Nature, Age, and Genesis of Quartz-Sulfide-Precious-Metal Vein

Total Page:16

File Type:pdf, Size:1020Kb

Nature, Age, and Genesis of Quartz-Sulfide-Precious-Metal Vein Nature, age, and genesis of quartz-sulfide-precious-metal vein systems in the Virginia City Mining District, Madison County, Montana by Marshall Morris Cole A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Earth Sciences Montana State University © Copyright by Marshall Morris Cole (1983) Abstract: In the Virginia City mining district, pre-Belt gneisses and the Late Cretaceous granitic Browns Gulch stock host numerous quartz vein systems. Hypogene mineralization is chiefly gold- and silver-bearing base-metal sulfides. The U.S. Grant 3-level vein system, N40°-50°E; 35°-50&deg,NW, 0.3 to 5.0 m wide, is contained in a shear zone exhibiting about 10 m of syn-ore right-lateral movement. The vein system is composed of elongate quartz lenses, quartz stringers, tabular quartz bodies, and variable amounts of crushed and altered gneiss. Altered wall rock gneiss exhibits early potassic alteration (microcline and possibly quartz) and a subsequent propylitic assemblage (carbonate, pyrite, quartz, chlorite, other phyllosilicates, and a zeolite?). Post-alteration mineralization occurs as pyrite, followed by variable amounts of contemporaneous galena, sphalerite, chalcopyrite, sparse tetrahedrite, and rare specular (?) hematite. Additionally, some (latest) sphalerite replaces pyrite, galena, and chalcopyrite. Observable gold is very rare. Quartz deposition is pre-, syn-, and post-sulfide mineralization. The Virginia City district is one of several districts in the Tobacco Root precious-metal mining region. The region is cored by the 77-72 m.y. old quartz monzonite Tobacco Root batholith. A regional zoning is present with respect to the batholith in the form of low silver-to-gold and high copper-to-silver ratios near the batholith, and high silver-to-gold and low copper-to-silver ratios far from the batholith (Virginia City district). It is proposed that ores of the district are of Latest Cretaceous to Early Tertiary age (70-60 m.y.B.P.), based on the occurrence of deposits in the Late Cretaceous Browns Gulch stock, the crosscutting of the El Fleeda 4-level vein system by a 51 m.y. old andesite plug, and the regional zoning with respect to the batholith. An epithermal precious-metal genesis model has been applied to the ores of the district. A geothermal convection cell powered by heat from Late Cretaceous plutonism, produced large-scale regional circulation of hydrothermal fluids at shallow crustal levels. These fluids collected (remobilized ?), transported, and deposited the ore constituents. NATURE, AGE, AND GENESIS OF QUARTZ-SULFIDE-PRECIOUS-METAL VEIN SYSTEMS IN THE VIRGINIA CITY MINING DISTRICT, MADISON COUNTY, MONTANA by Marshall Morris Cole A thesis submitted in, partial fulfillm ent of the requirements fo r the degree of Master of Science in ' ; Earth Sciences MONTANA STATE UNIVERSITY Bozeman, Montana December, 1983 main lib . C k 7 5 5 i i Cop. Si APPROVAL of a thesis submitted by Marshall Morris Cole This thesis has been read by each member of the thesis committee and has been found to be satisfactory regarding content, English usage, format, citations, bibliographic style, and consistency, and is ready fo r submission to the College of Graduate Studies. / Z- Y ) - £ { r 'C Date Chairperson, Graduate Committee Approved fo r the Major Department m 3 <S- Date Head, Major Department Approved for the College of Graduate Studies 'll&K-- IW I Date Graduate Dean I l i STATEMENT OF PERMISSION TO USE In presenting this thesis in partial fulfillment of the requirements for a master's degree at Montana State University, I agree that the Library shall make it available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special per­ mission, provided that accurate acknowledgment of source is made. Permission for extensive quotation from or reproduction of this thesis may be granted by my major professor, or in his/her absence, by the Director of Libraries when, in the opinion of either, the pro­ posed use of the m aterial is fo r scholarly purposes. Any