﻴﻤﻮﻥ ﺣﺎﻣﺾ :Arabic Name Pronounciation: SIT-rus lime-ET-ta Plant Type: Tree Origin: Asia Heat Zones: 9, 10, 11 Hardiness Zones: 10, 11, 12 Uses: Mass Planting, Container, Edible Size/Shape Tree Shape: Canopy Symmetry: Irregular Height at Maturity: 1.5 to 3 m Plant Image Spread at Maturity: 3 to 5 meters, 5 to 8 meters Citrus limetta (Sweet lemon, Mediterranean sweet lemon) Botanical Description Foliage Leaf Arrangement: Alternate Leaf Venation: Pinnate Leaf Persistance: Evergreen Leaf Type: Simple Leaf Blade: 5 - 10 cm Leaf Margins: Crenate Leaf Textures: Glossy Leaf Scent: Pleasant Color(growing season): Green Color(changing season): Green Flower Fruit Image Flower Showiness: True Flower Size Range: 1.5 - 3 Flower Scent: Pleasant Flower Color: White Seasons: Spring Trunk Trunk Esthetic Values: Smooth, Spines Fruit Fruit Type: Hesperidium Fruit Showiness: True Fruit Colors: Yellow Seasons: Spring Citrus limetta (Sweet lemon, Mediterranean sweet lemon) Horticulture Management Tolerance Frost Tolerant: No Heat Tolerant: No Drought Tolerant: Yes Salt Tolerance: Moderate Requirements Soil Requirements: Loam, Sand Soil Ph Requirements: Acidic Water Requirements: Moderate Light Requirements: Management Edible Parts: Other Image Plant Propagations: Grafting.
    [Show full text]
  • New and Noteworthy Citrus Varieties Presentation
    New and Noteworthy Citrus Varieties Citrus species & Citrus Relatives Hundreds of varieties available. CITRON Citrus medica • The citron is believed to be one of the original kinds of citrus. • Trees are small and shrubby with an open growth habit. The new growth and flowers are flushed with purple and the trees are sensitive to frost. • Ethrog or Etrog citron is a variety of citron commonly used in the Jewish Feast of Tabernacles. The flesh is pale yellow and acidic, but not very juicy. The fruits hold well on the tree. The aromatic fruit is considerably larger than a lemon. • The yellow rind is glossy, thick and bumpy. Citron rind is traditionally candied for use in holiday fruitcake. Ethrog or Etrog citron CITRON Citrus medica • Buddha’s Hand or Fingered citron is a unique citrus grown mainly as a curiosity. The six to twelve inch fruits are apically split into a varying number of segments that are reminiscent of a human hand. • The rind is yellow and highly fragrant at maturity. The interior of the fruit is solid rind with no flesh or seeds. • Fingered citron fruits usually mature in late fall to early winter and hold moderately well on the tree, but not as well as other citron varieties. Buddha’s Hand or Fingered citron NAVEL ORANGES Citrus sinensis • ‘Washington navel orange’ is also known • ‘Lane Late Navel’ was the first of a as the Bahia. It was imported into the number of late maturing Australian United States in 1870. navel orange bud sport selections of Washington navel imported into • These exceptionally delicious, seedless, California.
