ILAE Historical Wall02.Indd 6 6/12/09 12:03:12 PM

Total Page:16

File Type:pdf, Size:1020Kb

ILAE Historical Wall02.Indd 6 6/12/09 12:03:12 PM 1960–1969 1962 1963 1964 1965 1967 1968 1969 James Watson Alan Hodgkin Feodor Lynen Jacques Monod Ragnar Granit Robert Holley Max Delbruck 1960 1961 1962 1964 1965 1966 1967 1968 1969 Sir Frank M. Burnet Georg von Békésy Maurice Wilkins Andrew Huxley François Jacob Peyton Rous Haldan Hartline Gobind Khorana Alfred Hershey 1960960 196262 1963963 196464 196565 196666 1967967 196868 196969 Peter Medawar Francis Crick Sir John Eccles Konrad Bloch André Lwoff Charles Huggins George Wald Marshall Nirenberg Salvador Luria 1960 Epilepsy and related Disorders by William G. Lennox published 1960 First description of the sodium amytal (Wada) test 1961 ILAE quadrennial meeting in Rome – 7 lectures 1961 DDR, Irish, Italian, Israeli, Swedish, Swiss and Uruguayan branches join the ILAE 1961 Proposal to found the IBE 1961 First genetic study of idiopathic epilepsy by Metrakos K and Metrakos JD 1962 First congress devoted entirely to status epilepticus (Marseilles Colloquium) 1962 Sulthiame launched in Europe 1963 Benzodiazepines – in the form of diazepam and chlordiazepoxide – introduced into clinical practice 1963 Slater defi nes the interictal psychoses of epilepsy 1963 Michael Prize instituted 1965 Carbamazepine introduced as an antiepileptic , with fi rst licensing in the UK – a step of great signifi cance in epilepsy 1964 Gastaut produces the fi rst draft of the ILAE Classifi cation of Seizure Type 1965 ILAE quadrennial meeting in Vienna 1965 Talairach, Bancaud and co–workers publish La stéréoélectroencéphalographie dans l’épilepsie 1965 Austria, Bolivia and Poland join the ILAE 1966 IBE formally constituted, although it had been functioning informally for several years 1966 Epilepsy section formed at NIH – with J. Kiffi n Penry as chief 1967 Microneurosurgical techniques (and the operating microscope) introduced by Yaşargil 1967 Valproate introduced into clinical practice for epilepsy in France and over the next 5 years in Europe and then in 1976 in the US after a public campaign by Kiffi n Penry 1967 First description of kindling as a model of epilepsy 1968 Clonazepam licensed for use in Europe 1969 ILAE and IBE quadrennial meeting in New York – the 11th ILAE meeting 1969 First draft of the ILAE Classifi cation of the Epilepsies 1969 ILAE Classifi cation of Seizure Type approved 1969 Spain joins and Czechoslovakia rejoins the ILAE 1960 First pacemaker developed 1965 First measles vaccine licensed 1961 Sabin’s oral polio vaccine licensed 1966 Brain inactivity fi rst adopted as the clinical defi nition of death 1961 Triple–base–pair structure of DNA proposed by Sydney Brenner and Francis Crick 1967 First heart transplant by Christiaan Bernard 1962 Azothiaprine licensed 1968 Structure of haemaglobin described by Max Perutz using crystallography 1962 Teratogenicity of thalidomide recognised 1968 First vaccine against meningitis 1963 Measles vaccine prepared 1969 First artifi cial heart used clinically by Denton Cooley 1963 Cellular basis of nervous transmission described by Alan Lloyd Hodgkin and John Eccles 1969 First IVF by Robert G. Edwards 1964 Helsinki Declaration on human experimentation ILAE_Historical wall02.indd 6 6/12/09 12:03:12 PM.
