Top Quark Physics with B-Jets Containing Muons with CMS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Particle World
The Particle World ² What is our Universe made of? This talk: ² Where does it come from? ² particles as we understand them now ² Why does it behave the way it does? (the Standard Model) Particle physics tries to answer these ² prepare you for the exercise questions. Later: future of particle physics. JMF Southampton Masterclass 22–23 Mar 2004 1/26 Beginning of the 20th century: atoms have a nucleus and a surrounding cloud of electrons. The electrons are responsible for almost all behaviour of matter: ² emission of light ² electricity and magnetism ² electronics ² chemistry ² mechanical properties . technology. JMF Southampton Masterclass 22–23 Mar 2004 2/26 Nucleus at the centre of the atom: tiny Subsequently, particle physicists have yet contains almost all the mass of the discovered four more types of quark, two atom. Yet, it’s composite, made up of more pairs of heavier copies of the up protons and neutrons (or nucleons). and down: Open up a nucleon . it contains ² c or charm quark, charge +2=3 quarks. ² s or strange quark, charge ¡1=3 Normal matter can be understood with ² t or top quark, charge +2=3 just two types of quark. ² b or bottom quark, charge ¡1=3 ² + u or up quark, charge 2=3 Existed only in the early stages of the ² ¡ d or down quark, charge 1=3 universe and nowadays created in high energy physics experiments. JMF Southampton Masterclass 22–23 Mar 2004 3/26 But this is not all. The electron has a friend the electron-neutrino, ºe. Needed to ensure energy and momentum are conserved in ¯-decay: ¡ n ! p + e + º¯e Neutrino: no electric charge, (almost) no mass, hardly interacts at all. -
First Determination of the Electric Charge of the Top Quark
First Determination of the Electric Charge of the Top Quark PER HANSSON arXiv:hep-ex/0702004v1 1 Feb 2007 Licentiate Thesis Stockholm, Sweden 2006 Licentiate Thesis First Determination of the Electric Charge of the Top Quark Per Hansson Particle and Astroparticle Physics, Department of Physics Royal Institute of Technology, SE-106 91 Stockholm, Sweden Stockholm, Sweden 2006 Cover illustration: View of a top quark pair event with an electron and four jets in the final state. Image by DØ Collaboration. Akademisk avhandling som med tillst˚and av Kungliga Tekniska H¨ogskolan i Stock- holm framl¨agges till offentlig granskning f¨or avl¨aggande av filosofie licentiatexamen fredagen den 24 november 2006 14.00 i sal FB54, AlbaNova Universitets Center, KTH Partikel- och Astropartikelfysik, Roslagstullsbacken 21, Stockholm. Avhandlingen f¨orsvaras p˚aengelska. ISBN 91-7178-493-4 TRITA-FYS 2006:69 ISSN 0280-316X ISRN KTH/FYS/--06:69--SE c Per Hansson, Oct 2006 Printed by Universitetsservice US AB 2006 Abstract In this thesis, the first determination of the electric charge of the top quark is presented using 370 pb−1 of data recorded by the DØ detector at the Fermilab Tevatron accelerator. tt¯ events are selected with one isolated electron or muon and at least four jets out of which two are b-tagged by reconstruction of a secondary decay vertex (SVT). The method is based on the discrimination between b- and ¯b-quark jets using a jet charge algorithm applied to SVT-tagged jets. A method to calibrate the jet charge algorithm with data is developed. A constrained kinematic fit is performed to associate the W bosons to the correct b-quark jets in the event and extract the top quark electric charge. -
Searching for a Heavy Partner to the Top Quark