    [Show full text]
  • Active Biodegradable Films Based on Sweet Lime Peel Residue and Its Effect on Quality of Fish Fillets
    polymers Article Active Biodegradable Films Based on Sweet Lime Peel Residue and Its Effect on Quality of Fish Fillets Yasir Arafat 1, Ammar Altemimi 2, Anubhav Pratap-Singh 3,* and Laxmikant S. Badwaik 1,* 1 Department of Food Engineering and Technology, School of Engineering, Tezpur University, Napaam, Assam 784028, India; [email protected] 2 Department of Food Science, College of Agriculture, University of Basrah, Basrah 61004, Iraq; [email protected] 3 Food, Nutrition & Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada * Correspondence: [email protected] (A.P.-S.); [email protected] (L.S.B.) Abstract: Residual sweet lime peels after the extraction of essential oil by solvent free microwave extraction were used for developing biodegradable film. Glycerol as a plasticizer, soya lecithin as an emulsifier and sweet lime essential oil (0, 1, 2 and 3%) as an active agent was employed. Developed films were analyzed for their mechanical, barrier and antimicrobial properties. The films (with 3% essential oil) which reported highest antimicrobial property against E. coli (24.24 ± 2.69 mm) were wrapped on fish fillet and stored at the refrigerated condition for 12 days. The quality of fish fillets was evaluated every 4 days and compared with polyethylene wrapped and control fish fillets. The active film wrapped sample showed less surface microbial count (3.28 ± 0.16 log cfu/cm2) compared to polyethylene wrapped sample. The hardness values were increased during storage and cohesiveness and springiness of all wrapped samples decreased from day 0 to day 12.
    [Show full text]
  • List of Citrus Fruits
    Common Taxonomic SNo Notes name(s) name/constituents Yellowish-orange in colour, about the size of grapefruit and oblate in shape. 1 Amanatsu Citrus natsudaidai The fruit contains 12 segments and about 30 seeds. Balady citron 2 Palestinian Citrus medica Grown in Israel and used for Jewish ritual purposes. citron Bergamot 3 Citrus bergamia orange Bitter orange Seville orange Sour orange 4 Bigarade Citrus × aurantium orange Marmalade orange 5 Blood orange Citrus × sinensis Buddha's hand Citrus medica var. 6 Bushukan sarcodactylis Fingered citron Calamondin × Citrofortunella 7 Calamansi mitis Citrus reticulata × 8 Cam sành maxima 9 Citron Citrus medica Citrus subg. Papeda indicates the subgenus Papeda of the genus Citrus, with citrus species native to Asia.The papeda group includes some of the most Citrus subg. tropical, and also some of the most frost-tolerant citrus plants. They are 10 Papeda cultivated far less often than other citrus, though they will all hybridize with other citrus. This group contains about 15 species. 11 Clementine Citrus reticulata Corsican 12 citron Found in lowland subtropical rainforest and dry rainforest areas of Queensland and New South Wales, Australia. Early settlers consumed the 13 Desert Lime Citrus glauca fruit and retained the trees when clearing for agriculture. Commercial uses include boutique marmalade and restaurant dishes, and is exported for such. 14 Etrog Citrus medica The finger lime has been recently popularised as a gourmet bushfood. 15 Finger lime Citrus australasica Finger lime is thought to
    [Show full text]
  • CITRUS the Botanictanic Garden of the Universitat De València
    Botanical monographs CITRUS The Botanictanic Garden of the Universitat de València Gema Ancillo Alejandro Medina Botanical Monographs CITRUS Gema Ancillo and Alejandro Medina Botanical Monographs. Jardín Botánico de la Universitat de València Volume 2: Citrus Texts ©: Gema Ancillo and Alejandro Medina Introduction ©: Isabel Mateu Images and illustrations ©: Gema Ancillo, Alejandro Medina and José Plumed Publication ©: Universitat de València E. G. Director of the monographic series: Isabel Mateu Technical director: Martí Domínguez Graphic design and layout: José Luis Iniesta Revision and correction: José Manuel Alcañiz Translation: Fabiola Barraclough, Interglobe Language Photographs: José Plumed, Gema Ancillo, Alejandro Medina, Miguel Angel Ortells and José Juarez Cover photograph: Miguel Angel Ortells Printed by: Gráfi cas Mare Nostrum, S. L. Legal Deposit: V-439-2015 ISBN: 978-84-370-9632-2 Index Introduction ..................................................................................................................................................... 7 The Aurantioideae Subfamily....................................................................................................11 – General description ...............................................................................................................................11 – Trunk ..................................................................................................................................................... 12 – Roots .....................................................................................................................................................13
