ICM 2002 · Vol. I · 547–554 Integrating ∂∂ Michael McQuillan∗ Abstract We consider the algebro-geometric consequences of integration by parts. 2000 Mathematics Subject Classification: 32, 14. Keywords and Phrases: Jensen’s formula. 1. Jensen’s formula Recall that for a suitably regular function ϕ on the unit disc ∆ we can apply integration by parts/Stoke’s formula twice to obtain for r< 1, r dt ddcϕ = ϕ − ϕ(0) (1.1) t Z0 Z∆(t) Z∂∆(r) c 1 1 where d = 4πi (∂ − ∂) so actually we’re integrating 2πi ∂∂. In the presence of singularities things continue to work. For example suppose f : ∆ → X is a holo- morphic map of complex spaces and D a metricised effective Cartier divisor on X, ∗ with f(0) ∈/ D, and ϕ = − log f k1IDk, where 1ID ∈ OX (D) is the tautological section, then we obtain, r dt f ∗c (D) = − log kf ∗1I k + log kf ∗1I k(0) t 1 D D Z0 Z∆(t) Z∂∆(r) (1.2) ∗ r arXiv:math/0212409v1 [math.AG] 1 Dec 2002 + ord (f D) log . z z 0<|z|<r X Obviously it’s not difficult to write down similar formulae for not necessarily effective Cartier divisors, meromorphic functions, drop the condition that f(0) ∈/ D provided f(∆) 6⊂ D, extend to ramified covers p : Y → ∆, etc., but in all cases what is clear is, ∗Institut des Hautes Etudes Scientifiques, 35 route de Chartres, 91440 Bures-sur-Yvette, France and Department of Mathematics, University of Glasgow G128QW, Scotland. E-mail: mquil-
[email protected] 548 Michael McQuillan r dt ∗ Facts 1.3.