copying or. use of the material in this thesis for financial gain shall not be allowed without my written permission. Signature Date « 2 / , / f ^ - 3 V ACKNOWLEDGMENTS This thesis was. funded in part by: The Montana Bureau of Mines and Geology; R and D Minerals, Missoula, Montana; Dr. David R. Lageson, professor at Montana State University; the Research-Creativity Program, Montana State U niversity; The St. Lawrence Mining Company, V irginia C ity , Montana. Great appreciation is expressed towards these people fo r th e ir generous contributions. The following individuals have donated th e ir s k ills , knowledge, and support in the compilation of th is thesis: Drs. Robert A. Chadwick, David W. Mogk, and David R. Lageson, professors at Montana State University; Clyde Boyer, geologist, Virginia City, Montana; Thomas. A. Callmeyer, field assistant and graduate student, Montana State University, Tefese ^ //^ X/z /ov^ ct™/ dlhc( ho uu i-teej-e. Cq)&. 4 rTAa I f If , v f/ Jz I cSeIL f vi TABLE OF. CONTENTS Page 1. LIST OF TABLES.............................................................. .................... .. v i i i 2. LIST OF FIGURES ......................................... ix 3. ABSTRACT.................................................................................................... xi 4. INTRODUCTION...........................................................................................• I Location, Access, and Physiography ........................................ I Purpose and Method of Study. , . ................. ..... 3 Previous Study .................................................................. 3 5. MINING HISTORY..................................................... 4 6. REGIONAL GEOLOGIC SETTING ...................................................... .... 5 7. GENERAL GEOLOGY OF THE VIRGINIA CITY MINING DISTRICT. 8 Rock T y p e s ....................................................................................... 8 Structure. ' ................................ .................................................. Tl 8. MINING GEOLOGY............................................. .......................................... 13 Regional Setting: The Tobacco Root Precious-Metal Mining R eg io n .......................................................................... 13 Mining Geology of the V irg in ia C ity D is tric t ....... 16 9. MINING GEOLOGY OF SELECTED MINES OF THE VIRGINIA CITY DISTRICT ..........................................’ ............................. .... 20 U.S. Grant Mine ...................................................................... 20 . El Fleeda M in e ...................................................................... 36 Black Rock Mine. ....... i... ................................ 38 Easton-Pacific Group .................................................................. 38 Prospect Mine. .................................. 40 St. Lawrence Mine ............................ .... ......................................... 40 Fork Mine ............................................. .............................................. 42 10. GEOLOGIC HISTORY OF THE VIRGINIA CITY DISTRICT........................ 44 V ii TABLE OF CONTENTS—Continued Page 11. CONCLUSIONS: AGE AND GENESIS OF QUARTZ-SULFIDE- PRECIOUS-METAL VEIN SYSTEMS IN THE VIRGINIA CITY MINING DISTRICT..................... ■............................. .... 46 Previous Interpretations .......................................................... 46 Author's Interpretation. .. ..................................................... 47 Age of Ore Deposits ...................................................................... 48 Genesis of Ores in the V irg in ia C ity Mining D is tric t . 51 12. REFERENCES CITED. ............................................................................... 59 13. APPENDICES. ...................................................... 63 Appendix A Radiometric Dates (K-Ar Technique) ............................. 65 Appendix B General Data on Some Tobacco Root Precious- Metal Deposits . ...................................... 