Recommended publications
  • Unrestricted Immigration and the Foreign Dominance Of
    Unrestricted Immigration and the Foreign Dominance of United States Nobel Prize Winners in Science: Irrefutable Data and Exemplary Family Narratives—Backup Data and Information Andrew A. Beveridge, Queens and Graduate Center CUNY and Social Explorer, Inc. Lynn Caporale, Strategic Scientific Advisor and Author The following slides were presented at the recent meeting of the American Association for the Advancement of Science. This project and paper is an outgrowth of that session, and will combine qualitative data on Nobel Prize Winners family histories along with analyses of the pattern of Nobel Winners. The first set of slides show some of the patterns so far found, and will be augmented for the formal paper. The second set of slides shows some examples of the Nobel families. The authors a developing a systematic data base of Nobel Winners (mainly US), their careers and their family histories. This turned out to be much more challenging than expected, since many winners do not emphasize their family origins in their own biographies or autobiographies or other commentary. Dr. Caporale has reached out to some laureates or their families to elicit that information. We plan to systematically compare the laureates to the population in the US at large, including immigrants and non‐immigrants at various periods. Outline of Presentation • A preliminary examination of the 609 Nobel Prize Winners, 291 of whom were at an American Institution when they received the Nobel in physics, chemistry or physiology and medicine • Will look at patterns of
    [Show full text]
  • BMC Systems Biology Biomed Central
    BMC Systems Biology BioMed Central Commentary Open Access The long journey to a Systems Biology of neuronal function Nicolas Le Novère* Address: EMBL-EBI, Wellcome-Trust Genome Campus, CB10 1SD Hinxton, UK Email: Nicolas Le Novère* - [email protected] * Corresponding author Published: 13 June 2007 Received: 13 April 2007 Accepted: 13 June 2007 BMC Systems Biology 2007, 1:28 doi:10.1186/1752-0509-1-28 This article is available from: http://www.biomedcentral.com/1752-0509/1/28 © 2007 Le Novère; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Computational neurobiology was born over half a century ago, and has since been consistently at the forefront of modelling in biology. The recent progress of computing power and distributed computing allows the building of models spanning several scales, from the synapse to the brain. Initially focused on electrical processes, the simulation of neuronal function now encompasses signalling pathways and ion diffusion. The flow of quantitative data generated by the "omics" approaches, alongside the progress of live imaging, allows the development of models that will also include gene regulatory networks, protein movements and cellular remodelling. A systems biology of brain functions and disorders can now be envisioned. As it did for the last half century, neuroscience can drive forward the field of systems biology. 1 Modelling nervous function, an ancient quest To accurately model neuronal function presents many Neurosciences have a long and successful tradition of challenges, and stretches the techniques and resources of quantitative modelling, where theory and experiment computational biology to their limits.
    [Show full text]
  • The Creation of Neuroscience
    The Creation of Neuroscience The Society for Neuroscience and the Quest for Disciplinary Unity 1969-1995 Introduction rom the molecular biology of a single neuron to the breathtakingly complex circuitry of the entire human nervous system, our understanding of the brain and how it works has undergone radical F changes over the past century. These advances have brought us tantalizingly closer to genu- inely mechanistic and scientifically rigorous explanations of how the brain’s roughly 100 billion neurons, interacting through trillions of synaptic connections, function both as single units and as larger ensem- bles. The professional field of neuroscience, in keeping pace with these important scientific develop- ments, has dramatically reshaped the organization of biological sciences across the globe over the last 50 years. Much like physics during its dominant era in the 1950s and 1960s, neuroscience has become the leading scientific discipline with regard to funding, numbers of scientists, and numbers of trainees. Furthermore, neuroscience as fact, explanation, and myth has just as dramatically redrawn our cultural landscape and redefined how Western popular culture understands who we are as individuals. In the 1950s, especially in the United States, Freud and his successors stood at the center of all cultural expla- nations for psychological suffering. In the new millennium, we perceive such suffering as erupting no longer from a repressed unconscious but, instead, from a pathophysiology rooted in and caused by brain abnormalities and dysfunctions. Indeed, the normal as well as the pathological have become thoroughly neurobiological in the last several decades. In the process, entirely new vistas have opened up in fields ranging from neuroeconomics and neurophilosophy to consumer products, as exemplified by an entire line of soft drinks advertised as offering “neuro” benefits.
    [Show full text]
  • Richard Llewelyn-Davies and the Architect's Dilemma."
    The Richard Llewciy11-Davies Memorial Lectures in ENVIRONMENT AND SOCIETY March 3, 1985-at the Institute for Advanced Study The J/ictoria11 City: Images and Realities Asa Briggs Provost of Worcester College University of Oxford November 17, 1986--at the University of London The Nuffield Planning Inquiry Brian Flo\vers Vice-Chancellor University of London October 27, 1987-at the Institute for Advanced Study Richard Llewcly11-Davics and the Architect's Dilemma N ocl Annan Vice-Chancellor Erncritus University of London PREFACE The Richard Llewelyn-Davies Memorial Lectures in "Environ­ ment and Society" were established to honor the memory of an architect distinguished in the fields of contemporary architectural, urban and environmental planning. Born in Wales in 1912, Richard Llewelyn-Davies was educated at Trinity College, Cambridge, !'Ecole des Beaux Arts in Paris and the Architectural Association in London. In 1960 he began a fif­ teen-year association with University College of the University of London as Professor of Architecture, Professor of Town Planning, Head of the Bartlett School of Architecture and Dean of the School of Environmental Studies. He became, in 1967, the initial chair­ man of Britain's Centre for Environmental Studies, one of the world's leading research organizations on urbanism, and held that post for the rest of his life. He combined his academic career with professional practice in England, the Middle East, Africa, Paki­ stan, North and South America. In the fall of 1980, the year before he died, Richard Llewelyn­ Davies came to the Institute for Advanced Study. He influenced us in many ways, from a reorientation of the seating arrangement in the seminar room improving discussion and exchange, to the per­ manent implantation of an environmental sensibility.