SEARCHING FOR A HEAVY PARTNER TO THE TOP QUARK JOSEPH VAN DER LIST 5e Abstract. We present a search for a heavy partner to the top quark with charge 3 , where e is the electron charge. We analyze data from Run 2 of the Large Hadron Collider at a center of mass energy of 13 TeV. This data has been previously investigated without tagging boosted top quark (top tagging) jets, with a data set corresponding to 2.2 fb−1. Here, we present the analysis at 2.3 fb−1 with top tagging. We observe no excesses above the standard model indicating detection of X5=3 , so we set lower limits on the mass of X5=3 . 1. Introduction 1.1. The Standard Model One of the greatest successes of 20th century physics was the classification of subatomic particles and forces into a framework now called the Standard Model of Particle Physics (or SM). Before the development of the SM, many particles had been discovered, but had not yet been codified into a complete framework. The Standard Model provided a unified theoretical framework which explained observed phenomena very well. Furthermore, it made many experimental predictions, such as the existence of the Higgs boson, and the confirmation of many of these has made the SM one of the most well-supported theories developed in the last century. Figure 1. A table showing the particles in the standard model of particle physics. [7] Broadly, the SM organizes subatomic particles into 3 major categories: quarks, leptons, and gauge bosons. Quarks are spin-½ particles which make up most of the mass of visible matter in the universe; nucleons (protons and neutrons) are composed of quarks. -
Muon Neutrino Mass Without Oscillations
The Distant Possibility of Using a High-Luminosity Muon Source to Measure the Mass of the Neutrino Independent of Flavor Oscillations By John Michael Williams [email protected] Markanix Co. P. O. Box 2697 Redwood City, CA 94064 2001 February 19 (v. 1.02) Abstract: Short-baseline calculations reveal that if the neutrino were massive, it would show a beautifully structured spectrum in the energy difference between storage ring and detector; however, this spectrum seems beyond current experimental reach. An interval-timing paradigm would not seem feasible in a short-baseline experiment; however, interval timing on an Earth-Moon long baseline experiment might be able to improve current upper limits on the neutrino mass. Introduction After the Kamiokande and IMB proton-decay detectors unexpectedly recorded neutrinos (probably electron antineutrinos) arriving from the 1987A supernova, a plethora of papers issued on how to use this happy event to estimate the mass of the neutrino. Many of the estimates based on these data put an upper limit on the mass of the electron neutrino of perhaps 10 eV c2 [1]. When Super-Kamiokande and other instruments confirmed the apparent deficit in electron neutrinos from the Sun, and when a deficit in atmospheric muon- neutrinos likewise was observed, this prompted the extension of the kaon-oscillation theory to neutrinos, culminating in a flavor-oscillation theory based by analogy on the CKM quark mixing matrix. The oscillation theory was sensitive enough to provide evidence of a neutrino mass, even given the low statistics available at the largest instruments. J. M. Williams Neutrino Mass Without Oscillations (2001-02-19) 2 However, there is reason to doubt that the CKM analysis validly can be applied physically over the long, nonvirtual propagation distances of neutrinos [2]. -
Three Lectures on Meson Mixing and CKM Phenomenology
Three Lectures on Meson Mixing and CKM phenomenology Ulrich Nierste Institut f¨ur Theoretische Teilchenphysik Universit¨at Karlsruhe Karlsruhe Institute of Technology, D-76128 Karlsruhe, Germany I give an introduction to the theory of meson-antimeson mixing, aiming at students who plan to work at a flavour physics experiment or intend to do associated theoretical studies. I derive the formulae for the time evolution of a neutral meson system and show how the mass and width differences among the neutral meson eigenstates and the CP phase in mixing are calculated in the Standard Model. Special emphasis is laid on CP violation, which is covered in detail for K−K mixing, Bd−Bd mixing and Bs−Bs mixing. I explain the constraints on the apex (ρ, η) of the unitarity triangle implied by ǫK ,∆MBd ,∆MBd /∆MBs and various mixing-induced CP asymmetries such as aCP(Bd → J/ψKshort)(t). The impact of a future measurement of CP violation in flavour-specific Bd decays is also shown. 