67 Appendix C Ore and Gangue Minerals of Tobacco Root Base- and Precious-Metal Deposits ............................. .... 70 Appendix D Lode Production Figures fo r Tobacco Root Mining Districts (1901 ^l935) . ..................... 72 Appendix E Lode Production Figures for Selected Mines of the Tobacco Root Region (1901-1935) .... 74 Appendix F Lode Production Figures for Selected Mines of the Virginia City District (1901-1935). 76 v iii LIST.OF TABLES Table Page 1. Some of the quartz vein systems of the Virginia City D is tr ic t.................................................. ................................ .... 18 2. Paragenetic sequence of hypogene a lte ra tio n and ore mineralization in the U.S. Grant 3-level. ..................................25 ix LIST OF FIGURES Figure Page 1. Mining districts and physiography of the Tobacco Root precious-metal mining region. ..... ..................................... 2 2. General geology of the Tobacco Root precious-metal mining region .............................................. ......................................... 6 3. Regional zoning of s ilv e r-to -g o ld and copper-to-silver ratios in the Tobacco Root precious-metal mining region . 17 4. Cross-section of U.S. Grant 3-level vein structure .................22 5. View looking up-dip of vein structure on southeast wall of U.S. Grant 3-level
Recommended publications
  • Alteration Petrology in the Potosi Mining District Tobacco Root Mountains Montana
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1975 Alteration petrology in the Potosi Mining District Tobacco Root Mountains Montana Michael James Burnside The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Burnside, Michael James, "Alteration petrology in the Potosi Mining District Tobacco Root Mountains Montana" (1975). Graduate Student Theses, Dissertations, & Professional Papers. 7724. https://scholarworks.umt.edu/etd/7724 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. ALTERATION PETROLOGY IN THE POTOSI MINING DISTRICT, TOBACCO ROOT MOUNTAINS, MONTANA by Michael Burnside B.A., University of Montana, 1970 Presented in partial fulfillm ent of the requirements for the degree of Master of Science UNIVERSITY OF MONTANA 1975 Approved by: Chairman, Board o£/Examiners DeapC^ Graduate-^^hool ' Date Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: EP38525 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.
    [Show full text]
  • Montana Forest Insect and Disease Conditions and Program Highlights
    R1-16-17 03/20/2016 Forest Service Northern Region Montata Department of Natural Resources and Conservation Forestry Division In accordance with Federal civil rights law and U.S. Department of Agriculture (USDA) civil rights regulations and policies, the USDA, its Agencies, offices, and employees, and institutions participating in or administering USDA programs are prohibited from discriminating based on race, color, national origin, religion, sex, gender identity (including gender expression), sexual orientation, disability, age, marital status, family/parental status, income derived from a public assistance program, political beliefs, or reprisal or retaliation for prior civil rights activity, in any program or activity conducted or funded by USDA (not all bases apply to all programs). Remedies and complaint filing deadlines vary by program or incident. Persons with disabilities who require alternative means of communication for program information (e.g., Braille, large print, audiotape, American Sign Language, etc.) should contact the responsible Agency or USDA’s TARGET Center at (202) 720-2600 (voice and TTY) or contact USDA through the Federal Relay Service at (800) 877-8339. Additionally, program information may be made available in languages other than English. To file a program discrimination complaint, complete the USDA Program Discrimination Complaint Form, AD-3027, found online at http://www.ascr.usda.gov/complaint_filing_cust.html and at any USDA office or write a letter addressed to USDA and provide in the letter all of the information requested in the form. To request a copy of the complaint form, call (866) 632-9992. Submit your completed form or letter to USDA by: (1) mail: U.S.
