Preparatory Problems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tro Chemistry a Molecular Approach, 3E
Chemical Quantities and 4 Aqueous Reactions I feel sorry for people who don’t understand anything about chemistry. They are missing an important source of happiness. —Linus Pauling (1901–1994) 4.1 Climate Change and the Combustion of Fossil Fuels 139 4.2 Reaction Stoichiometry: How Much Carbon Dioxide? 140 4.3 Limiting Reactant, Theoretical Yield, and Percent Yield 145 4.4 Solution Concentration and Solution Stoichiometry 152 4.5 Types of Aqueous Solutions and Solubility 158 4.6 Precipitation Reactions 162 4.7 Representing Aqueous Reactions: Molecular, Ionic, and Complete Ionic Equations 166 4.8 Acid–Base and Gas-Evolution Reactions 168 4.9 Oxidation–Reduction Reactions 175 K e y L e a r n i n g O u t c o m e s 185 HE AMOUNT OF PRODUCT FORMED IN A CHEMICAL REACTION is related to the amount of reactant that reacts. This concept makes sense intuitively, but how can we describe and T understand this relationship more fully? The first half of this chapter focuses on chemical stoichiometry—the numerical relationships between the amounts of reactants and products in chemical reactions. In Chapter 3 , you learned how to write balanced chemical equations for chemical reactions. Here we will examine more closely the meaning of those balanced equations . In the second half of this chapter, we turn to describing chemical reactions that occur in water. You have probably witnessed many of these types of reactions in your daily life because they are so common. Have you ever mixed baking soda with vinegar and observed the subsequent bubbling or noticed the hard water deposits that form on plumbing fixtures? These reactions— and many others, including those that occur within the watery environment of living cells—are aqueous chemical reactions, the subject of the second half of this chapter. -
Preparatory Problems
International Chemistry Olympiad 2021 Japan 53rd IChO2021 Japan 25th July – 2nd August, 2021 https://www.icho2021.org Preparatory Problems Table of Contents Preface 1 Contributing Authors 2 Fields of Advanced Difficulty 3 Physical Constants and Equations Constants 4 Equations 5 Periodic Table of Elements 7 1H NMR Chemical Shifts 8 Safety 9 Theoretical Problems Problem 1. Revision of SI unit 11 Problem 2. Does water boil or evaporate? 13 Problem 3. Molecules meet water and metals 15 Problem 4. Synthesis of diamonds 18 Problem 5. Count the number of states 23 Problem 6. The path of chemical reactions 27 Problem 7. Molecular vibrations and infrared spectroscopy 33 Problem 8. Quantum chemistry of aromatic molecules 35 Problem 9. Protic ionic liquids 37 Problem 10. The Yamada universal indicator 42 Problem 11. Silver electroplating 44 Problem 12. How does CO2 in the atmosphere affect the pH value of seawater? 46 Problem 13. How to produce sulfuric acid and dilute it without explosion 50 Problem 14. Hydrolysis of C vs Si and the electronegativity of N vs Cl 51 Problem 15. Sulfur in hot springs and volcanoes 56 Problem 16. Identification of unknown compounds and allotropes 57 Problem 17. Metal oxides 59 Problem 18. Coordination chemistry and its application to solid-state catalysts 63 Problem 19. Acids and bases 66 Problem 20. Semiconductors 68 Problem 21. Carbenes and non-benzenoid aromatic compounds 71 Problem 22. Nazarov cyclization 74 Problem 23. Tea party 77 Problem 24. E-Z chemistry 81 Problem 25. Fischer indole synthesis 83 Problem 26. Planar chirality 85 Problem 27. Cyclobutadiene 88 Problem 28. -
Preparatory Problems
International Chemistry Olympiad 2021 Japan 53rd IChO2021 Japan 25th July – 2nd August, 2021 https://www.icho2021.org Preparatory Problems Table of Contents Preface 1 Contributing Authors 2 Fields of Advanced Difficulty 3 Physical Constants and Equations Constants 4 Equations 5 Periodic Table of Elements 7 1H NMR Chemical Shifts 8 Safety 9 Theoretical Problems Problem 1. Revision of SI unit 11 Problem 2. Does water boil or evaporate? 13 Problem 3. Molecules meet water and metals 15 Problem 4. Synthesis of diamonds 18 Problem 5. Count the number of states 23 Problem 6. The path of chemical reactions 27 Problem 7. Molecular vibrations and infrared spectroscopy 33 Problem 8. Quantum chemistry of aromatic molecules 35 Problem 9. Protic ionic liquids 37 Problem 10. The Yamada universal indicator 42 Problem 11. Silver electroplating 44 Problem 12. How does CO2 in the atmosphere affect the pH value of seawater? 