1 First lecture: A big-brush picture 1.1 Mesons, quarks and box diagrams The neutral K, D, Bd and Bs mesons are the only hadrons which mix with their antiparticles. These meson states are flavour eigenstates and the corresponding antimesons K, D, Bd and Bs have opposite flavour quantum numbers: K sd, D cu, B bd, B bs, ∼ ∼ d ∼ s ∼ K sd, D cu, B bd, B bs, (1) ∼ ∼ d ∼ s ∼ Here for example “Bs bs” means that the Bs meson has the same flavour quantum numbers as the quark pair (b,s), i.e.∼ the beauty and strangeness quantum numbers are B = 1 and S = 1, respectively. -
PSI Muon-Neutrino and Pion Masses
Around the Laboratories More penguins. The CLEO detector at Cornell's CESR electron-positron collider reveals a clear excess signal of photons from rare B particle decays, once the parent upsilon 4S resonance has been taken into account. The convincing curve is the theoretically predicted spectrum. could be at the root of the symmetry breaking mechanism which drives the Standard Model. PSI Muon-neutrino and pion masses wo experiments at the Swiss T Paul Scherrer Institute (PSI) in Villigen have recently led to more precise values for two important physics quantities - the masses of the muon-type neutrino and of the charged pion. The first of these experiments - B. Jeckelmann et al. (Fribourg Univer sity, ETH and Eidgenoessisches Amt fuer Messwesen) was originally done about a decade ago. To fix the negative-pion mass, a high-precision crystal spectrometer measured the energy of the X-rays emitted in the 4f-3d transition of pionic magnesium atoms. The result (JECKELMANN 86 in the graph, page 16), with smaller seen in neutral kaon decay. can emerge. Drawing physics conclu errors than previous charged-pion CP violation - the disregard at the sions from the K* example was mass measurements, dominated the few per mil level of a invariance of therefore difficult. world average. physics with respect to a simultane Now the CLEO group has collected In view of more recent measure ous left-right reversal and particle- all such events producing a photon ments on pionic magnesium, a re- antiparticle switch - has been known with energy between 2.2 and 2.7 analysis shows that the measured X- for thirty years. -
Neutrino Vs Antineutrino Lepton Number Splitting
Introduction to Elementary Particle Physics. Note 18 Page 1 of 5 Neutrino vs antineutrino Neutrino is a neutral particle—a legitimate question: are neutrino and anti-neutrino the same particle? Compare: photon is its own antiparticle, π0 is its own antiparticle, neutron and antineutron are different particles. Dirac neutrino : If the answer is different , neutrino is to be called Dirac neutrino Majorana neutrino : If the answer is the same , neutrino is to be called Majorana neutrino 1959 Davis and Harmer conducted an experiment to see whether there is a reaction ν + n → p + e - could occur. The reaction and technique they used, ν + 37 Cl e- + 37 Ar, was proposed by B. Pontecorvo in 1946. The result was negative 1… Lepton number However, this was not unexpected: 1953 Konopinski and Mahmoud introduced a notion of lepton number L that must be conserved in reactions : • electron, muon, neutrino have L = +1 • anti-electron, anti-muon, anti-neutrino have L = –1 This new ad hoc law would explain many facts: • decay of neutron with anti-neutrino is OK: n → p e -ν L=0 → L = 1 + (–1) = 0 • pion decays with single neutrino or anti-neutrino is OK π → µ-ν L=0 → L = 1 + (–1) = 0 • but no pion decays into a muon and photon π- → µ- γ, which would require: L= 0 → L = 1 + 0 = 1 • no decays of muon with one neutrino µ- → e - ν, which would require: L= 1 → L = 1 ± 1 = 0 or 2 • no processes searched for by Davis and Harmer, which would require: L= (–1)+0 → L = 0 + 1 = 1 But why there are no decays µµµ →→→ e γγγ ? 2 Splitting lepton numbers 1959 Bruno Pontecorvo -
Neutrino-Electron Scattering: General Constraints on Z 0 and Dark Photon Models