    [Show full text]
  • MBMG 505-Jefferson-V2.FH10
    GEOLOGIC MAP OF THE CENOZOIC DEPOSITS OF THE UPPER JEFFERSON VALLEY MBMG Open File Report 505 2004 Compiled and mapped by Susan M. Vuke, Walter W. Coppinger, and Bruce E. Cox This report has been reviewed for conformity with Montana Bureau of Mines and Geology’s technical and editorial standards. Partial support has been provided by the STATEMAP component of the National Cooperative Geology Mapping Program of the U.S. Geological Survey under contract Number 03HQAG0090. CENOZOIC DEPOSITS OF THE UPPER JEFFERSON VALLEY Cenozoic deposits are the focus of the Geologic Map of the upper Jefferson Valley. The map is largely a compilation of previous mapping with additional interpretations based on aerial photos and limited additional field work. Older rocks are included to show their relations to the Cenozoic deposits, but they are generalized on the map. Lithologic descriptions of the Cenozoic deposits are given in the map explanation (p. 17). References used for the map compilation are shown on p. 15. The northern and southern parts of the map are discussed separately. NORTHERN PART OF MAP AREA Quaternary deposits A variety of Quaternary deposits blanket much of the slope area of the Whitetail and Pipestone Creek valleys between the flanks of the Highland Mountains and Bull Mountain (Fig. 1). East and southeast of these Quaternary slope deposits are more isolated areas of partly cemented Pleistocene gravels on pediments. One of these gravel deposits near Red Hill (Fig. 1) yielded a late Pleistocene vertebrate assemblage including cheetah, horse, camel, and large mountain sheep. Radiocarbon dates from the lowest part of the sequence range between 10,000 and 9,000 14C yr.
    [Show full text]
  • Geologic Map of Ruby Dam Area Southwestern Montana
    Geologic Map of Ruby Dam Area Southwestern Montana Compiled and Mapped by Zachary C. St. Jean and Deirdre R. Teeter Montana Bureau of Mines and Geology Open File Report MBMG 488 2004 This report has had preliminary reviews for conformity with Montana Bureau of Mines and Geology’s technical editorial standards. Partial support has been provided by the EDMAP component of the National Cooperative Geological Mapping Program of the U.S. Geological Survey under Contract Number 01HQAG0157. Introduction This project was funded by the EDMAP program of the U. S. Geological Survey. Field studies, including geologic mapping and a gravity and magnetic survey, were conducted during the 2001 field season. These studies were undertaken to gain a better understanding of the geologic structure of the Ruby basin in the area of Ruby Dam in southwest Montana (Figures 1 and 2). Ruby Dam, which impounds Ruby Reservoir, lies within a seismically active region known as the Intermountain Seismic Belt. Delineation and detailed mapping of the Tertiary and Quaternary sediments has helped to understand better the occurrence of Quaternary faulting in the basin. No new faults of Quaternary age were recognized within the field area. However, a fault that offsets Quaternary deposits was newly mapped by the authors in a gravel pit two miles north of the north map boundary. This fault may change previously calculated ground acceleration values at the dam site, and may indicate a greater susceptibility of the dam to seismic activity than previously thought. The geologic map in this report combines previous work that focused on the bedrock of the area with new mapping of the Tertiary and Quaternary deposits by the present authors.
    [Show full text]
  • MONTANA N7 4Qea
    E 12, p( /F- o77 (r 2) Sf(jji PGJ/F-077(82) National Uranium Resource Evaluation 6 BOZEMAN QUADRANGLE 41 MONTANA n7 4QeA/ University of Montana Missoula, Montana and Montana State University Bozeman, Montana E2T oFi Issue Date August 1982 SATESO9 PREPARED FOR THE U.S. DEPARTMENT OF ENERGY Assistant Secretary for Nuclear Energy Grand Junction Area Office, Colorado rmetadc957781 Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed in this report, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. This report is a result of work performed by the University of Montana and Montana State University, through a Bendix Field Engineering Corporation subcontract, as part of the National Uranium Resource Evaluation. NURE was a program of the U.S. Department of Energy's Grand Junction, Colorado, Office to acquire and compile geologic and other information with which to assess the magnitude and distribution of uranium resources and to determine areas favorable for the occurrence of uranium in the United States. Available from: Technical Library Bendix Field Engineering Corporation P.O.