46 Problem 13. How to produce sulfuric acid and dilute it without explosion 50 Problem 14. Hydrolysis of C vs Si and the electronegativity of N vs Cl 51 Problem 15. Sulfur in hot springs and volcanoes 56 Problem 16. Identification of unknown compounds and allotropes 57 Problem 17. Metal oxides 59 Problem 18. Coordination chemistry and its application to solid-state catalysts 63 Problem 19. Acids and bases 66 Problem 20. Semiconductors 68 Problem 21. Carbenes and non-benzenoid aromatic compounds 71 Problem 22. Nazarov cyclization 74 Problem 23. Tea party 77 Problem 24. E-Z chemistry 81 Problem 25. Fischer indole synthesis 83 Problem 26. Facial chirality 85 Problem 27. Cyclobutadiene 88 Problem 28. -
THE EFFECTS of SCREENCASTING on the MASTERY of HIGH SCHOOL CHEMISTRY CONCEPTS and DIFFERENTIATION of INSTRUCTION by Sherry Ann O
THE EFFECTS OF SCREENCASTING ON THE MASTERY OF HIGH SCHOOL CHEMISTRY CONCEPTS AND DIFFERENTIATION OF INSTRUCTION by Sherry Ann Otruba A professional paper submitted in partial fulfillment of the requirements for the degree of Master of Science in Science Education MONTANA STATE UNIVERSITY Bozeman, Montana July 2014 ii STATEMENT OF PERMISSION TO USE In presenting this professional paper in partial fulfillment of the requirements for a master’s degree at Montana State University, I agree that the MSSE Program shall make it available to borrowers under rules of the program. Sherry Ann Otruba July 2014 iii DEDICATION I would like to dedicate my work to my students at the Roanoke Valley Governor’s School who have supported this project and inspire me to be a better teacher. I hope they have learned as much from me this year as I have learned from them. iv TABLE OF CONTENTS INTRODUCTION AND BACKGROUND ........................................................................1 CONCEPTUAL FRAMEWORK ........................................................................................3 METHODOLOGY ..............................................................................................................7 DATA AND ANALYSIS ..................................................................................................11 INTERPRETATION AND CONCLUSION .....................................................................18 VALUE ..............................................................................................................................19 -
Ch 7 Chemical Reactions Study Guide Accelerated Chemistry SCANTRON
Ch 7 Chemical Reactions Study Guide Accelerated Chemistry SCANTRON Name___________________________________ /80 TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. Correct the False statments by changing the underlined word(s). 1) The following equation IS balanced: CH4 + 2O2 CO2 + H2O 1) 2) A strong electrolyte solution contains ionic compounds that completely dissociate in water. 2) 3) When compounds containing polyatomic ions dissolve, the polyatomic ions usually dissolve 3) as intact units. 4) A net ionic equation shows all ionic species that are present in solution. 4) 5) Combustion reactions emit heat and so can be classified as endothermic. 5) 6) Mixing HNO3 (aq) and NaHCO3 (aq) will produce carbon dioxide gas as a product. 6) 7) When balancing a chemical equation you may alter the coefficients but not the subscripts in 7) the equation. 8) An acid-base reaction always produces a salt plus carbon dioxide. 8) 9) The formation of either a solid or a gas is evidence of a chemical reaction. 9) 10) Decomposition reactions usually require energy to initiate the reaction. 10) 11) Li+, Na+, K+ and NH4+ compounds are soluble. 11) 12) The reaction of carbonate ion with magnesium ion to form solid magnesium carbonate is an 12) example of an oxidation reduction reaction. 13) Evidence of a redox reaction is when one substance transfers protons to another substance. 13) 14) The following equation IS balanced: 2 C4H10O + 13 O2 8 CO2 + 10 H2O 14) 15) The reaction of baking soda and vinegar to produce carbon dioxide gas is an example of a 15) precipitation reaction.