    [Show full text]
  • 1 Anastrepha Ludens, Mexican Fruit Fly Host List, 2016
    Anastrepha ludens, Mexican Fruit Fly Host List, 2016 The berry, fruit, nut or vegetable of the following plant species are now considered regulated (host) articles for Mexican fruit fly and are subject to the requirements of 7 CFR 301.32. In addition, all varieties, subspecies and hybrids of the regulated articles listed are assumed to be suitable hosts unless proven otherwise. Scientific Name Common Name Anacardium occidentale L. Cashew nut Annona cherimola Mill. Cherimoya Annona liebmanniana Baill. Hardshell custard apple Annona reticulata L. Custard apple Annona squamosa L. Sugar apple Capsicum pubescens Ruiz & Pav. Apple chile White sapote, yellow chapote, Casimiroa spp. matasano Citrofortunella microcarpa (bunge) Wijnands Calamondin Citrus aurantium L. Sour orange Italian tangerine, willow-leaf Citrus deliciosa Ten. mandarin Citrus hassakuhort. ex Tanaka Hassaku orange Citrus limetta Risso Sweet lime Citrus limettioides Tanaka Sweet lime Rangpur lime, canton lemon, sour Citrus limonia Osbeck lemon, Mandarin lime Citrus maxima (Burm.) Merr. Pummelo, shaddock Citrus medica L. Buddha's-Hand, citron, finger citron Meyer lemon, dwarf lemon, Chinese Citrus meyeri Yu. Tanaka dwarf lemon Citrus nobilis Lour. King orange Citrus paradisi Macfad. Grapefruit Citrus reshni hort. ex. Tanaka Cleopatra mandarin, spice mandarin Citrus reticulata Blanco Mandarin orange, tangerine Common, Kona, blood, baladi, navel, Valencia, corriente or sweet Citrus sinensis (L.) Osbeck orange 1 Citrus xtangelo J. W. Ingram & H. E. Moore Tangelo Citrus tangerina Tanaka Tangerine, dancy tangerine Citrus unshiu Marcow Satsuma orange, unshiu, mikan Coffea arabica L. Arabian coffee Cydonia oblonga Mill. Quince Diospyros kaki Thunb. Japanese persimmon Inga jinicuil G. Don N/A Inga micheliana Harms N/A Malus pumila Mill.
    [Show full text]
  • Phytochemical Profiling and HPLC Quantification of Citrus Peel From
    Progress in Nutrition 2017; Vol. 20, Supplement 1: 279-288 DOI: 10.23751/pn.v20i1-S.6357 © Mattioli 1885 Original article Phytochemical profiling and HPLC quantification of citrus peel from different varieties Tariq Mehmood1, Moazzam Rafiq Khan1, Muhammad Asim Shabbir1, Muhammad Anjum Zia2 1National Institute of Food Science and Technology, faculty of Food, Nutrition and Home Sciences, University of Agriculture, Faisalabad, 38040, Pakistan - E-mail: [email protected]; 2Department of Biochemistry, Faculty of Basic Sciences, University of Agriculture, Faisalabad, 38040, Pakistan Summary. Nutraceutics are well-known for the individuals anxious to attenuate the impact of aging and mitigate the adverse effects of unhealthy lifestyle. Plant-based bioactive compounds are known to offer many health benefits. The objective of this study was to characterize selected phytochemicals and assess antioxidant capacity from citrus processing by-product. Processing waste from different varieties of citrus (oranges, grape- fruit and musami) was utilized for the antioxidant indices for extraction with ethanol, methanol and water. The highest antioxidant potential in the form of TPC (206.53±6.82 mg GAE/100 g), flavonoids (83.06±2.74 mg/100 g), DPPH (62.80±2.07 µmole TE/g), ABTS (10.35±0.34 µmole TE/g) and FRAP (18.54±0.61 µmole TE/g) were found in grapefruit ethanolic extract, followed by oranges and musami peel extract. The highest ascorbic acid content (51.3±1.6 mg/100g) was observed in orange peel followed by that in grapefruit and musami peel extracts. On the basis of antioxidant profiling the ethanolic extract of each variety was quantified through HPLC that showed the highest concentration of hesperidin and nobiletin in grape fruit extract as 28.51 and 9.92 mg/g, respectively followed by oranges (24.96 and 7.31 mg/g) and musami (21.38 and 6.08 mg/g) extract.