    [Show full text]
  • Cambridge's 92 Nobel Prize Winners Part 2 - 1951 to 1974: from Crick and Watson to Dorothy Hodgkin
    Cambridge's 92 Nobel Prize winners part 2 - 1951 to 1974: from Crick and Watson to Dorothy Hodgkin By Cambridge News | Posted: January 18, 2016 By Adam Care The News has been rounding up all of Cambridge's 92 Nobel Laureates, celebrating over 100 years of scientific and social innovation. ADVERTISING In this installment we move from 1951 to 1974, a period which saw a host of dramatic breakthroughs, in biology, atomic science, the discovery of pulsars and theories of global trade. It's also a period which saw The Eagle pub come to national prominence and the appearance of the first female name in Cambridge University's long Nobel history. The Gender Pay Gap Sale! Shop Online to get 13.9% off From 8 - 11 March, get 13.9% off 1,000s of items, it highlights the pay gap between men & women in the UK. Shop the Gender Pay Gap Sale – now. Promoted by Oxfam 1. 1951 Ernest Walton, Trinity College: Nobel Prize in Physics, for using accelerated particles to study atomic nuclei 2. 1951 John Cockcroft, St John's / Churchill Colleges: Nobel Prize in Physics, for using accelerated particles to study atomic nuclei Walton and Cockcroft shared the 1951 physics prize after they famously 'split the atom' in Cambridge 1932, ushering in the nuclear age with their particle accelerator, the Cockcroft-Walton generator. In later years Walton returned to his native Ireland, as a fellow of Trinity College Dublin, while in 1951 Cockcroft became the first master of Churchill College, where he died 16 years later. 3. 1952 Archer Martin, Peterhouse: Nobel Prize in Chemistry, for developing partition chromatography 4.
    [Show full text]
  • A Scientist's Life for Me
    NATURE|Vol 455|16 October 2008 AUTUMN BOOKS OPINION A scientist’s life for me Forty years after the publication of James Watson’s The Double Helix, Georgina Ferry asks why the life stories of so few scientists make it into the bookshops. In 1968 Peter Medawar, Nobel prizewinner and author of many witty reflections on sci- ence and its practitioners, consented to write a preface to Ronald Clark’s biography of the influential British biologist J. B. S. Haldane. Imagine Clark’s consternation when he read its opening line: “The lives of academics, considered as Lives, almost always make dull reading.” Later, Medawar recycled the opening paragraph for an essay in his col- lection Pluto’s Republic (1982), claiming further that scientists’ lives, unlike those of “artists and men of letters”, were “not a source of cultural insight”. James Watson’s The Double Helix, a book that broke the mould of scientific life-writing, also appeared in 1968. It provided abundant ‘cultural insight’ into the combination of good contacts, brilliance, luck, hard work and ruth- less competitiveness that brought to light the DNA structure. It was panned by many of Watson’s contemporaries — if Francis Crick had got his way, the book would never have been published. Yet in his own memoir What modern laboratory Mad Pursuit (1988), Crick later admitted that life? Scientific life-writing is now publishers. Most people have he was wrong: “I now appreciate how skilful a small and shrinking enterprise. Publishers heard of very few scientists, so those that they Jim was, not only in making the book read agree that the market for scholarly biography do recognize — Isaac Newton, Charles Dar- like a detective story, but also by managing to has suffered from the onslaught of celebrity win and Albert Einstein — seem the safest bets.