Neutrino-Electron Scattering: General Constraints on Z 0 and Dark Photon Models Manfred Lindner,a Farinaldo S. Queiroz,b Werner Rodejohann,a Xun-Jie Xua aMax-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany bInternational Institute of Physics, Federal University of Rio Grande do Norte, Campus Univer- sitário, Lagoa Nova, Natal-RN 59078-970, Brazil E-mail: [email protected], [email protected], [email protected], [email protected] Abstract. We study the framework of U(1)X models with kinetic mixing and/or mass mixing terms. We give general and exact analytic formulas and derive limits on a variety of U(1)X models that induce new physics contributions to neutrino-electron scattering, taking into account interference between the new physics and Standard Model contributions. Data from TEXONO, CHARM-II and GEMMA are analyzed and shown to be complementary to each other to provide the most restrictive bounds on masses of the new vector bosons. In particular, we demonstrate the validity of our results to dark photon-like as well as light Z0 models. arXiv:1803.00060v1 [hep-ph] 28 Feb 2018 Contents 1 Introduction 1 2 General U(1)X Models2 3 Neutrino-Electron Scattering in U(1)X Models7 4 Data Fitting 10 5 Bounds 13 6 Conclusion 16 A Gauge Boson Mass Generation 16 B Cross Sections of Neutrino-Electron Scattering 18 C Partial Cross Section 23 1 Introduction The Standard Model provides an elegant and successful explanation to the electroweak and strong interactions in nature [1]. -
Θc Βct Ct N Particle Nβ 1 Nv C
SectionSection XX TheThe StandardStandard ModelModel andand BeyondBeyond The Top Quark The Standard Model predicts the existence of the TOP quark ⎛ u ⎞ ⎛c⎞ ⎛ t ⎞ + 2 3e ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝d ⎠ ⎝ s⎠ ⎝b⎠ −1 3 e which is required to explain a number of observations. Example: Absence of the decay K 0 → µ+ µ− W − d µ − 0 0 + − −9 K u,c,t + ν B(K → µ µ )<10 W µ s µ + The top quark cancels the contributions from the u, c quarks. Example: Electromagnetic anomalies This diagram leads to infinities in the f γ theory unless Q = 0 γ f ∑ f f f γ where the sum is over all fermions (and colours) 2 1 ∑Q f = []3×()−1 + []3×3× 3 + [3×3×(− 3 )]= 0 244 f 0 At LEP, mt too heavy for Z → t t or W → tb However, measurements of MZ, MW, ΓZ and ΓW are sensitive to the existence of virtual top quarks b t t t W + W + Z 0 Z 0 Z 0 W t b t b Example: Standard Model prediction Also depends on the Higgs mass 245 The top quark was discovered in 1994 by the CDF experiment at the worlds highest energy p p collider ( s = 1 . 8 TeV ), the Tevatron at Fermilab, US. q b Final state W +W −bb g t W + Mass reconstructed in a − t W similar manner to MW at q LEP, i.e. measure jet/lepton b energies/momenta. mtop = (178 ± 4.3) GeV Most recent result 2005 246 The Standard Model c. 2006 MATTER: Point-like spin ½ Dirac fermions. -
Analytic Solutions for Neutrino Momenta in Decay of Top Quarks
Analytic solutions for neutrino momenta in decay of top quarks Burton A. Betchart∗, Regina Demina, Amnon Harel Department of Physics and Astronomy, University of Rochester, Rochester, NY, United States of America Abstract We employ a geometric approach to analytically solving equations of constraint on the decay of top quarks involving leptons. The neutrino momentum is found as a function of the 4-vectors of the associated bottom quark and charged lepton, the masses of the top quark and W boson, and a single parameter, which constrains it to an ellipse. We show how the measured imbalance of momenta in the event reduces the solutions for neutrino momenta to a discrete set, in the cases of one or two top quarks decaying to leptons. The algorithms can be implemented concisely with common linear algebra routines. Keywords: top, neutrino, reconstruction, analytic 1. Introduction decay of the intermediate W boson falls outside experimental acceptance. Top quark reconstruction from channels containing one or more leptons presents a challenge since the neutrinos are not directly