    [Show full text]
  • Stratigraphy and Structure of the Rock Creek Area, Beaverhead County, Montana by James Franklin Peters
    AN ABSTRACT OF THE THESIS OF JAMES FRANKLIN PETERS for the Master of Science (Name) (Degree) in Geology presented on (Major) (Date) Title: STRATIGRAPHY AND STRUCTURE OF THE ROCK CREEK AREA, BEAVERHEAD COUNTY, MONTANA Abstract approved:Redacted for Privacy Dr. David A. Bostwick The Rock Creek area consists of 53 square miles located in the eastern foothills of the Pioneer Mountains, Beaverhead County, Montana. Approximately 8, 500 feet of late Paleozoic and early Mesozoic contact-metamorphosed sedimentary rocks and late Meso- zoic sedimentary rocks are exposed in the area of study. Most of the late Paleozoic and Mesozoic rocks were deposited along the eastern edge of the Cordilleran miogeosyncline.The old- est exposed rocks in the map area belong to the Amsden Formation of Late Mississippian to Early Pennsylvanian age.Other late Paleo- zoic rock units include the Quadrant Formation of Pennsylvanian age and the Phosphoria Formation of Permian age.Mesozoic forma- tions include the Dinwoody Formation of Triassic age and the Kootenai Formation and Colorado Group of Cretaceous age. The Tertiary is represented bybasin depositsand basaltic andesite extrusives.Unconsolidated Quaternary glacialand fluvial deposits complete the stratigraphicsuccession. Granodiorite intrusive rocksoccupy the southwestern corner of the area mapped andcompose part of the eastern margin of the Mount Torrey Batholith, whichis probably genetically relatedto the Boulder Batholith.Along the margin of the intrusive,contact meta- morphism has destroyed the originalsedimentary characteristics of the late Paleozoic and earlyMesozoic Formations. During the Late Cretaceous Laramideorogeny the sedimentary rocks were tilted and faulted. Thestructures in the area are related to the main episode of Laramidedeformation, emplacement of the Mount Torrey Batholith, and laterphases of structural adjustment.
    [Show full text]
  • Toward the Crystal Structure of Nagyagite, [Pb(Pb,Sb)S2][(Au,Te)]
    American Mineralogist, Volume 84, pages 669–676, 1999 Toward the crystal structure of nagyagite, [Pb(Pb,Sb)S2][(Au,Te)] HERTA EFFENBERGER,1,* WERNER H. PAAR,2 DAN TOPA,2 FRANZ J. CULETTO,3 AND GERALD GIESTER1 1Institut für Mineralogie und Kristallographie, Universität Wien, Althanstrasse 14, A-1090 Vienna, Austria 2Institut für Mineralogie, Universität Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg 3Kärntner Elektrizitäts AG, Arnulfplatz 2, A-9021 Klagenfurt, Austria ABSTRACT Synthetic nagyagite was grown from a melt as part of a search for materials with high-tempera- ture superconductivity. Electron microprobe analyses of synthetic nagyagite and of nagyagite from the type locality Nagyág, Transylvania (now S˘ac˘arîmb, Romania) agree with data from literature. The crystal chemical formula [Pb(Pb,Sb)S2][(Au,Te)] was derived from crystal structure investi- gations. Nagyagite is monoclinic pseudotetragonal. The average crystal structure was determined from both synthetic and natural samples and was refined from the synthetic material to R = 0.045 for 657 single-crystal X-ray data: space group P21/m, a = 4.220(1) Å, b = 4.176(1) Å, c = 15.119(3) Å, β = 95.42(3)°, and Z = 2. Nagyagite features a pronounced layer structure: slices of a two slabs thick SnS-archetype with formula Pb(Pb,Sb)S2 parallel to (001) have a thickness of 9.15 Å. Te and Au form a planar pseudo-square net that is sandwiched between the SnS-archetype layers; it is [4Te] assumed that planar Au Te4 configurations are edge connected to chains and that Te atoms are in a zigzag arrangement.