    [Show full text]
  • | Sydney Brenner |
    | SYDNEY BRENNER | TOP THREE AWARDS • Nobel Prize in Physiology, 2002 • Albert Lasker Special Achievement Award, 2000 • National Order of Mapungubwe (Gold), 2004 DEFINING MOMENT To view the DNA model for the first time. 32 |LEGENDS OF SOUTH AFRICAN SCIENCE| A LIFE DEDICATED TO SCIENCE C. ELEGANS WORK In the more than eight decades that Nobel Laureate, Prof Sydney Brenner, “To start with we propose to identify every cell in the worm and trace line- has all-consumingly devoted his life to science, he twice wrote powerful age. We shall also investigate the constancy of development and study proposals of no longer than a page. Short but sweet, these kick-started the its control by looking for mutants,” is how Brenner ended his proposal on two projects that are part of his lasting legacy. Caenorhabditis elegans to the UK Medical Research Council in October 1963. He was looking for a new challenge after already having helped to The first was to request funding to study a worm, because he saw in the show that genetic code is composed of non-overlapping triplets and that nematode Caenorhabditis elegans the ideal genetic model organism. messenger ribonucleic acid (mRNA) exists. He was right, and received the Nobel Prize for his efforts. The other pro- posal, which set out how Singapore could become a hub for biomedical His first paper on C. elegans appeared in Genetics in 1974, and in all, the research, earned him the title of “mentor to a nation’s science ambitions”. work took about 20 years to reach its full potential.
    [Show full text]
  • Torsten Wiesel (1924– ) [1]
    Published on The Embryo Project Encyclopedia (https://embryo.asu.edu) Torsten Wiesel (1924– ) [1] By: Lienhard, Dina A. Keywords: vision [2] Torsten Nils Wiesel studied visual information processing and development in the US during the twentieth century. He performed multiple experiments on cats in which he sewed one of their eyes shut and monitored the response of the cat’s visual system after opening the sutured eye. For his work on visual processing, Wiesel received the Nobel Prize in Physiology or Medicine [3] in 1981 along with David Hubel and Roger Sperry. Wiesel determined the critical period during which the visual system of a mammal [4] develops and studied how impairment at that stage of development can cause permanent damage to the neural pathways of the eye, allowing later researchers and surgeons to study the treatment of congenital vision disorders. Wiesel was born on 3 June 1924 in Uppsala, Sweden, to Anna-Lisa Bentzer Wiesel and Fritz Wiesel as their fifth and youngest child. Wiesel’s mother stayed at home and raised their children. His father was the head of and chief psychiatrist at a mental institution, Beckomberga Hospital in Stockholm, Sweden, where the family lived. Wiesel described himself as lazy and playful during his childhood. He went to Whitlockska Samskolan, a coeducational private school in Stockholm, Sweden. At that time, Wiesel was interested in sports and became the president of his high school’s athletic association, which he described as his only achievement from his younger years. In 1941, at the age of seventeen, Wiesel enrolled at Karolinska Institutet (Royal Caroline Institute) in Solna, Sweden, where he pursued a medical degree and later pursued his own research.
    [Show full text]
  • Watson's Way with Words
    books and arts My teeth were set on edge by reference to “the stable form of uranium”,a violation of Kepler’s second law in a description of how the Earth’s orbit would change under various circumstances, and by “the rest mass of the neutrino is 4 eV”. Collins has been well served by his editor and publisher, but not perfectly. There are un-sort-out-able mismatches between text and index, references and figures; acronyms D.WRITING LIFE OF JAMES THE WATSON in the second half of the alphabet go un- decoded; several well-known names are misspelled. And readers are informed that Weber’s death occurred “on September 31, E. C. FRIEDBERG, 2000”. Well, Joe always said he could do things that other people couldn’t, but there are limits. Incidentally, my adviser was partly right: I should not have agreed to review this book. It is very much harder to hear harsh, some- times false, things said about one’s spouse after he can no longer defend himself. I am not alone in this feeling. Carvel Gold, widow of Thomas Gold, whose work was also far from universally accepted (see Nature 430, 415;2004),says the same thing. ■ Virginia Trimble is at the University of California, Irvine, California 92697-4575, USA. She and Joe The write idea? In The Double Helix,James Watson gave Weber were married from 16 March 1972 until his a personal account of the quest for the structure of DNA. death on 30 September 2000. Watson set out to produce a good story that the public would enjoy as much as The Great Gatsby.He started writing in 1962 with the working title “Honest Jim”,which is illumi- Watson’s way nating in itself.