    [Show full text]
  • Citrus Limetta Risso)
    SCIENTIFIC NOTE CHARACTERIZATION OF VOLATILE COMPOUNDS IN THE ESSENTIAL OIL OF SWEET LIME (Citrus limetta Risso) María C. Colecio-Juárez1, Rubria E. Rubio-Núñez2, José E. Botello-Álvarez1, Gloria M. Martínez-González1, José L. Navarrete-Bolaños1, and Hugo Jiménez-Islas1* The essential oil of citrus fruit contains components pleasant sensory characteristics that are appreciated in food, pharmaceutical, and cosmetics industries. In the case of sweet lime (Citrus limetta Risso), is necessary to characterize the essential oil components, to identify potential uses of this fruit. The essential oil of sweet lime was obtained from lime flavedo in four different maturation stages. Steam distillation was employed and then compared with hexane extraction. The identification of the components in the essential oil was carried out by gas chromatography and mass spectrometry. A total of 46 components were found in the essence of lime, among which the highest concentration of compounds present were aldehydes such as limonene. Linalool, sabinene, and bergamol were more abundant than in other varieties. The best extraction method was steam distillation, and the concentrations in stage III from the main terpenic portion were d-limonene with 74.4%, bergamol with 8.23%, and β-pinene with 7.62%. Key words: Sweet lime, Citrus limetta, essential oil, steam distillation, maturation stages. he citrus species are a potential source of valuable oil The composition of the citric fruits is generally which might be utilized for edible and other industrial composed of 90% terpenes, 5% oxygenated compounds, Tapplications (Anwar et al., 2008), and essential oils are and less than 1% non-volatile compounds such as waxes broadly used as pharmaceutical components, in nutritious and pigments (Kondo et al., 2000).
    [Show full text]
  • Citrus Limetta) Against RNA-Viruses
    Journal of Preventive Medicine and Holistic Health 2021;7(1):37–44 Content available at: https://www.ipinnovative.com/open-access-journals Journal of Preventive Medicine and Holistic Health Journal homepage: https://www.jpmhh.org/ Original Research Article Inhibitory and complementary therapeutic effect of sweet lime (Citrus limetta) against RNA-viruses Swapan Banerjee1, Sulagna Ray Pal1,* 1Dept. of Nutrition, Seacom Skills University, Birbhum, West Bengal, India ARTICLEINFO ABSTRACT Article history: Sweet lime (Citrus limetta), known as ’Mousambi’ or ’Mosambi’ in India, is one of the best citrus fruits Received 31-05-2021 regarding its nutrient contents. Its bioactive compounds (BAC) are exclusively used for multiple clinical Accepted 10-06-2021 applications considering many therapeutic benefits not only in Asian countries but also in the western world. Available online 05-07-2021 The fruit pulp and juice are the best sources of ascorbic acid, B-vitamins, amino acids, and other secondary metabolites. Specifically, polyphenols such as flavanones, hesperetin, naringenin, and chlorogenic acid are highly rich in the fruit. The nutrients in sweet lime altogether provide significant anti-inflammatory, Keywords: antioxidant, anti-cancer, and neuroprotective effects. The purpose of this study is to review and analyze the Mosambi inhibitory and complementary therapeutic effects of sweet lime’s pulp and juices to inhibit the virulence Sweet lime’s benefits caused by RNA viruses, mainly SARS-CoV-2. This review study was designed based on extensive online Polyphenols searches of relevant open-access literature available in the best quality and reliable databases by using COVID19 nutrition specific keywords and boolean operators. After a rigorous review, we found that flavanones in the fruit can Sweet lime’s therapeutic effect alter or inhibit the polyproteins (pp1a and pp1b) responsible for viral replication.