    [Show full text]
  • The Archean Geology of Montana
    THE ARCHEAN GEOLOGY OF MONTANA David W. Mogk,1 Paul A. Mueller,2 and Darrell J. Henry3 1Department of Earth Sciences, Montana State University, Bozeman, Montana 2Department of Geological Sciences, University of Florida, Gainesville, Florida 3Department of Geology and Geophysics, Louisiana State University, Baton Rouge, Louisiana ABSTRACT in a subduction tectonic setting. Jackson (2005) char- acterized cratons as areas of thick, stable continental The Archean rocks in the northern Wyoming crust that have experienced little deformation over Province of Montana provide fundamental evidence long (Ga) periods of time. In the Wyoming Province, related to the evolution of the early Earth. This exten- the process of cratonization included the establishment sive record provides insight into some of the major, of a thick tectosphere (subcontinental mantle litho- unanswered questions of Earth history and Earth-sys- sphere). The thick, stable crust–lithosphere system tem processes: Crustal genesis—when and how did permitted deposition of mature, passive-margin-type the continental crust separate from the mantle? Crustal sediments immediately prior to and during a period of evolution—to what extent are Earth materials cycled tectonic quiescence from 3.1 to 2.9 Ga. These compo- from mantle to crust and back again? Continental sitionally mature sediments, together with subordinate growth—how do continents grow, vertically through mafi c rocks that could have been basaltic fl ows, char- magmatic accretion of plutons and volcanic rocks, acterize this period. A second major magmatic event laterally through tectonic accretion of crustal blocks generated the Beartooth–Bighorn magmatic zone assembled at continental margins, or both? Structural at ~2.9–2.8 Ga.
    [Show full text]
  • Advances in the Geology of the Tobacco Root Mountains, Montana, and Their Implications for the History of the Northern Wyoming Province
    Geological Society of America Special Paper 377 2004 Advances in the geology of the Tobacco Root Mountains, Montana, and their implications for the history of the northern Wyoming province Tekla A. Harms Department of Geology, Amherst College, Amherst, Massachusetts 01002, USA John B. Brady H. Robert Burger Department of Geology, Smith College, Northampton, Massachusetts 01063, USA John T. Cheney Department of Geology, Amherst College, Amherst, Massachusetts 01002, USA ABSTRACT Integrated studies by Keck Geology Consortium participants have generated many new insights into the Precambrian geology of the Tobacco Root Mountains. We have clarifi ed the tectonic setting and origin of two suites of metamorphic rocks: (1) a quartzofeldspathic gneiss complex with associated metasupracrustal rocks (the combined Indian Creek and Pony–Middle Mountain Metamorphic Suites) that origi- nated in a continental arc setting between 3.35 and 3.2 Ga with subsequent sedimen- tation and (2) mafi c metavolcanic rocks with intercalated metasedimentary rocks (the Spuhler Peak Metamorphic Suite) from a suprasubduction zone ophiolite or backarc basin possibly of Proterozoic age. A poorly preserved metamorphic event at 2.45 Ga affected the former but not the latter, as did the intrusion of rift-related mafi c dikes and sills at 2.06 Ga. Both suites were amalgamated, metamorphosed to at least upper amphibolite facies, subjected to simple shear strain and folded into map- and out- crop-scale sheath folds, and tectonically unroofed during the period 1.78 to 1.71 Ga. We name this event the Big Sky orogeny. The Proterozoic geology of the Tobacco Root Mountains can be integrated with coeval features of the geology of the northern Wyoming province to outline a north- east-trending, southeast-vergent belt as the Big Sky orogen.