observed. The sum of neutrino momenta can be in- 2. Derivation ferred from the total momentum imbalance, but this quantity The kinematics of top quark decay constrain the W boson frequently has the worst resolution of all constraints on top momentum vector to an ellipsoidal surface of revolution about quark decays. Reconstruction at hadron colliders faces fur- an axis coincident with bottom quark momentum. Simultane- ther difficulties, since the longitudinal momentum is uncon- ously, the kinematics of W boson decay constrain the W boson strained. In a common approach to the single neutrino final momentum vector to an ellipsoidal surface of revolution about state at hadron colliders (e.g. -
Quarks and Their Discovery
Quarks and Their Discovery Parashu Ram Poudel Department of Physics, PN Campus, Pokhara Email: [email protected] Introduction charge (e) of one proton. The different fl avors of Quarks are the smallest building blocks of matter. quarks have different charges. The up (u), charm They are the fundamental constituents of all the (c) and top (t) quarks have electric charge +2e/3 hadrons. They have fractional electronic charge. and the down (d), strange (s) and bottom (b) quarks Quarks never exist alone in nature. They are always have charge -e/3; -e is the charge of an electron. The found in combination with other quarks or antiquark masses of these quarks vary greatly, and of the six, in larger particle of matter. By studying these larger only the up and down quarks, which are by far the particles, scientists have determined the properties lightest, appear to play a direct role in normal matter. of quarks. Protons and neutrons, the particles that make up the nuclei of the atoms consist of quarks. There are four forces that act between the quarks. Without quarks there would be no atoms, and without They are strong force, electromagnetic force, atoms, matter would not exist as we know it. Quarks weak force and gravitational force. The quantum only form triplets called baryons such as proton and of strong force is gluon. Gluons bind quarks or neutron or doublets called mesons such as Kaons and quark and antiquark together to form hadrons. The pi mesons. Quarks exist in six varieties: up (u), down electromagnetic force has photon as quantum that (d), charm (c), strange (s), bottom (b), and top (t) couples the quarks charge. -
Higgs Boson Production in Association with a Top Quark Pair at √ S = 13
Higgs boson production in association with a top quark pair p at s = 13 TeV with the ATLAS detector Robert Wolff on behalf of the ATLAS Collaboration CPPM, Aix-Marseille Universit´eand CNRS/IN2P3, 163, avenue de Luminy - Case 902 - 13288 Marseille, France A search for the associated production of the Higgs boson with a top quark pair (ttH¯ ) is performed in multileptonic final states using a dataset corresponding to an integrated lumi- nosity of 36.1 fb1 of proton-proton collision data recorded by the ATLAS experiment at a p center-of-mass energy of s = 13 TeV at the Large Hadron Collider. Higgs boson decays to WW ∗, ττ and ZZ∗ are targeted. Seven final states, categorized by the number and flavour of charged-lepton candidates, are examined for the presence of the Standard Model Higgs boson with a mass close to 125 GeV and a pair of top quarks. An excess of events over the expected background from Standard Model processes is found with an observed significance of 4.1 standard deviations, compared to an expectation of 2.8 standard deviations. Furthermore, the combination of this result with other ttH¯ searches from the ATLAS experiment using the Higgs boson decay modes to b¯b, γγ and ZZ∗ ! 4` is briefly reported. 1 Top quark Yukawa coupling at the LHC The Higgs boson has been discovered by the ATLAS and CMS experiments at the Run 1 of the Large Hadron Collider (LHC) with a mass close to 125 GeV1;2. Its measured properties like spin and interactions are consistent with those predicted for a Higgs boson by the Standard Model (SM) of particle physics.