    [Show full text]
  • Citrus ~ Winter's Zucchini Part 1 Lemons, Limes & Their Next of Kin
    Citrus ~ Winter's Zucchini Part 1 Lemons, Limes & Their Next of Kin Just as zucchini and tomatoes are the summer crops known to yield excesses, so too can many citrus trees yield large crops, all coming ready at the same time. This article will cover some basic cultural information for growing the various citruses, and then will provide some tested recipes for how to preserve your citrus crop for year round enjoyment. Seasonal temperature differences in your location can dictate whether a citrus variety will survive or thrive. The optimum temperature range for citrus growth falls between 70°F and 90°F. All citrus growth stalls when lower than 55°F, or when above 100°F, and some varieties also won't ripen their fruit when temperatures rise above 100°F. Generally speaking, citron, lemons, and limes are particularly susceptible to frost damage. Grapefruit, mandarins, and oranges have a medium sensitivity to frost damage. Kumquats and Satsuma mandarins can be quite frost hardy. If you live in USDA Hardiness Zones 8-9 you can safely grow citrus outside with frost protection such as insulating the trunks with palm fronds, fiberglass, cardboard, or corn stalks stacked up to the main branches. Wrapping the insulation layer with plastic will also aid in keeping it dry during rain, but plastic alone will not protect the trees from frost. Microclimates within those zones can play an additional role. Placing plants against a white south facing wall can raise the temperature too high to ripen fruit, but if that wall is dark, it can provide the additional heat necessary to prevent frost damage.
    [Show full text]
  • Sweet Lime) Peel in Pakistan
    Vol. 7(24), pp. 3071-3077, 11 June, 2013 DOI: 10.5897/AJMR12.1254 ISSN 1996-0808 ©2013 Academic Journals African Journal of Microbiology Research http://www.academicjournals.org/AJMR Full Length Research Paper Chemical constituents, antimicrobial and antioxidant activity of essential oil of Citrus limetta var. Mitha (sweet lime) peel in Pakistan Shabnam Javed1*, Rauf Ahmad2, Khurram Shahzad3, Shaista Nawaz3, Salman Saeed3 and Yasar Saleem3 1Center for Undergraduate Studies, University of Punjab, Lahore-54590 Pakistan. 2Centre for Environmental Protection Studies, PCSIR Laboratories Complex, Lahore-54600, Pakistan. 3Food and Biotechnology Research Center, Pakistan Council of Scientific and Industrial Research Laboratories Complex, Lahore-54600, Pakistan. Accepted 5 June, 2013 The essential peel oil of Citrus limetta var. Mitha (Sweet lime) extracted by hydro-distillation was assessed for chemical constituents, antimicrobial and antioxidant activity. Gas chromatographic analysis identified 17 constituents among which limonene (95.98 %) was found as major component followed by camphene (1.79 %), while the remaining terpenes were less than 1%. The results of antimicrobial activity of essential oil tested by disc diffusion method, against different against bacteria and fungi showed that it exhibited maximum zone of inhibition against Bacillus cereus ATCC 14579 (28 mm) and Bacillus subtilis ATCC 6633 (26 mm) followed by Staphylococcus aureus ATCC 25923 (21 mm), where as the minimum zone of inhibition was shown by Fusarium oxysporum ATCC 48122 (11 mm) after 48 h of incubation at their respective temperature (37°C for bacteria and 25°C for fungi). The inhibition zones, measured after 48 and 96 h, showed that it was active against all tested bacteria and fungi.
    [Show full text]