    [Show full text]
  • Surrounded by Mountains
    Surrounded by Mountains he Gallatin Valley is one of the most picturesque and Rockies into the jagged peaks we see today. Over the last 50 Geo-Facts: agriculturally productive valleys in Montana. From million years, western Montana experienced several phases of • From the summit of Sacagawea Peak (9,596 ft.) in the northern here, you can see four prominent Montana mountain regional extension and block-faulting, resulting in the creation Bridger Range, you can see even more ranges in a spectacular Tranges: the Bridger Range (east), Gallatin Range (south), of modern Basin-and-Range topography. The crest of the 360o panorama of southwest Montana. Spanish Peaks (southwest), and the Big Belt Mountains Bridger Range arch slowly down-dropped one earthquake at a • A pluton is an intrusive igneous rock body that crystallized from (north). Each range has its own unique geology and topography. time to form the modern Gallatin Valley. Thick layers of mid- magma slowly cooling below the surface of the Earth. Its name The high peaks of the Gallatin Range are carved from volcanic and late Cenozoic sedimentary rocks and more recent stream comes from Pluto, the Roman god of the underworld. rocks and volcanic-derived mudflows that erupted during the deposits have been deposited in the Gallatin Valley, producing • One of the richest gold strikes in Montana history was made at Eocene, approximately 45 million years ago. The Spanish Peaks the fertile landscape that Native Americans called the “Valley of Confederate Gulch in the Big Belt Mountains in 1864. Miners expose metamorphic rocks that date back to the Earth’s early Flowers” – the Gallatin Valley.
    [Show full text]
  • Regional Overview -- Wildlife Subcommittee Report
    1 Northern Regional Overview Wildlife Species: Status, Risk, Opportunities, and References Fred Samson Wildlife Ecologist Northern Region Ecosystems Ecosystem Status National Review In 1999, a group of scientists representing major conservation organization conducted a detailed review of the conservation status of each North American ecosystem in order to develop priorities to conserve biodiversity including wildlife species (Ricketts et al. 1999). Each major ecosystem was placed within the Ecological hierarchy developed by Bailey (1996), and is essential the same as the ecological hierarchy the Forest Service is encouraged to use in the Draft Directives that implement the 2005 Planning Rule. The review conducted Ricketts et al. (1999) placed each North American Ecoregion into one of five categories. Category Description I. Globally outstanding Ecoregion requiring immediate protection of remaining habitat and extensive restoration. II. Regionally outstanding Ecoregion requiring immediate protection of Remaining habitat and extensive restoration. III. Globally or regionally outstanding Ecoregion that present rare Opportunities to conserve large blocks of habitat. IV. Bioregionally and nationally important ecoregions requiring protection of Remaining habitat and extensive restoration. V. Bioregionally and national important ecoregions requiring protection or representative habitat blocks and proper management elsewhere for biodiversity conservation. In addition, each ecoregions was identified in terms of condition as Critical, Endangered, Vulnerable, 2 Relatively Stable, and Relatively Intact. Within the Northern Region, ecoregions were identified by Ricketts et al. (1999) to fall into the following categories. I. Globally Outstanding/Critical Tallgrass prairie (North Dakota) II Regionally Outstanding/Endangered Shortgrass prairie (South Dakota) IV Bioregionally outstanding/Endangered Snake/Columbia Shrub steppe (Idaho) IV Bioregionally outstanding/Vulnerable North Central and South Central Rocky Mountain Forests (Montana and Idaho) V.
    [Show full text]
  • Usgs Open-File Report 02-303Epa, Mineral Commodity Profiles— Gold
    PEBBLE PROJECT RECORD OF DECISION ENVIRONMENTAL IMPACT STATEMENT USGS OPEN-FILE REPORT 02-303EPA, MINERAL COMMODITY PROFILES— GOLD (BUTTERMAN AND AMEY III, 2005) Mineral Commodity Profiles—Gold By W.C. Butterman and Earle B. Amey III Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government Open-File Report 02-303 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey P. Patrick Leahy, Acting Director U.S. Geological Survey, Reston, Virginia 2005 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. iii Contents Overview .............................................................................................................................................................................................1 Descriptive terms and units of measure........................................................................................................................................1 Historical background.......................................................................................................................................................................2
    [Show full text]