    [Show full text]
  • English Summary
    English summary The Nobel Prize Career of Ragnar Granit. A Study of the Prizes of Science and the Science of the Prizes This study is concerned with two closely related themes: the reward system of science – i .e . the various means by which scientists express their admiration and esteem for their colleagues – and the role played by social networks within this broader framework . The study approa- ches its topic from the viewpoint of the Nobel Prize for Physiology or Medicine, often referred to as the Nobel Prize in Medicine . The focus of the study is on the lengthy process that led to the granting of the 1967 Nobel Prize to Ragnar Granit (1901–1991) for his discoveries concer- ning the primary physiological visual processes in the eye . His award was preceded by one of the most dramatic conflicts within the prize authorities during the post-war decades, and serves here to illustrate the dynamics and the various strategies employed in the Nobel Com- mittee of the Karolinska Institute . In addition, Granit’s career as a No- bel Prize candidate is used as a window through which it is possible to examine the various ways in which elite networks in the scientific field operate . In order to enable comparison, the Nobel careers of Charles Best, Hugo Theorell, and John Eccles are also discussed . On a more ge- neral level the Nobel careers of other scientists who received the Nobel Prize in Physiology or Medicine in the period 1940–1960 are also dis- cussed, whereby, as an offshoot of the study, a general picture of the Nobel institution in the post-war decades emerges .
    [Show full text]
  • UNESCO Kalinga Prize Winner – 1985 Sir Peter Brian Medawar Nobel Laureate
    Glossary on Kalinga Prize Laureates UNESCO Kalinga Prize Winner – 1985 Sir Peter Brian Medawar Nobel Laureate An Eminent British Scientist of Lebanese Origin, A Biologist and Nobel Laureate in Physiology or Medicine – 1960 [Born : February 28, 1915, Petropolis, Rio de Janeiro, Brazil Died : October 2, 1987 (aged 72) London, United Kingdom] Today the world Changes so quickly that in growing up we take leave not just of youth but of the world we were young in . I suppose we all realize the degree to which fear and resentment of what is new is really a lament for the memories of our childhood. ...Peter Medawar I can not give any scientist of any age better advice than this: the intensity of a conviction that a hypothesis is true has no bearing over whether it is true or not. …Peter Medawar If Politics is the art of the Possible, research is surely the art of the soluble. Both are immensely Practical minded affairs . ...Peter Medawar 1 Glossary on Kalinga Prize Laureates Peter Medawar A Brief Biographical Sketch Born : February 28, 1915 Rio de Janeiro, Brazil Died : October 2, 1987 (aged 72) London, United Kingdom Notable Prizes : Nobel Prize in Physiology or Medicine (1960), Kalinga Prize, 1985 Sir Peter Brian Medawar (February 28, 1915 – acquired immunological tolerance. This work was October 2, 1987) was a Briazilian – born British used in dealing with skin grafts required after burns. scientist best known for his work on how the immune Medawar’s work resulted in a shift of emphasis in system rejects or accepts tissue transplants.
    [Show full text]
  • Cambridge's 92 Nobel Prize Winners Part 4 - 1996 to 2015: from Stem Cell Breakthrough to IVF
    Cambridge's 92 Nobel Prize winners part 4 - 1996 to 2015: from stem cell breakthrough to IVF By Cambridge News | Posted: February 01, 2016 Some of Cambridge's most recent Nobel winners Over the last four weeks the News has been rounding up all of Cambridge's 92 Nobel Laureates, which this week comes right up to the present day. From the early giants of physics like JJ Thomson and Ernest Rutherford to the modern-day biochemists unlocking the secrets of our genome, we've covered the length and breadth of scientific discovery, as well as hugely influential figures in economics, literature and politics. What has stood out is the importance of collaboration; while outstanding individuals have always shone, Cambridge has consistently achieved where experts have come together to bounce their ideas off each other. Key figures like Max Perutz, Alan Hodgkin and Fred Sanger have not only won their own Nobels, but are regularly cited by future winners as their inspiration, as their students went on to push at the boundaries they established. In the final part of our feature we cover the last 20 years, when Cambridge has won an average of a Nobel Prize a year, and shows no sign of slowing down, with ground-breaking research still taking place in our midst today. The Gender Pay Gap Sale! Shop Online to get 13.9% off From 8 - 11 March, get 13.9% off 1,000s of items, it highlights the pay gap between men & women in the UK. Shop the Gender Pay Gap Sale – now. Promoted by Oxfam 1.1996 James Mirrlees, Trinity College: Prize in Economics, for studying behaviour in the absence of complete information As a schoolboy in Galloway, Scotland, Mirrlees was in line for a Cambridge scholarship, but was forced to change his plans when on the weekend of his interview he was rushed to hospital with peritonitis.
    [Show full text]